Interpretable Distribution Features with Maximum Testing Power

Wittawat Jitkrittum, Zoltán Szabó, Kacper Chwialkowski, Arthur Gretton

Summary

- **Have**: Two collections drawn from two unknown distributions.
- **Goal**: Learn distinguishing features indicating how they differ.
- How: Maximize a lower bound on test power for a two-sample test using these features.
- Our methods are both:
- 1. Understandable spatial and frequency feature extractors.
- 2. Linear-time, nonparametric, consistent, two-sample tests. (Power matches the quadratic-time MMD test).
- **Applications**: 1. Differentiate positive/negative emotions. 2. Distinguish articles from different categories.

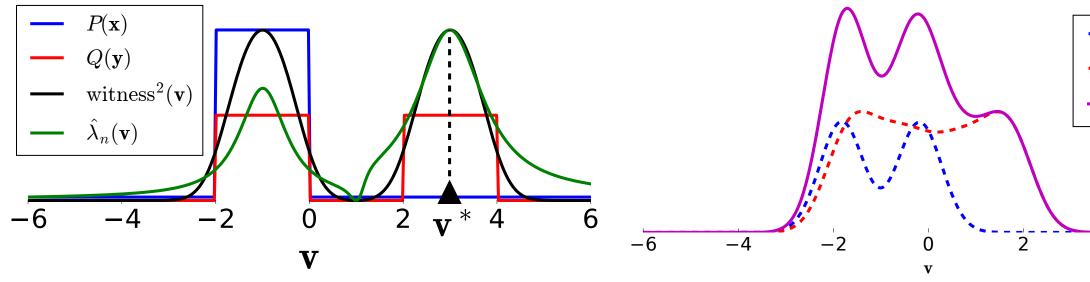
ME and SCF Tests

- Observe $\mathsf{X} := \{\mathbf{x}_i\}_{i=1}^n \sim P$ and $\mathsf{Y} := \{\mathbf{y}_i\}_{i=1}^n \sim Q$ in \mathbb{R}^d . • Test $H_0: P = Q$ v.s. $H_1: P \neq Q$. Calculate a statistic λ_n , and
- reject H_0 if $\lambda_n > T_{\alpha} = (1 \alpha)$ -quantile of the null distribution.

Mean Embedding (ME) Test:

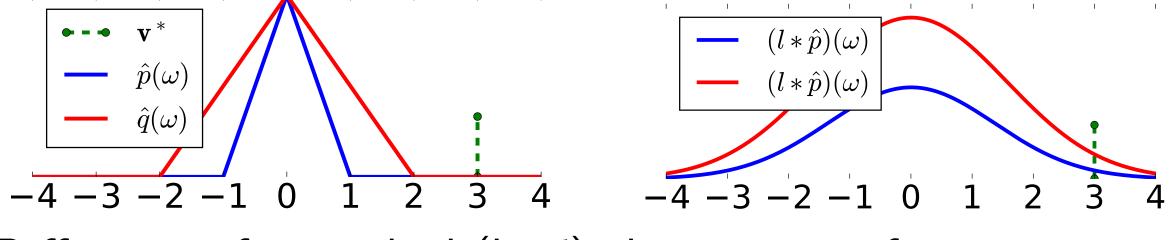
Test statistic: $\hat{\boldsymbol{\lambda}}_n := n \mathbf{w}_n^\top (\mathbf{S}_n + \boldsymbol{\gamma}_n I)^{-1} \mathbf{w}_n$,

- J spatial features (test locations): $\mathcal{V} = \{\mathbf{v}_1, \dots, \mathbf{v}_J\}$.
- Regularizer γ_n . Gaussian kernel k_{σ} .
- Witness function: witness(\mathbf{v}) := $\mathbb{E}_{\mathbf{x}}[k_{\sigma}(\mathbf{x}, \mathbf{v})] \mathbb{E}_{\mathbf{y}}[k_{\sigma}(\mathbf{y}, \mathbf{v})]$.
- $\mathbf{w}_n := (\text{witness}(\mathbf{v}_1), \dots, \text{witness}(\mathbf{v}_J))^\top \in \mathbb{R}^J.$
- $(\mathbf{S}_n)_{ij} = \widehat{\operatorname{cov}}_{\mathbf{x}}[k(\mathbf{x}, \mathbf{v}_i), k(\mathbf{x}, \mathbf{v}_j)] + \widehat{\operatorname{cov}}_{\mathbf{y}}[k(\mathbf{y}, \mathbf{v}_i), k(\mathbf{y}, \mathbf{v}_j)].$
- Under H_0 , λ_n asymptotically follows $\chi^2(J)$.



Smooth Characteristic Function (SCF) Test:

Characteristic functions $\hat{p}(\omega), \hat{q}(\omega)$



• Difference of smoothed (by l) characteristic functions.

Gatsby Computational Neuroscience Unit, University College London

Test Power Lower Bound

 $\cdot \cdot \cdot \hat{s}_{\mathbf{x}}(\mathbf{v})$ $\cdot \cdot \cdot \hat{s}_{\mathbf{y}}(\mathbf{v})$ $\hat{s}(\mathbf{v})$

Smoothed characteristic functions

Proposition. The power $\mathbb{P}_{H_1}(\lambda_n \geq T_{\alpha})$ of the ME test is at least

 $L(\lambda_n) = 1 - 2e^{-\xi_1(\lambda_n - T_\alpha)^2/n} - 2e^{-\frac{[\gamma_n(\lambda_n - T_\alpha)(n-1) - \xi_2 n]^2}{\xi_3 n(2n-1)^2}} - 2e^{-\frac{[(\lambda_n - T_\alpha)/3 - \overline{c}_3 n \gamma_n]^2 \gamma_n^2}{\xi_4}}$

For large *n*, $L(\lambda_n)$ is increasing in λ_n .

• λ_n is the population counterpart of λ_n . Constants: $\overline{c}_3, \xi_1, \ldots, \xi_4 > 0$.

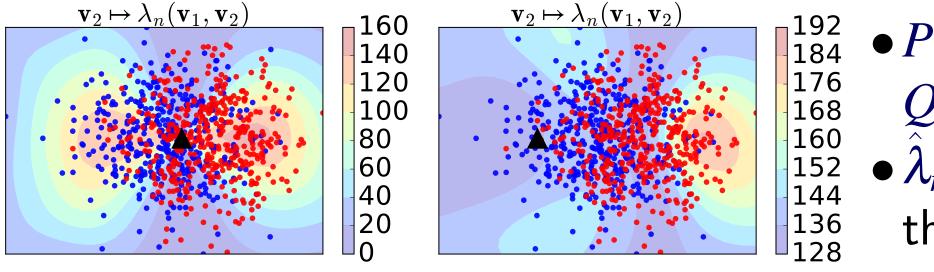
Proposal: Optimize $\mathcal{V}, \boldsymbol{\sigma} = \arg \max_{\mathcal{V}, \boldsymbol{\sigma}} L(\lambda_n) = \arg \max_{\mathcal{V}, \boldsymbol{\sigma}} \lambda_n$.

• Key: Parameters chosen to maximize the test power lower bound.

• Use a separate training set to estimate λ_n .

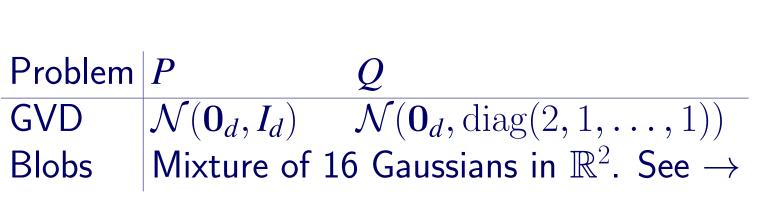
Informative Features

• Contour plot of λ_n as a function of \mathbf{v}_2 when J = 2. \mathbf{v}_1 fixed at \blacktriangle .



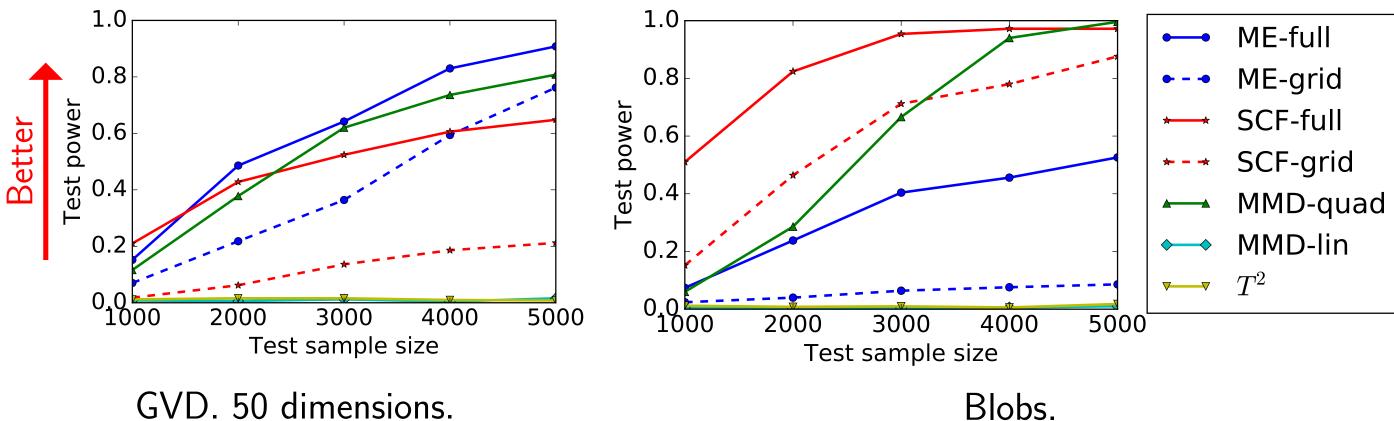
• Nonconvexity indicates many informative ways to detect the differences.

Test Power vs. Sample Size



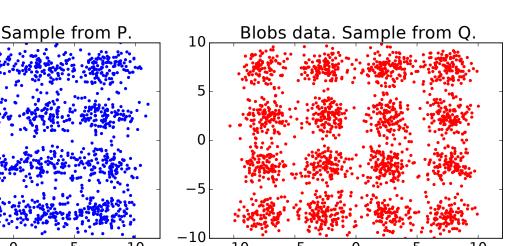
10 ₁	BIO	bs da	ita. Sa
		S. Ferrier	12 A
5	_		
	-38		53 in
0	7.		
-5	-		
_			
-10			
	-10	-5	C

• ME-full, SCF-full = Proposed methods. Full optimization. J = 5. • ME-grid, SCF-grid = Random \mathcal{V} . Grid search for σ . • MMD-quad, MMD-lin = Quadratic and linear-time MMD tests.



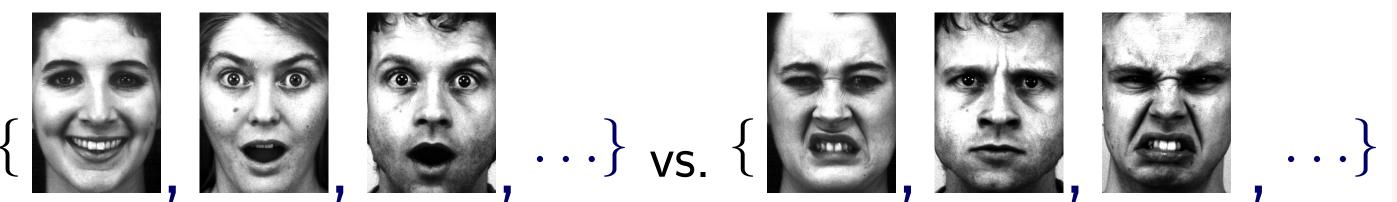
• GVD: Best performance by ME-full. Spatial differences. • Blobs: Best performance by SCF-full. Frequency differences.

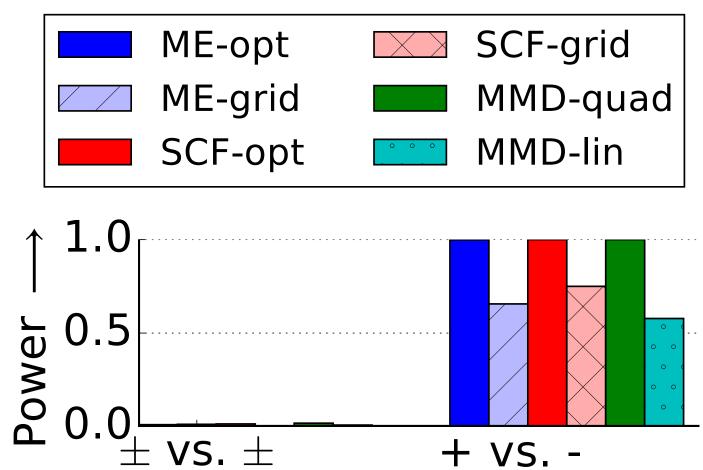
- ¹⁹²₁₈₄ $P: \mathcal{N}([0,0],\mathbf{I})$ vs. $\begin{array}{ccc}
 176 \\
 168 \\
 160
 \end{array}
 \begin{array}{c}
 Q : \mathcal{N}([1,0],\mathbf{I}).
 \end{array}$
 - $\hat{\lambda}_n$ is high in the regions that reveal the difference.



- Blobs.

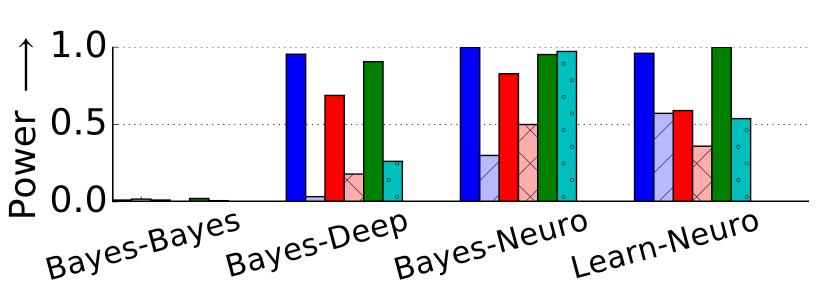
Distinguishing Pos. & Neg. Emotions





- ME-full, SCF-full achieves high test power.
- ME-full learned an informative feature.

Distinguishing NIPS Articles

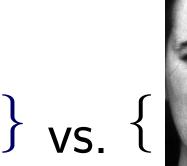


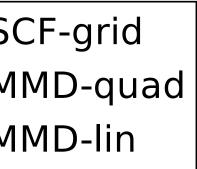
• ME-full: high powers comparable to MMD-quad; but faster. Learned documents by ME-full show distinguishing keywords. • **Bayes-Deep**: infer, Bayes, Monte Carlo, adaptor, motif, haplotype, ECG • Bayes-Neuro: spike, Markov, cortex, dropout, recurrent, iii, Gibbs, basin • Learn-Neuro: policy, interconnect, hardware, decay, histolog, EDG, period

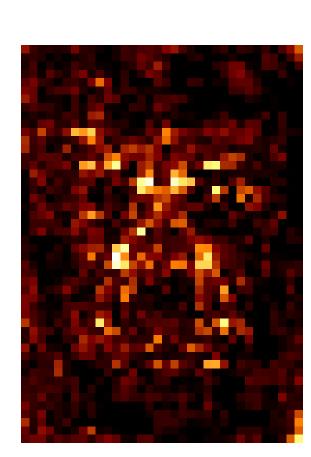
We thank the Gatsby Charitable Foundation for the financial support.

Contact: wittawat@gatsby.ucl.ac.uk Code: github.com/wittawatj/interpretable-test Paper: http://arxiv.org/abs/1605.06796

• **Task:** distinguish positive and negative facial expressions. • $d = 48 \times 34 = 1632$ pixels. Use raw pixels. One feature (J = 1).







Learned feature

• **Task:** distinguish two categories of NIPS papers (1988–2015). • Stemmed d = 2000 nouns. TF-IDF representation. J = 1.

ME-opt	SCF-grid
🗾 ME-grid	MMD-quad
SCF-opt	MMD-lin

