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Summary

•Have: Two collections drawn from two unknown distributions.
•Goal: Learn distinguishing features indicating how they differ.
•How: Maximize a lower bound on test power for a two-sample

test using these features.
•Our methods are both:

1. Understandable spatial and frequency feature extractors.

2. Linear-time, nonparametric, consistent, two-sample tests.
(Power matches the quadratic-time MMD test).

•Applications: 1. Differentiate positive/negative emotions.
2. Distinguish articles from different categories.

ME and SCF Tests

•Observe X := {xi}n
i=1 ∼ P and Y := {yi}n

i=1 ∼ Q in Rd.

•Test H0 : P = Q v.s. H1 : P 6= Q. Calculate a statistic λ̂n, and
reject H0 if λ̂n > Tα = (1−α)-quantile of the null distribution.

Mean Embedding (ME) Test:

Test statistic: λ̂n := nw>n (Sn + γnI)−1wn,

•J spatial features (test locations): V = {v1, . . . ,vJ}.
•Regularizer γn. Gaussian kernel kσ .
•Witness function: witness(v) := Êx[kσ(x,v)]− Êy[kσ(y,v)].
•wn := (witness(v1), . . . ,witness(vJ))

> ∈ RJ.
• (Sn)i j = ĉovx[k(x,vi), k(x,v j)] + ĉovy[k(y,vi), k(y,v j)].

•Under H0, λ̂n asymptotically follows χ2(J).
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Smooth Characteristic Function (SCF) Test:
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•Difference of smoothed (by l) characteristic functions.

Test Power Lower Bound

Proposition.The power PH1
(λ̂n ≥ Tα) of the ME test is at least

L(λn) = 1− 2e−ξ1(λn−Tα)
2/n − 2e−

[γn(λn−Tα )(n−1)−ξ2n]2

ξ3n(2n−1)2 − 2e−
[(λn−Tα )/3−c3nγn]2γ2n

ξ4

For large n, L(λn) is increasing in λn.

•λn is the population counterpart of λ̂n. Constants: c3, ξ1, . . . , ξ4 > 0.

Proposal: Optimize V,σ = argmaxV,σ L(λn) = argmaxV,σ λn.
•Key: Parameters chosen to maximize the test power lower bound.
•Use a separate training set to estimate λn.

Informative Features

•Contour plot of λ̂n as a function of v2 when J = 2. v1 fixed at s.
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Q : N ([1, 0], I).

• λ̂n is high in the regions
that reveal the difference.

•Nonconvexity indicates many informative ways to detect the differences.

Test Power vs. Sample Size

Problem P Q
GVD N (0d, Id) N (0d, diag(2, 1, . . . , 1))
Blobs Mixture of 16 Gaussians in R2. See →
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•ME-full, SCF-full = Proposed methods. Full optimization. J = 5.
•ME-grid, SCF-grid = Random V . Grid search for σ .
•MMD-quad, MMD-lin = Quadratic and linear-time MMD tests.
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GVD. 50 dimensions.
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Blobs.

•GVD: Best performance by ME-full. Spatial differences.
•Blobs: Best performance by SCF-full. Frequency differences.

Distinguishing Pos. & Neg. Emotions

•Task: distinguish positive and negative facial expressions.
•d = 48× 34 = 1632 pixels. Use raw pixels. One feature (J = 1).
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Learned feature

•ME-full, SCF-full achieves high test power.
•ME-full learned an informative feature.

Distinguishing NIPS Articles

•Task: distinguish two categories of NIPS papers (1988–2015).
•Stemmed d = 2000 nouns. TF-IDF representation. J = 1.
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•ME-full: high powers comparable to MMD-quad; but faster.

Learned documents by ME-full show distinguishing keywords.
•Bayes-Deep: infer, Bayes, Monte Carlo, adaptor, motif, haplotype, ECG

•Bayes-Neuro: spike, Markov, cortex, dropout, recurrent, iii, Gibbs, basin

•Learn-Neuro: policy, interconnect, hardware, decay, histolog, EDG, period
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