Some Counterexamples in Probability

Wittawat Jitkrittum
wittawat@gatsby.ucl.ac.uk

Gatsby Tea Talk
3 Feb 2017

1. Correlation \& independence

Quiz: For any random variables X and $Y, \operatorname{cov}(X, Y)=0$ implies independence of X and Y ?

1. Correlation \& independence

Quiz: For any random variables X and $Y, \operatorname{cov}(X, Y)=0$ implies independence of X and Y ? No.

1. Correlation \& independence

Quiz: For any random variables X and $Y, \operatorname{cov}(X, Y)=0$ implies independence of X and Y ? No.

■ Let $X \sim \mathcal{N}(0,1)$.
■ Let $Y:=X^{2}$.
■ Then, $\operatorname{cov}(X, Y)=0$:

$$
\begin{aligned}
\operatorname{cov}(X, Y) & =\mathbb{E}[X Y]-\overbrace{\mathbb{E}[X]}^{0} \mathbb{E}[Y] \\
& =\mathbb{E}\left[X X^{2}\right] \\
& =0 \text { (a Gaussian has } 0 \text { skewness }) .
\end{aligned}
$$

■ X, Y are clearly dependent.

2. Normality, correlation \& independence

■ Fact: Zero correlation does not imply independence.

2. Normality, correlation \& independence

■ Fact: Zero correlation does not imply independence.
■ Quiz: If $X \sim \mathcal{N}(0,1), Y \sim \mathcal{N}(0,1)$, and $\operatorname{cov}(X, Y)=0$, then $X \perp Y$?

2. Normality, correlation \& independence

■ Fact: Zero correlation does not imply independence.
■ Quiz: If $X \sim \mathcal{N}(0,1), Y \sim \mathcal{N}(0,1)$, and $\operatorname{cov}(X, Y)=0$, then $X \perp Y$? No!

2. Normality, correlation \& independence

■ Fact: Zero correlation does not imply independence.
■ Quiz: If $X \sim \mathcal{N}(0,1), Y \sim \mathcal{N}(0,1)$, and $\operatorname{cov}(X, Y)=0$, then $X \perp Y$? No!

```
Precise statement:
If X,Y are jointly normally distributed, and cov (X,Y)=0, then }X\perpY\mathrm{ .
```


2. Normality, correlation \& independence

■ Fact: Zero correlation does not imply independence.
■ Quiz: If $X \sim \mathcal{N}(0,1), Y \sim \mathcal{N}(0,1)$, and $\operatorname{cov}(X, Y)=0$, then $X \perp Y$? No!

Precise statement:
If X, Y are jointly normally distributed, and $\operatorname{cov}(X, Y)=0$, then $X \perp Y$.
■ If normally distributed X and Y are independent, then they are jointly normally distributed.

2. Normality, correlation \& independence

■ Fact: Zero correlation does not imply independence.
■ Quiz: If $X \sim \mathcal{N}(0,1), Y \sim \mathcal{N}(0,1)$, and $\operatorname{cov}(X, Y)=0$, then $X \perp Y$? No!

Precise statement:
If X, Y are jointly normally distributed, and $\operatorname{cov}(X, Y)=0$, then $X \perp Y$.
■ If normally distributed X and Y are independent, then they are jointly normally distributed.

Will construct a counterexample such that
■ X and Y are marginally Gaussian (not jointly).
$\square \operatorname{cov}(X, Y)=0$.
■ But, $X \not \not \not \perp Y$.

Counterexample

- Let $X \sim \mathcal{N}(0,1)$.

■ Let $W \in\{-1,1\}$ s.t.
$P(W=1)=P(W=-1)=0.5$.
■ Let $Y:=W X$. Clearly, $X \not \perp Y$.

Counterexample

- Let $X \sim \mathcal{N}(0,1)$.

■ Let $W \in\{-1,1\}$ s.t.

$$
P(W=1)=P(W=-1)=0.5 .
$$

■ Let $Y:=W X$. Clearly, $X \not \perp Y$.

$$
\operatorname{cov}(X, Y)=\mathbb{E}[X Y]-\mathbb{E}[X](\overbrace{\mathbb{E}[W]}^{0} \mathbb{E}[X])=\mathbb{E}\left[X^{2}\right] \mathbb{E}[W]=0
$$

Counterexample

- Let $X \sim \mathcal{N}(0,1)$.

■ Let $W \in\{-1,1\}$ s.t.

$$
P(W=1)=P(W=-1)=0.5 .
$$

■ Let $Y:=W X$. Clearly, $X \not \perp Y$.

$$
\operatorname{cov}(X, Y)=\mathbb{E}[X Y]-\mathbb{E}[X](\overbrace{\mathbb{E}[W]}^{0} \mathbb{E}[X])=\mathbb{E}\left[X^{2}\right] \mathbb{E}[W]=0
$$

To show that $Y \sim \mathcal{N}(0,1)$.
■ Notice $-X \sim \mathcal{N}(0,1)$. So, $Y=W X \sim \mathcal{N}(0,1)$.

Counterexample

- Let $X \sim \mathcal{N}(0,1)$.

■ Let $W \in\{-1,1\}$ s.t.

$$
P(W=1)=P(W=-1)=0.5 .
$$

■ Let $Y:=W X$. Clearly, $X \not \perp Y$.

$$
\operatorname{cov}(X, Y)=\mathbb{E}[X Y]-\mathbb{E}[X](\overbrace{\mathbb{E}[W]}^{0} \mathbb{E}[X])=\mathbb{E}\left[X^{2}\right] \mathbb{E}[W]=0
$$

To show that $Y \sim \mathcal{N}(0,1)$.
■ Notice $-X \sim \mathcal{N}(0,1)$. So, $Y=W X \sim \mathcal{N}(0,1)$.
Summary: If X, Y are only marginally Gaussian, and $\operatorname{cov}(X, Y)=0$, then X and Y are not necessarily independent.
3. A three-variable graph

3. A three-variable graph

Consider

Quiz: Is it possible to define $p(X), p(Y)$, and $p(Z \mid X, Y)$ such that

3. A three-variable graph

Consider

Quiz: Is it possible to define $p(X), p(Y)$, and $p(Z \mid X, Y)$ such that
$1 X \perp Y$, and $Z \not \perp(X, Y)$ and $X \not \perp Y \mid Z$, by the semantics of the graph.

3. A three-variable graph

Consider

Quiz: Is it possible to define $p(X), p(Y)$, and $p(Z \mid X, Y)$ such that
$1 X \perp Y$, and $Z \not \perp(X, Y)$ and $X \not \perp Y \mid Z$, by the semantics of the graph.
${ }_{2} Z \perp X$ and $Z \perp Y$?

3. A three-variable graph

Consider

Quiz: Is it possible to define $p(X), p(Y)$, and $p(Z \mid X, Y)$ such that
$1 X \perp Y$, and $Z \not \perp(X, Y)$ and $X \not \perp Y \mid Z$, by the semantics of the graph.
${ }_{2} Z \perp X$ and $Z \perp Y$? Yes
$■ X, Y \in\{-1,1\}$ (i.i.d.) with probability 0.5 i.e., Rademacher variables.
■ $Z:=X Y$.

$X=-1$	$Z=1$	$Z=-1$
$X=1$	$Z=-1$	$Z=1$

\square Knowing that $X=1$ does not say anything about Z.

4. Dependence and transformations

■ Fact: If $X \perp Y$, then $f(X) \perp g(Y)$ for any functions f and g.

4. Dependence and transformations

■ Fact: If $X \perp Y$, then $f(X) \perp g(Y)$ for any functions f and g.

- Quiz: There exist X, Y such that $X^{2} \perp Y^{2}$ and $X \not \perp Y$?

4. Dependence and transformations

$■$ Fact: If $X \perp Y$, then $f(X) \perp g(Y)$ for any functions f and g.

- Quiz: There exist X, Y such that $X^{2} \perp Y^{2}$ and $X \not \perp Y$? Yes.

4. Dependence and transformations

$■$ Fact: If $X \perp Y$, then $f(X) \perp g(Y)$ for any functions f and g.

- Quiz: There exist X, Y such that $X^{2} \perp Y^{2}$ and $X \not \perp Y$? Yes. Reason:

■ If $f, g: \mathbb{R} \rightarrow \mathbb{R}$ are one-to-one, then $f(X) \perp g(Y) \Longrightarrow X \perp Y$.

- If not one-to-one, this is not true i.e., $f(x)=x^{2}$.

4. Dependence and transformations

■ Fact: If $X \perp Y$, then $f(X) \perp g(Y)$ for any functions f and g.

- Quiz: There exist X, Y such that $X^{2} \perp Y^{2}$ and $X \not \perp Y$? Yes.

Reason:
■ If $f, g: \mathbb{R} \rightarrow \mathbb{R}$ are one-to-one, then $f(X) \perp g(Y) \Longrightarrow X \perp Y$.

- If not one-to-one, this is not true i.e., $f(x)=x^{2}$.

Counterexample:
\square Let $X, Y \in(-1,1)$.

- Consider the joint density

$$
p(x, y)=(1+x y) / 4
$$

Counterexample: $X^{2} \perp Y^{2}$ and $X \not \perp Y$

- Joint density: $p(x, y)=(1+x y) / 4$.

$$
\begin{aligned}
p(x) & =\frac{1}{4} \int_{-1}^{1}(1+x y) \mathrm{d} y \\
& =\frac{1}{4}[y]_{-1}^{1}+\frac{x}{4}\left[\frac{y^{2}}{2}\right]_{-1}^{1} \\
& =\frac{1}{2}+\frac{x}{4}\left(\frac{1}{2}-\frac{1}{2}\right)=\frac{1}{2}=p(y) .
\end{aligned}
$$

Counterexample: $X^{2} \perp Y^{2}$ and $X \not \perp Y$

- Joint density: $p(x, y)=(1+x y) / 4$.

$$
\begin{aligned}
p(x) & =\frac{1}{4} \int_{-1}^{1}(1+x y) \mathrm{d} y \\
& =\frac{1}{4}[y]_{-1}^{1}+\frac{x}{4}\left[\frac{y^{2}}{2}\right]_{-1}^{1} \\
& =\frac{1}{2}+\frac{x}{4}\left(\frac{1}{2}-\frac{1}{2}\right)=\frac{1}{2}=p(y) .
\end{aligned}
$$

■ Clearly, $p(x, y) \neq p(x) p(y)$. So, $X \not 又 Y$.

Counterexample: $X^{2} \perp Y^{2}$ and $X \not \perp Y$

- Joint density: $p(x, y)=(1+x y) / 4$.

$$
\begin{aligned}
p(x) & =\frac{1}{4} \int_{-1}^{1}(1+x y) \mathrm{d} y \\
& =\frac{1}{4}[y]_{-1}^{1}+\frac{x}{4}\left[\frac{y^{2}}{2}\right]_{-1}^{1} \\
& =\frac{1}{2}+\frac{x}{4}\left(\frac{1}{2}-\frac{1}{2}\right)=\frac{1}{2}=p(y) .
\end{aligned}
$$

■ Clearly, $p(x, y) \neq p(x) p(y)$. So, $X \not \perp Y$.
\square To see that $X^{2} \perp Y^{2}$, consider the joint CDF:

$$
\begin{aligned}
P\left(X^{2}<a, Y^{2}<b\right) & =P(-\sqrt{a}<X<\sqrt{a},-\sqrt{b}<Y<\sqrt{b}) \\
& =\frac{1}{4} \int_{-\sqrt{a}}^{\sqrt{a}} \int_{-\sqrt{b}}^{\sqrt{b}}(1+x y) \mathrm{d} x \mathrm{~d} y \\
& =\sqrt{a} \sqrt{b} \\
& =P\left(X^{2}<a\right) P\left(Y^{2}<b\right) .
\end{aligned}
$$

5. Transitivity of \succ for dice

- Let A, B, C, D be 6 -sided fair dice.

5. Transitivity of \succ for dice

- Let A, B, C, D be 6 -sided fair dice.

■ Definition: A is said to "beat" B if $P(A>B)>0.5$. Write $A \succ B$ for brevity.

5. Transitivity of \succ for dice

■ Let A, B, C, D be 6 -sided fair dice.

- Definition: A is said to "beat" B if $P(A>B)>0.5$. Write $A \succ B$ for brevity.
- Quiz: Is it possible to design values on the 6 faces of A, \ldots, D such that $A \succ B \succ C \succ D$ and $D \succ A$?

5. Transitivity of \succ for dice

■ Let A, B, C, D be 6 -sided fair dice.
■ Definition: A is said to "beat" B if $P(A>B)>0.5$. Write $A \succ B$ for brevity.
■ Quiz: Is it possible to design values on the 6 faces of A, \ldots, D such that $A \succ B \succ C \succ D$ and $D \succ A$? Yes.

■ These are called non-transitive dice. Consider a variant of Efron's dice.

5. Transitivity of \succ for dice

■ Let A, B, C, D be 6 -sided fair dice.
■ Definition: A is said to "beat" B if $P(A>B)>0.5$. Write $A \succ B$ for brevity.

- Quiz: Is it possible to design values on the 6 faces of A, \ldots, D such that $A \succ B \succ C \succ D$ and $D \succ A$? Yes.

■ These are called non-transitive dice. Consider a variant of Efron's dice.
■ A : $7,7,7,7,1,1$

5. Transitivity of \succ for dice

■ Let A, B, C, D be 6 -sided fair dice.

- Definition: A is said to "beat" B if $P(A>B)>0.5$. Write $A \succ B$ for brevity.
- Quiz: Is it possible to design values on the 6 faces of A, \ldots, D such that $A \succ B \succ C \succ D$ and $D \succ A$? Yes.

■ These are called non-transitive dice. Consider a variant of Efron's dice.

- A : $7,7,7,7,1,1$

■ $B: 5,5,5,5,5,5$

5. Transitivity of \succ for dice

■ Let A, B, C, D be 6 -sided fair dice.

- Definition: A is said to "beat" B if $P(A>B)>0.5$. Write $A \succ B$ for brevity.
- Quiz: Is it possible to design values on the 6 faces of A, \ldots, D such that $A \succ B \succ C \succ D$ and $D \succ A$? Yes.

■ These are called non-transitive dice. Consider a variant of Efron's dice.

- A : $7,7,7,7,1,1$

■ $B: 5,5,5,5,5,5$
■ $C: 9,9,3,3,3,3$

5. Transitivity of \succ for dice

■ Let A, B, C, D be 6 -sided fair dice.

- Definition: A is said to "beat" B if $P(A>B)>0.5$. Write $A \succ B$ for brevity.
- Quiz: Is it possible to design values on the 6 faces of A, \ldots, D such that $A \succ B \succ C \succ D$ and $D \succ A$? Yes.

■ These are called non-transitive dice. Consider a variant of Efron's dice.

- A : $7,7,7,7,1,1$

■ $B: 5,5,5,5,5,5$

- $C: 9,9,3,3,3,3$

■ $D: 8,8,8,2,2,2$

5. Transitivity of \succ for dice

- Let A, B, C, D be 6 -sided fair dice.

■ Definition: A is said to "beat" B if $P(A>B)>0.5$. Write $A \succ B$ for brevity.
■ Quiz: Is it possible to design values on the 6 faces of A, \ldots, D such that $A \succ B \succ C \succ D$ and $D \succ A$? Yes.

■ These are called non-transitive dice. Consider a variant of Efron's dice.

- A : $7,7,7,7,1,1$

■ $B: 5,5,5,5,5,5$

- $C: 9,9,3,3,3,3$
- $D: 8,8,8,2,2,2$

■ Extra: All dice have an expected value of 5 .

- So, summarizing a random quantity with its mean is not always good.

6. Expectation and independence

$■$ Fact: If $X \perp Y$, and Y is integrable, then $\mathbb{E}[Y \mid X]=\mathbb{E}[Y]$.

6. Expectation and independence

$■$ Fact: If $X \perp Y$, and Y is integrable, then $\mathbb{E}[Y \mid X]=\mathbb{E}[Y]$.
■ Quiz: If $\mathbb{E}[Y \mid X]=\mathbb{E}[Y]$, then $X \perp Y$?

6. Expectation and independence

$■$ Fact: If $X \perp Y$, and Y is integrable, then $\mathbb{E}[Y \mid X]=\mathbb{E}[Y]$.
■ Quiz: If $\mathbb{E}[Y \mid X]=\mathbb{E}[Y]$, then $X \perp Y$? No.

6. Expectation and independence

$■$ Fact: If $X \perp Y$, and Y is integrable, then $\mathbb{E}[Y \mid X]=\mathbb{E}[Y]$.
■ Quiz: If $\mathbb{E}[Y \mid X]=\mathbb{E}[Y]$, then $X \perp Y$? No.

■ Let Z be an integrable random variable symmetrically distributed around 0 . So, $\mathbb{E}[Z]=0$.

6. Expectation and independence

$■$ Fact: If $X \perp Y$, and Y is integrable, then $\mathbb{E}[Y \mid X]=\mathbb{E}[Y]$.
■ Quiz: If $\mathbb{E}[Y \mid X]=\mathbb{E}[Y]$, then $X \perp Y$? No.

■ Let Z be an integrable random variable symmetrically distributed around 0 . So, $\mathbb{E}[Z]=0$.
■ Let X be such that $X \geq 1$ and $X \perp Z$.

- $Y:=Z / X$.

6. Expectation and independence

$■$ Fact: If $X \perp Y$, and Y is integrable, then $\mathbb{E}[Y \mid X]=\mathbb{E}[Y]$.
■ Quiz: If $\mathbb{E}[Y \mid X]=\mathbb{E}[Y]$, then $X \perp Y$? No.

■ Let Z be an integrable random variable symmetrically distributed around 0 . So, $\mathbb{E}[Z]=0$.
■ Let X be such that $X \geq 1$ and $X \perp Z$.

- $Y:=Z / X$.
- Then, $\mathbb{E}[Y]=0$,

6. Expectation and independence

$■$ Fact: If $X \perp Y$, and Y is integrable, then $\mathbb{E}[Y \mid X]=\mathbb{E}[Y]$.
■ Quiz: If $\mathbb{E}[Y \mid X]=\mathbb{E}[Y]$, then $X \perp Y$? No.

■ Let Z be an integrable random variable symmetrically distributed around 0 . So, $\mathbb{E}[Z]=0$.
■ Let X be such that $X \geq 1$ and $X \perp Z$.

- $Y:=Z / X$.

■ Then, $\mathbb{E}[Y]=0$, and

$$
\mathbb{E}[Y \mid x]=\int_{-\infty}^{\infty} \frac{z}{x} p(z) \mathrm{d} z=\frac{1}{x} \mathbb{E}[Z]=0 .
$$

6. Expectation and independence

■ Fact: If $X \perp Y$, and Y is integrable, then $\mathbb{E}[Y \mid X]=\mathbb{E}[Y]$.
■ Quiz: If $\mathbb{E}[Y \mid X]=\mathbb{E}[Y]$, then $X \perp Y$? No.

■ Let Z be an integrable random variable symmetrically distributed around 0 . So, $\mathbb{E}[Z]=0$.
■ Let X be such that $X \geq 1$ and $X \perp Z$.

- $Y:=Z / X$.

■ Then, $\mathbb{E}[Y]=0$, and

$$
\mathbb{E}[Y \mid x]=\int_{-\infty}^{\infty} \frac{z}{x} p(z) \mathrm{d} z=\frac{1}{x} \mathbb{E}[Z]=0 .
$$

■ So, $\mathbb{E}[Y \mid X]=\mathbb{E}[Y]$ and $X \not \perp Y$.

References

■ Counterexamples in Probability: Third Edition (Dover Books on Mathematics) by Jordan Stoyanov
https://en.wikipedia.org/wiki/Normally_distributed_and_uncorrela
■ https://en.wikipedia.org/wiki/Nontransitive_dice

Questions?

Thank you

