Some Counterexamples in Probability

Wittawat Jitkrittum wittawat@gatsby.ucl.ac.uk

> Gatsby Tea Talk 3 Feb 2017

1. Correlation & independence

Quiz: For any random variables X and Y, cov(X, Y) = 0 implies independence of X and Y?

1. Correlation & independence

Quiz: For any random variables X and Y, cov(X, Y) = 0 implies independence of X and Y? No.

1. Correlation & independence

Quiz: For any random variables X and Y, cov(X, Y) = 0 implies independence of X and Y? No.

- Let $X \sim \mathcal{N}(0, 1)$.
- Let $Y := X^2$.
- Then, cov(X, Y) = 0:

$$cov(X, Y) = \mathbb{E}[XY] - \overbrace{\mathbb{E}[X]}^{0} \mathbb{E}[Y]$$
$$= \mathbb{E}[XX^{2}]$$
$$= 0 (a \text{ Gaussian has } 0 \text{ skewness})$$

• X, Y are clearly dependent.

Fact: Zero correlation does not imply independence.

Fact: Zero correlation does not imply independence.

Quiz: If $X \sim \mathcal{N}(0,1)$, $Y \sim \mathcal{N}(0,1)$, and cov(X, Y) = 0, then $X \perp Y$?

- **Fact**: Zero correlation does not imply independence.
- **Quiz:** If $X \sim \mathcal{N}(0, 1)$, $Y \sim \mathcal{N}(0, 1)$, and cov(X, Y) = 0, then $X \perp Y$? No!

- **Fact**: Zero correlation does not imply independence.
- Quiz: If $X \sim \mathcal{N}(0,1)$, $Y \sim \mathcal{N}(0,1)$, and cov(X, Y) = 0, then $X \perp Y$? No!

Precise statement:

If X, Y are jointly normally distributed, and cov(X, Y) = 0, then $X \perp Y$.

- **Fact**: Zero correlation does not imply independence.
- Quiz: If $X \sim \mathcal{N}(0,1)$, $Y \sim \mathcal{N}(0,1)$, and cov(X, Y) = 0, then $X \perp Y$? No!

Precise statement: If X, Y are jointly normally distributed, and cov(X, Y) = 0, then $X \perp Y$.

• If normally distributed X and Y are independent, then they are jointly normally distributed.

- **Fact**: Zero correlation does not imply independence.
- Quiz: If $X \sim \mathcal{N}(0,1)$, $Y \sim \mathcal{N}(0,1)$, and cov(X, Y) = 0, then $X \perp Y$? No!

Precise statement: If X, Y are jointly normally distributed, and cov(X, Y) = 0, then $X \perp Y$.

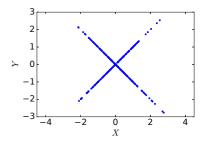
• If normally distributed X and Y are independent, then they are jointly normally distributed.

Will construct a counterexample such that

- X and Y are marginally Gaussian (not jointly).
- $\bullet \operatorname{cov}(X, Y) = 0.$
- But, $X \not\perp Y$.

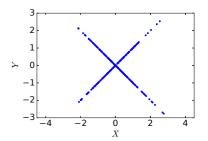
- Let $X \sim \mathcal{N}(0, 1)$.
- Let $W \in \{-1, 1\}$ s.t. P(W = 1) = P(W = -1) = 0.5.

• Let Y := WX. Clearly, $X \not\perp Y$.



Let X ~ N(0, 1).
Let W ∈ {-1, 1} s.t. P(W = 1) = P(W = -1) = 0.5.

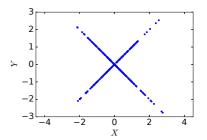
• Let Y := WX. Clearly, $X \not\perp Y$.



 $\operatorname{cov}(X, Y) = \mathbb{E}[XY] - \mathbb{E}[X] \left(\overbrace{\mathbb{E}[W]}^{0} \mathbb{E}[X] \right) = \mathbb{E}[X^{2}]\mathbb{E}[W] = 0$

Let X ~ N(0, 1).
Let W ∈ {-1, 1} s.t. P(W = 1) = P(W = -1) = 0.5.
Let V = WY Chereke X ≠ V

• Let Y := WX. Clearly, $X \not\perp Y$.

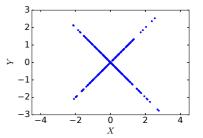


$$\operatorname{cov}(X, Y) = \mathbb{E}[XY] - \mathbb{E}[X] \left(\overbrace{\mathbb{E}[W]}^{0} \mathbb{E}[X] \right) = \mathbb{E}[X^{2}]\mathbb{E}[W] = 0$$

To show that $Y \sim \mathcal{N}(0, 1)$.

Notice $-X \sim \mathcal{N}(0, 1)$. So, $Y = WX \sim \mathcal{N}(0, 1)$.

Let X ~ N(0, 1).
Let W ∈ {-1, 1} s.t. P(W = 1) = P(W = -1) = 0.5.
Let Y := WX. Clearly, X ≠ Y.

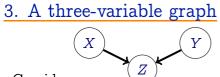


$$\operatorname{cov}(X, Y) = \mathbb{E}[XY] - \mathbb{E}[X] \left(\overbrace{\mathbb{E}[W]}^{0} \mathbb{E}[X] \right) = \mathbb{E}[X^{2}]\mathbb{E}[W] = 0$$

To show that $Y \sim \mathcal{N}(0, 1)$.

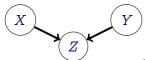
• Notice $-X \sim \mathcal{N}(0, 1)$. So, $Y = WX \sim \mathcal{N}(0, 1)$.

Summary: If X, Y are only marginally Gaussian, and cov(X, Y) = 0, then X and Y are not necessarily independent.



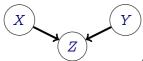
.

Consider



Consider

Quiz: Is it possible to define p(X), p(Y), and p(Z|X, Y) such that



Consider

Quiz: Is it possible to define p(X), p(Y), and p(Z|X, Y) such that

1 $X \perp Y$, and $Z \not\perp (X, Y)$ and $X \not\perp Y \mid Z$, by the semantics of the graph.



Consider

Quiz: Is it possible to define p(X), p(Y), and p(Z|X, Y) such that

- 1 $X \perp Y$, and $Z \not\perp (X, Y)$ and $X \not\perp Y \mid Z$, by the semantics of the graph.
- 2 $Z \perp X$ and $Z \perp Y$?

Consider

Quiz: Is it possible to define p(X), p(Y), and p(Z|X, Y) such that

- 1 $X \perp Y$, and $Z \not\perp (X, Y)$ and $X \not\perp Y \mid Z$, by the semantics of the graph.
- 2 $Z \perp X$ and $Z \perp Y$? Yes

X, Y ∈ {-1,1} (i.i.d.) with probability 0.5 i.e., Rademacher variables.
Z := XY.

• Knowing that X = 1 does not say anything about Z.

Fact: If $X \perp Y$, then $f(X) \perp g(Y)$ for any functions f and g.

Fact: If $X \perp Y$, then $f(X) \perp g(Y)$ for any functions f and g.

Quiz: There exist X, Y such that $X^2 \perp Y^2$ and $X \not\perp Y$?

Fact: If $X \perp Y$, then $f(X) \perp g(Y)$ for any functions f and g.

Quiz: There exist X, Y such that $X^2 \perp Y^2$ and $X \not\perp Y$? Yes.

Fact: If $X \perp Y$, then $f(X) \perp g(Y)$ for any functions f and g.

Quiz: There exist X, Y such that $X^2 \perp Y^2$ and $X \not\perp Y$? Yes.

Reason:

If $f, g : \mathbb{R} \to \mathbb{R}$ are one-to-one, then $f(X) \perp g(Y) \implies X \perp Y$.

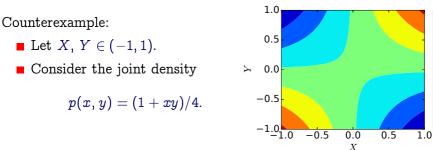
If not one-to-one, this is not true i.e., $f(x) = x^2$.

Fact: If $X \perp Y$, then $f(X) \perp g(Y)$ for any functions f and g.

Quiz: There exist X, Y such that $X^2 \perp Y^2$ and $X \not\perp Y$? Yes.

Reason:

- If $f, g: \mathbb{R} \to \mathbb{R}$ are one-to-one, then $f(X) \perp g(Y) \implies X \perp Y$.
- If not one-to-one, this is not true i.e., $f(x) = x^2$.



0.56

0.48

0.40

0.32

0.24 0.16

0.08

0.00

Counterexample: $X^2 \perp Y^2$ and $X \not\perp Y$

• Joint density: p(x, y) = (1 + xy)/4.

$$p(x) = \frac{1}{4} \int_{-1}^{1} (1 + xy) \, dy$$

= $\frac{1}{4} [y]_{-1}^{1} + \frac{x}{4} \left[\frac{y^2}{2} \right]_{-1}^{1}$
= $\frac{1}{2} + \frac{x}{4} \left(\frac{1}{2} - \frac{1}{2} \right) = \frac{1}{2} = p(y).$

Counterexample: $X^2 \perp Y^2$ and $X \not\perp Y$

• Joint density: p(x, y) = (1 + xy)/4.

$$\begin{split} p(x) &= \frac{1}{4} \int_{-1}^{1} (1 + xy) \, \mathrm{d}y \\ &= \frac{1}{4} \left[y \right]_{-1}^{1} + \frac{x}{4} \left[\frac{y^2}{2} \right]_{-1}^{1} \\ &= \frac{1}{2} + \frac{x}{4} \left(\frac{1}{2} - \frac{1}{2} \right) = \frac{1}{2} = p(y). \end{split}$$

Clearly, $p(x, y) \neq p(x)p(y)$. So, $X \not\perp Y$.

Counterexample: $X^2 \perp Y^2$ and $X \not\perp Y$

■ Joint density: p(x, y) = (1 + xy)/4.

$$p(x) = \frac{1}{4} \int_{-1}^{1} (1 + xy) \, dy$$

= $\frac{1}{4} [y]_{-1}^{1} + \frac{x}{4} \left[\frac{y^2}{2}\right]_{-1}^{1}$
= $\frac{1}{2} + \frac{x}{4} \left(\frac{1}{2} - \frac{1}{2}\right) = \frac{1}{2} = p(y)$

Clearly, $p(x, y) \neq p(x)p(y)$. So, $X \not\perp Y$.
To see that $X^2 \perp Y^2$, consider the joint CDF: $P(X^2 < a, Y^2 < b) = P\left(-\sqrt{a} < X < \sqrt{a}, -\sqrt{b} < Y < \sqrt{b}\right)$ $= \frac{1}{4} \int_{-\sqrt{a}}^{\sqrt{a}} \int_{-\sqrt{b}}^{\sqrt{b}} (1 + xy) \, dx \, dy$ $= \sqrt{a}\sqrt{b}$ $= P(X^2 < a)P(Y^2 < b).$

• Let A, B, C, D be 6-sided fair dice.

- Let A, B, C, D be 6-sided fair dice.
- Definition: A is said to "beat" B if P(A > B) > 0.5. Write A ≻ B for brevity.

- Let A, B, C, D be 6-sided fair dice.
- Definition: A is said to "beat" B if P(A > B) > 0.5. Write A ≻ B for brevity.
- **Quiz:** Is it possible to design values on the 6 faces of A, \ldots, D such that $A \succ B \succ C \succ D$ and $D \succ A$?

- Let A, B, C, D be 6-sided fair dice.
- Definition: A is said to "beat" B if P(A > B) > 0.5. Write A ≻ B for brevity.
- **Quiz:** Is it possible to design values on the 6 faces of A, \ldots, D such that $A \succ B \succ C \succ D$ and $D \succ A$? Yes.

• These are called non-transitive dice. Consider a variant of Efron's dice.

- Let A, B, C, D be 6-sided fair dice.
- Definition: A is said to "beat" B if P(A > B) > 0.5. Write A ≻ B for brevity.
- **Quiz:** Is it possible to design values on the 6 faces of A, \ldots, D such that $A \succ B \succ C \succ D$ and $D \succ A$? Yes.
- These are called non-transitive dice. Consider a variant of Efron's dice.
 A: 7, 7, 7, 7, 1, 1

- Let A, B, C, D be 6-sided fair dice.
- Definition: A is said to "beat" B if P(A > B) > 0.5. Write A ≻ B for brevity.
- **Quiz:** Is it possible to design values on the 6 faces of A, \ldots, D such that $A \succ B \succ C \succ D$ and $D \succ A$? Yes.
- These are called non-transitive dice. Consider a variant of Efron's dice.
 A: 7, 7, 7, 7, 1, 1
 B: 5, 5, 5, 5, 5, 5

- Let A, B, C, D be 6-sided fair dice.
- Definition: A is said to "beat" B if P(A > B) > 0.5. Write A ≻ B for brevity.
- **Quiz:** Is it possible to design values on the 6 faces of A, \ldots, D such that $A \succ B \succ C \succ D$ and $D \succ A$? Yes.

- These are called non-transitive dice. Consider a variant of Efron's dice.
 A: 7, 7, 7, 7, 1, 1
 B: 5, 5, 5, 5, 5, 5
 C. 6, 6, 6, 6, 6
- **C**: 9, 9, 3, 3, 3, 3

- Let A, B, C, D be 6-sided fair dice.
- Definition: A is said to "beat" B if P(A > B) > 0.5. Write A ≻ B for brevity.
- **Quiz:** Is it possible to design values on the 6 faces of A, \ldots, D such that $A \succ B \succ C \succ D$ and $D \succ A$? Yes.

- These are called non-transitive dice. Consider a variant of Efron's dice.
- A: 7, 7, 7, 7, 1, 1
- B: 5, 5, 5, 5, 5, 5
- C: 9, 9, 3, 3, 3, 3
- *D* : 8, 8, 8, 2, 2, 2

- Let A, B, C, D be 6-sided fair dice.
- Definition: A is said to "beat" B if P(A > B) > 0.5. Write A ≻ B for brevity.
- **Quiz:** Is it possible to design values on the 6 faces of A, \ldots, D such that $A \succ B \succ C \succ D$ and $D \succ A$? Yes.
- These are called non-transitive dice. Consider a variant of Efron's dice.
- A: 7, 7, 7, 7, 1, 1
- B: 5, 5, 5, 5, 5, 5
- C: 9, 9, 3, 3, 3, 3
- D: 8, 8, 8, 2, 2, 2
- **Extra**: All dice have an expected value of 5.
- So, summarizing a random quantity with its mean is not always good.

• Fact: If $X \perp Y$, and Y is integrable, then $\mathbb{E}[Y|X] = \mathbb{E}[Y]$.

• Fact: If $X \perp Y$, and Y is integrable, then $\mathbb{E}[Y|X] = \mathbb{E}[Y]$.

• Fact: If $X \perp Y$, and Y is integrable, then $\mathbb{E}[Y|X] = \mathbb{E}[Y]$.

Fact: If $X \perp Y$, and Y is integrable, then $\mathbb{E}[Y|X] = \mathbb{E}[Y]$.

Quiz: If $\mathbb{E}[Y|X] = \mathbb{E}[Y]$, then $X \perp Y$? No.

 Let Z be an integrable random variable symmetrically distributed around 0. So, 𝔼[Z] = 0.

Fact: If $X \perp Y$, and Y is integrable, then $\mathbb{E}[Y|X] = \mathbb{E}[Y]$.

- Let Z be an integrable random variable symmetrically distributed around 0. So, 𝔼[Z] = 0.
- Let X be such that $X \ge 1$ and $X \perp Z$.
- Y := Z/X.

Fact: If $X \perp Y$, and Y is integrable, then $\mathbb{E}[Y|X] = \mathbb{E}[Y]$.

- Let Z be an integrable random variable symmetrically distributed around 0. So, E[Z] = 0.
- Let X be such that $X \ge 1$ and $X \perp Z$.
- Y := Z/X.
- Then, $\mathbb{E}[Y] = 0$,

• Fact: If $X \perp Y$, and Y is integrable, then $\mathbb{E}[Y|X] = \mathbb{E}[Y]$.

- Let Z be an integrable random variable symmetrically distributed around 0. So, E[Z] = 0.
- Let X be such that $X \ge 1$ and $X \perp Z$.
- Y := Z/X.
- Then, $\mathbb{E}[Y] = 0$, and

$$\mathbb{E}[Y|x] = \int_{-\infty}^{\infty} rac{z}{x} p(z) dz = rac{1}{x} \mathbb{E}[Z] = 0.$$

• Fact: If $X \perp Y$, and Y is integrable, then $\mathbb{E}[Y|X] = \mathbb{E}[Y]$.

Quiz: If $\mathbb{E}[Y|X] = \mathbb{E}[Y]$, then $X \perp Y$? No.

- Let Z be an integrable random variable symmetrically distributed around 0. So, E[Z] = 0.
- Let X be such that $X \ge 1$ and $X \perp Z$.
- $\bullet Y := Z/X.$
- Then, $\mathbb{E}[Y] = 0$, and

$$\mathbb{E}[\,Y|x] = \int_{-\infty}^\infty rac{z}{x} p(z) \, \mathrm{d} z = rac{1}{x} \mathbb{E}[Z] = 0.$$

• So, $\mathbb{E}[Y|X] = \mathbb{E}[Y]$ and $X \not\perp Y$.

 Counterexamples in Probability: Third Edition (Dover Books on Mathematics) by Jordan Stoyanov

https://en.wikipedia.org/wiki/Normally_distributed_and_uncorrela https://en.wikipedia.org/wiki/Nontransitive_dice

Thank you