Integers and Divisibility

Wittawat Jitkrittum wittawat.com

Empirical Inference Department Online Tea Talk

9 April 2020

Me: Rearrange these 4 cards so that the number is divisible by 3.Me: I bet 50 EUR that you can't. Want to try?

Should you accept the challenge?

Me: Rearrange these 4 cards so that the number is divisible by 3.
Me: I bet 50 EUR that you can't. Want to try?

Should you accept the challenge?

Me: Rearrange these 4 cards so that the number is divisible by 3.Me: I bet 50 EUR that you can't. Want to try?

Should you accept the challenge?

Me: Rearrange these 4 cards so that the number is divisible by 3.Me: I bet 50 EUR that you can't. Want to try?

Should you accept the challenge?

You (thinking): 7294, 4729, 4792, 9742,

Divisibility Tricks

• You should **NOT** take the challenge.

■ {2,7,4,9} cannot be rearranged to be divisible by 3.

How can we (mentally) determine this quickly?

In this talk:

Given some integers F, A, discuss how to trick your friends discuss quick methods to determine whether A is divisible by F.

Divisibility Tricks

• You should **NOT** take the challenge.

■ {2,7,4,9} cannot be rearranged to be divisible by 3.

How can we (mentally) determine this quickly?

In this talk:

Given some integers F, A, discuss how to trick your friends discuss quick methods to determine whether A is divisible by F.

• Let $A \in \mathbb{Z}$ (integers) with n digits. Write $A = a_{n-1} \cdots a_1 a_0$ where $a_i \in \{0, \dots, 9\}$.

• Example: for A = 267, $a_2 = 2$, $a_1 = 6$, and $a_0 = 7$.

■ Unique decomposition: $A = a_{n-1}10^{n-1} + \cdots + a_210^2 + a_110 + a_0$

• Example: $A = 1369 = 1 \cdot 10^3 + 3 \cdot 10^2 + 6 \cdot 10 + 9$.

- Let $A \in \mathbb{Z}$ (integers) with n digits. Write $A = a_{n-1} \cdots a_1 a_0$ where $a_i \in \{0, \dots, 9\}$.
- Example: for A = 267, $a_2 = 2$, $a_1 = 6$, and $a_0 = 7$.
- Unique decomposition: $A = a_{n-1}10^{n-1} + \cdots + a_210^2 + a_110 + a_0$
- Example: $A = 1369 = 1 \cdot 10^3 + 3 \cdot 10^2 + 6 \cdot 10 + 9$.

• Write D|A to mean "D divides A evenly" i.e., $\frac{A}{D}$ is an integer.

Lemma 1

Let $A, B \in \mathbb{Z}$. Let $D \in \mathbb{Z} \setminus \{0\}$. If D|A and D|B, then D|(A + B). This generalizes to more than two summands.

• Example: 3|9 and 3|6. So $3|(9+6) \equiv 3|15$.

Lemma 2

Let C := A + B. If D|C and D|A, then D|B.

Proof.

First note that if D|A, then D|-A. We have B = C + -A. Lemma 1 implies that D|B.

• Write D|A to mean "D divides A evenly" i.e., $\frac{A}{D}$ is an integer.

Lemma 1

Let $A, B \in \mathbb{Z}$. Let $D \in \mathbb{Z} \setminus \{0\}$. If D|A and D|B, then D|(A + B). This generalizes to more than two summands.

• Example: 3|9 and 3|6. So $3|(9+6) \equiv 3|15$.

Lemma 2

Let C := A + B. If D|C and D|A, then D|B.

Proof. First note that if D|A, then D|-A. We have B = C + -A. Lemma 1 implies that D|B.

• Write D|A to mean "D divides A evenly" i.e., $\frac{A}{D}$ is an integer.

Lemma 1

Let $A, B \in \mathbb{Z}$. Let $D \in \mathbb{Z} \setminus \{0\}$. If D|A and D|B, then D|(A + B). This generalizes to more than two summands.

• Example: 3|9 and 3|6. So $3|(9+6) \equiv 3|15$.

Lemma 2

Let C := A + B. If D|C and D|A, then D|B.

Proof.

First note that if D|A, then D|-A. We have B = C + -A. Lemma 1 implies that D|B.

• Write D|A to mean "D divides A evenly" i.e., $\frac{A}{D}$ is an integer.

Lemma 1

Let $A, B \in \mathbb{Z}$. Let $D \in \mathbb{Z} \setminus \{0\}$. If D|A and D|B, then D|(A + B). This generalizes to more than two summands.

• Example: 3|9 and 3|6. So $3|(9+6) \equiv 3|15$.

Lemma 2

Let C := A + B. If D|C and D|A, then D|B.

Proof.

First note that if D|A, then D|-A. We have B = C + -A. Lemma 1 implies that D|B.

•
$$A = a_{n-1}10^{n-1} + \cdots + a_110 + a_0$$

• Let $S(A) := \sum_{i=0}^{n-1} a_i = a_{n-1} + \cdots + a_1 + a_0$ (digit sum).

Proposition 3

3|A if and only if 3|S(A).

Proof.

Consider

$$A-S(A)=a_{n-1}(10^{n-1}-1)+\dots+a_2$$
99 + a_1 9.

So,

$$A = a_{n-1}(10^{n-1} - 1) + \dots + a_299 + a_19 + S(A).$$

always divisible by 3

If 3|S(A), then 3|A by Lemma 1.

Independent of the order of the digits.

• The bet: S(2749) = 22 which is not divisible by 3...

•
$$A = a_{n-1}10^{n-1} + \cdots + a_110 + a_0$$

• Let $S(A) := \sum_{i=0}^{n-1} a_i = a_{n-1} + \cdots + a_1 + a_0$ (digit sum).

Proposition 3

3|A if and only if 3|S(A).

Proof.

Consider

$$A-S(A)=a_{n-1}(10^{n-1}-1)+\dots+a_299+a_19.$$

So,

$$A = a_{n-1}(10^{n-1} - 1) + \dots + a_299 + a_19 + S(A).$$

always divisible by 3

If 3|S(A), then 3|A by Lemma 1.

Independent of the order of the digits.

• The bet: S(2749) = 22 which is not divisible by 3...

•
$$A = a_{n-1}10^{n-1} + \cdots + a_110 + a_0$$

• Let $S(A) := \sum_{i=0}^{n-1} a_i = a_{n-1} + \cdots + a_1 + a_0$ (digit sum).

Proposition 3

3|A if and only if 3|S(A).

Proof.

Consider

$$A-S(A)=a_{n-1}(10^{n-1}-1)+\cdots+a_299+a_19.$$

So,

$$A = a_{n-1}(10^{n-1} - 1) + \dots + a_299 + a_19 + S(A).$$

always divisible by 3

If 3|S(A), then 3|A by Lemma 1.

Independent of the order of the digits.
The bet: S(2749) = 22 which is not divisible by 3...

•
$$A = a_{n-1}10^{n-1} + \cdots + a_110 + a_0$$

• Let $S(A) := \sum_{i=0}^{n-1} a_i = a_{n-1} + \cdots + a_1 + a_0$ (digit sum).

Proposition 3

3|A if and only if 3|S(A).

Proof.

Consider

$$A-S(A)=a_{n-1}(10^{n-1}-1)+\cdots+a_299+a_19.$$

So,

always divisible by 3

If 3|S(A), then 3|A by Lemma 1.

- Independent of the order of the digits.
- The bet: S(2749) = 22 which is not divisible by 3...

- $\blacksquare A = a_{n-1} \cdots a_1 a_0$
- $\quad \blacksquare \ T_7(A) := a_{n-1} \cdots a_1 2a_0$

Proposition 4

 $7|A \text{ if and only if } 7|T_7(A).$

This suggests a recursive algorithm: $7|A \iff 7|T_7(A) \iff 7|T_7(T_7(A)) \iff \cdots$.

Rina Zazkis, 2002 calls it the Trimming Algorithm.

Example: A = 86415

So, 7 86415 since 7 84.

- $\bullet A = a_{n-1} \cdots a_1 a_0$
- $T_7(A) := a_{n-1} \cdots a_1 2a_0$

Proposition 4

- $7|A \text{ if and only if } 7|T_7(A).$
 - This suggests a recursive algorithm:
 - $7|A \iff 7|T_7(A) \iff 7|T_7(T_7(A)) \iff \cdots$
 - Rina Zazkis, 2002 calls it the Trimming Algorithm.

Example: A = 86415

So, 7 86415 since 7 84.

- $\bullet A = a_{n-1} \cdots a_1 a_0$
- $\bullet T_7(A) := a_{n-1} \cdots a_1 2a_0$

Proposition 4

 $7|A \text{ if and only if } 7|T_7(A).$

• This suggests a recursive algorithm:

 $7|A \iff 7|T_7(A) \iff 7|T_7(T_7(A)) \iff \cdots$

Rina Zazkis, 2002 calls it the Trimming Algorithm.

Example: A = 86415

Α	$T_7(A)$	=
86415	$8641 - 2 \cdot 5$	8631
8631	$863 - 2 \cdot 1$	861
861	$86 - 2 \cdot 1$	84

■ So, 7|86415 since 7|84.

$$\blacksquare A = a_{n-1} \cdots a_1 a_0. \qquad T_7(A) := a_{n-1} \cdots a_1 - 2a_0$$

Proposition 5

 $7|A \text{ if and only if } 7|T_7(A).$

Proof.

Note

Since 7|21, if 7| $T_7(A)$, Lemma 1 guarantees that 7|A

$$\blacksquare A = a_{n-1} \cdots a_1 a_0. \qquad T_7(A) := a_{n-1} \cdots a_1 - 2a_0$$

Proposition 5

 $7|A \text{ if and only if } 7|T_7(A).$

Proof.

Note

 $egin{aligned} A &= 10 \, a_{n-1} \cdots a_1 + a_0 \ &= 10 \, a_{n-1} \cdots a_1 - 20 \, a_0 + 20 \, a_0 + a_0 \ &= 10 (\, a_{n-1} \cdots a_1 - 2 \, a_0) + 21 \, a_0 \ &= 10 \, T_7(A) + 21 \, a_0. \end{aligned}$

Since 7|21, if 7| $T_7(A)$, Lemma 1 guarantees that 7|A

$$\blacksquare A = a_{n-1} \cdots a_1 a_0. \qquad T_7(A) := a_{n-1} \cdots a_1 - 2a_0$$

Proposition 5

 $7|A \text{ if and only if } 7|T_7(A).$

Proof.

Note

$$A = 10a_{n-1} \cdots a_1 + a_0$$

= $10a_{n-1} \cdots a_1 - 20a_0 + 20a_0 + a_0$
= $10(a_{n-1} \cdots a_1 - 2a_0) + 21a_0$
= $10T_7(A) + 21a_0$.

Since 7|21, if 7| $T_7(A)$, Lemma 1 guarantees that 7|A

$$\blacksquare A = a_{n-1} \cdots a_1 a_0. \qquad T_7(A) := a_{n-1} \cdots a_1 - 2a_0$$

Proposition 5

 $7|A \text{ if and only if } 7|T_7(A).$

Proof.

Note

$$egin{aligned} A &= 10a_{n-1}\cdots a_1 + a_0 \ &= 10a_{n-1}\cdots a_1 - 20a_0 + 20a_0 + a_0 \ &= 10(a_{n-1}\cdots a_1 - 2a_0) + 21a_0 \ &= 10\,T_7(A) + 21a_0. \end{aligned}$$

Since 7 21, if 7 $T_7(A)$, Lemma 1 guarantees that 7 A

$$\blacksquare A = a_{n-1} \cdots a_1 a_0. \qquad T_7(A) := a_{n-1} \cdots a_1 - 2a_0$$

Proposition 5

 $7|A \text{ if and only if } 7|T_7(A).$

Proof.

Note

$$egin{aligned} A &= 10 \, a_{n-1} \cdots a_1 + a_0 \ &= 10 \, a_{n-1} \cdots a_1 - 20 \, a_0 + 20 \, a_0 + a_0 \ &= 10 (\, a_{n-1} \cdots a_1 - 2 \, a_0) + 21 \, a_0 \ &= 10 \, T_7(A) + 21 \, a_0. \end{aligned}$$

Since 7|21, if $7|T_7(A)$, Lemma 1 guarantees that 7|A.

$$\blacksquare A = a_{n-1} \cdots a_1 a_0. \qquad T_7(A) := a_{n-1} \cdots a_1 - 2a_0$$

Proposition 5

 $7|A \text{ if and only if } 7|T_7(A).$

Proof.

Note

$$egin{aligned} A &= 10\,a_{n-1}\cdots a_1 + a_0 \ &= 10\,a_{n-1}\cdots a_1 - 20\,a_0 + 20\,a_0 + a_0 \ &= 10(\,a_{n-1}\cdots a_1 - 2\,a_0) + 21\,a_0 \ &= 10\,T_7(A) + 21\,a_0. \end{aligned}$$

Since 7|21, if 7| $T_7(A)$, Lemma 1 guarantees that 7|A.

Given a prime number $p \notin \{2, 5\}$, there exists $k \in \mathbb{Z}$ such that

 $p|A \iff p|[T_p(A)] := a_{n-1} \cdots a_1 - k a_0].$

 $egin{array}{l} A &= 10 \, a_{n-1} \cdots a_1 + a_0 \ &= 10 \, a_{n-1} \cdots a_1 - 10 \, ka_0 + 10 \, ka_0 + a_0 \ &= 10 \, (a_{n-1} \cdots a_1 - ka_0) + a_0 (10 \, k + 1) \ &= 10 \, T_p(A) + a_0 (10 \, k + 1). \end{array}$

Given a prime number $p \notin \{2, 5\}$, there exists $k \in \mathbb{Z}$ such that

 $p|A \iff p|[T_p(A)] := a_{n-1} \cdots a_1 - k a_0].$

 $A = 10a_{n-1}\cdots a_1 + a_0$ = 10a_{n-1}\cdots a_1 - 10ka_0 + 1

 $= 10 (a_{n-1} \cdots a_1 - ka_0) + a_0 (10k + 1)$ $= 10 T_n(A) + a_0 (10k + 1).$

Given a prime number $p \notin \{2, 5\}$, there exists $k \in \mathbb{Z}$ such that

$$p|A \iff p|[T_p(A) := a_{n-1} \cdots a_1 - k a_0].$$

$$egin{aligned} A &= 10a_{n-1}\cdots a_1 + a_0 \ &= 10a_{n-1}\cdots a_1 - 10ka_0 + 10ka_0 + a_0 \ &= 10\left(a_{n-1}\cdots a_1 - ka_0
ight) + a_0(10k+1) \ &= 10\,T_p(A) + a_0(10k+1). \end{aligned}$$

Given a prime number $p \notin \{2, 5\}$, there exists $k \in \mathbb{Z}$ such that

$$p|A \iff p|[T_p(A) := a_{n-1} \cdots a_1 - k a_0].$$

$$egin{aligned} A &= 10a_{n-1}\cdots a_1 + a_0 \ &= 10a_{n-1}\cdots a_1 - 10ka_0 + 10ka_0 + a_0 \ &= 10\left(a_{n-1}\cdots a_1 - ka_0
ight) + a_0(10k+1) \ &= 10\,T_p(A) + a_0(10k+1). \end{aligned}$$

Given a prime number $p \notin \{2, 5\}$, there exists $k \in \mathbb{Z}$ such that

$$p|A \iff p|[T_p(A) := a_{n-1} \cdots a_1 - k a_0].$$

$$egin{aligned} A &= 10a_{n-1}\cdots a_1 + a_0 \ &= 10a_{n-1}\cdots a_1 - 10ka_0 + 10ka_0 + a_0 \ &= 10\left(a_{n-1}\cdots a_1 - ka_0
ight) + a_0(10k+1) \ &= 10\,T_p(A) + a_0(10k+1). \end{aligned}$$

Given a prime number $p \notin \{2, 5\}$, there exists $k \in \mathbb{Z}$ such that

$$p|A \iff p|[T_p(A) := a_{n-1} \cdots a_1 - k a_0].$$

$$egin{aligned} A &= 10a_{n-1}\cdots a_1 + a_0 \ &= 10a_{n-1}\cdots a_1 - 10ka_0 + 10ka_0 + a_0 \ &= 10\left(a_{n-1}\cdots a_1 - ka_0
ight) + a_0(10k+1) \ &= 10\,T_p(A) + a_0(10k+1). \end{aligned}$$

Given p, p|10k + 1 if there exists $m \in \mathbb{Z}$ (quotient) such that

mp = 10k + 1 $\iff mp$ is close to 10k by 1

Write $p = p_{l-1} \cdots p_1 p_0$. Since $p \notin \{2, 5\}$ is prime, we know $p_0 \in \{1, 3, 7, 9\}$. • Case 1: $p_0 \in \{1, 9\}$. Finding k is easy. • Example: p = 29. • Choose m = -1 and k = -3• so that (-1)p - 10(-3) = 1. Similarly for $p_0 = 1$. • Case 2: $p_0 \in \{3, 7\}$. Reduce it to Case 1. • If $p_0 = 3$, consider m = 7 so that mp ends with 1. • If $p_0 = 7$, consider m = 3 so that mp ends with 1. • When p = 7, choose m = 3 and k = 2.

Given p, p|10k + 1 if there exists $m \in \mathbb{Z}$ (quotient) such that

mp = 10k + 1 $\iff mp$ is close to 10k by 1

Write p = p_{l-1} · · · p₁p₀. Since p ∉ {2,5} is prime, we know p₀ ∈ {1,3,7,9}.
Case 1: p₀ ∈ {1,9}. Finding k is easy.
Example: p = 29.
Choose m = -1 and k = -3
so that (-1)p - 10(-3) = 1.
Similarly for p₀ = 1.
Case 2: p₀ ∈ {3,7}. Reduce it to Case 1.
If p₀ = 3, consider m = 7 so that mp ends with 1.
If p₀ = 7, consider m = 3 so that mp ends with 1.
When p = 7, choose m = 3 and k = 2.

Given p, p|10k + 1 if there exists $m \in \mathbb{Z}$ (quotient) such that

mp = 10k + 1 $\iff mp$ is close to 10k by 1

Write $p = p_{l-1} \cdots p_1 p_0$. Since $p \notin \{2, 5\}$ is prime, we know $p_0 \in \{1, 3, 7, 9\}$. • Case 1: $p_0 \in \{1, 9\}$. Finding k is easy. • Example: p = 29. • Choose m = -1 and k = -3• so that (-1)p - 10(-3) = 1. Similarly for $p_0 = 1$. • Case 2: $p_0 \in \{3, 7\}$. Reduce it to Case 1. • If $p_0 = 3$, consider m = 7 so that mp ends with 1. • If $p_0 = 7$, consider m = 3 so that mp ends with 1.

When p = 7, choose m = 3 and k = 2.

Given p, p|10k + 1 if there exists $m \in \mathbb{Z}$ (quotient) such that

mp = 10k + 1 $\iff mp$ is close to 10k by 1

Write $p = p_{l-1} \cdots p_1 p_0$. Since $p \notin \{2, 5\}$ is prime, we know $p_0 \in \{1, 3, 7, 9\}$. • Case 1: $p_0 \in \{1, 9\}$. Finding k is easy.

- Example: p = 29
- Choose m = -1 and k = -3
- so that (-1)p 10(-3) = 1.

Similarly for $p_0 = 1$.

Case 2: $p_0 \in \{3, 7\}$. Reduce it to Case 1.

- If $p_0 = 3$, consider m = 7 so that mp ends with 1.
- If $p_0 = 7$, consider m = 3 so that mp ends with 1.

• When p = 7, choose m = 3 and k = 2.

Given p, p|10k + 1 if there exists $m \in \mathbb{Z}$ (quotient) such that

mp = 10k + 1 $\iff mp$ is close to 10k by 1

Write $p = p_{l-1} \cdots p_1 p_0$. Since $p \notin \{2, 5\}$ is prime, we know $p_0 \in \{1, 3, 7, 9\}$.

- Case 1: $p_0 \in \{1, 9\}$. Finding k is easy.
 - Example: p = 29.
 - Choose m = -1 and k = -3
 - so that (-1)p 10(-3) = 1.

Similarly for $p_0 = 1$.

• Case 2: $p_0 \in \{3,7\}$. Reduce it to Case 1.

• If $p_0 = 3$, consider m = 7 so that mp ends with 1.

• If $p_0 = 7$, consider m = 3 so that mp ends with 1.

• When p = 7, choose m = 3 and k = 2.

Given p, p|10k + 1 if there exists $m \in \mathbb{Z}$ (quotient) such that

mp = 10k + 1 $\iff mp$ is close to 10k by 1

Write $p = p_{l-1} \cdots p_1 p_0$. Since $p \notin \{2, 5\}$ is prime, we know $p_0 \in \{1, 3, 7, 9\}$.

- Case 1: $p_0 \in \{1, 9\}$. Finding k is easy.
 - Example: p = 29.
 - Choose m = -1 and k = -3
 - so that (-1)p 10(-3) = 1.
 - Similarly for $p_0 = 1$.
- Case 2: $p_0 \in \{3, 7\}$. Reduce it to Case 1.
 - If $p_0 = 3$, consider m = 7 so that mp ends with 1.
 - If $p_0 = 7$, consider m = 3 so that mp ends with 1.

When p = 7, choose m = 3 and k = 2.

Given p, p|10k + 1 if there exists $m \in \mathbb{Z}$ (quotient) such that

mp = 10k + 1 $\iff mp$ is close to 10k by 1

Write $p = p_{l-1} \cdots p_1 p_0$. Since $p \notin \{2, 5\}$ is prime, we know $p_0 \in \{1, 3, 7, 9\}$.

- Case 1: $p_0 \in \{1, 9\}$. Finding k is easy.
 - Example: p = 29.
 - Choose m = -1 and k = -3
 - so that (-1)p 10(-3) = 1.
 - Similarly for $p_0 = 1$.
- Case 2: $p_0 \in \{3, 7\}$. Reduce it to Case 1.
 - If $p_0 = 3$, consider m = 7 so that mp ends with 1.
 - If $p_0 = 7$, consider m = 3 so that mp ends with 1.

When
$$p = 7$$
, choose $m = 3$ and $k = 2$.

Divisibility by 2, 5, 10 is obvious.

- Divisibility by $6 \implies 6 = 2 \times 3$. So, do 2-test and 3-test.
- Divisibility by 9 \implies Same as 3-test.
- Divisibility by $12 \implies$ Do 3-test and 4-test.

- Numberphile: https://www.youtube.com/watch?v=yi-s-TTpLxY
- https://en.wikipedia.org/wiki/Divisibility_rule
- Zazkis, Rina. "Divisibility: A problem solving approach through generalizing and specializing." Humanistic Mathematics Network Journal 1.26 (2002): 18.
- Briggs, C. C. "Simple divisibility rules for the 1st 1000 prime numbers." arXiv preprint math/0001012 (2000).

Divisibility by 2, 5, 10 is obvious.

Divisibility by $6 \implies 6 = 2 \times 3$. So, do 2-test and 3-test.

Divisibility by 9 \implies Same as 3-test.

Divisibility by 12 \implies Do 3-test and 4-test.

- Numberphile: https://www.youtube.com/watch?v=yi-s-TTpLxY
- https://en.wikipedia.org/wiki/Divisibility_rule
- Zazkis, Rina. "Divisibility: A problem solving approach through generalizing and specializing." Humanistic Mathematics Network Journal 1.26 (2002): 18.
- Briggs, C. C. "Simple divisibility rules for the 1st 1000 prime numbers." arXiv preprint math/0001012 (2000).

Divisibility by 2, 5, 10 is obvious.

Divisibility by $6 \implies 6 = 2 \times 3$. So, do 2-test and 3-test.

- Divisibility by 9 \implies Same as 3-test.
- Divisibility by 12 \implies Do 3-test and 4-test.

- Numberphile: https://www.youtube.com/watch?v=yi-s-TTpLxY
- https://en.wikipedia.org/wiki/Divisibility_rule
- Zazkis, Rina. "Divisibility: A problem solving approach through generalizing and specializing." Humanistic Mathematics Network Journal 1.26 (2002): 18.
- Briggs, C. C. "Simple divisibility rules for the 1st 1000 prime numbers." arXiv preprint math/0001012 (2000).

Divisibility by 2, 5, 10 is obvious.

Divisibility by $6 \implies 6 = 2 \times 3$. So, do 2-test and 3-test.

- Divisibility by 9 \implies Same as 3-test.
- Divisibility by 12 ⇒ Do 3-test and 4-test.

- Numberphile: https://www.youtube.com/watch?v=yi-s-TTpLxY
- https://en.wikipedia.org/wiki/Divisibility_rule
- Zazkis, Rina. "Divisibility: A problem solving approach through generalizing and specializing." Humanistic Mathematics Network Journal 1.26 (2002): 18.
- Briggs, C. C. "Simple divisibility rules for the 1st 1000 prime numbers." arXiv preprint math/0001012 (2000).

Divisibility by 2, 5, 10 is obvious.

Divisibility by $6 \implies 6 = 2 \times 3$. So, do 2-test and 3-test.

- Divisibility by 9 \implies Same as 3-test.
- Divisibility by 12 ⇒ Do 3-test and 4-test.

- Numberphile: https://www.youtube.com/watch?v=yi-s-TTpLxY
- https://en.wikipedia.org/wiki/Divisibility_rule
- Zazkis, Rina. "Divisibility: A problem solving approach through generalizing and specializing." Humanistic Mathematics Network Journal 1.26 (2002): 18.
- Briggs, C. C. "Simple divisibility rules for the 1st 1000 prime numbers." arXiv preprint math/0001012 (2000).

Thank you

•
$$A = a_{n-1}10^{n-1} + \dots + a_2100 + a_110 + a_0$$

• Let $C(A) = \sum_{i=0}^{n-1} (-1)^i a_i = \dots - a_3 + a_2 - a_1 + a_0$

Proposition 6 11|A if and only if 11|C(A).

Proof.

 $A - C(A) = a_1 11 + a_2 99 + a_3 1001 + a_4 999 + \cdots$

•
$$A = a_{n-1}10^{n-1} + \dots + a_2100 + a_110 + a_0$$

• Let $C(A) = \sum_{i=0}^{n-1} (-1)^i a_i = \dots - a_3 + a_2 - a_1 + a_0$

Proposition 6

11|A if and only if 11|C(A).

Proof.

 $A - C(A) = a_1 11 + a_2 99 + a_3 1001 + a_4 999 + \cdots$ $= \sum_{i=1}^{n-1} a_i \left[10^i - 1 \right] + \sum_{i=1}^{n-1} a_i \left[10^i + 1 \right]$

• $\{10^i - 1 \mid \text{even } i \ge 2\} = \{99, 9999, 999999, \ldots\}$. All divisible by 11. $\{10^i + 1 \mid \text{odd } i\} = \{11, 1001, 100001, \ldots\}$ $= \{11, 990 + 11, 99990 + 11, \ldots\}$ (All divisible by 11)

•
$$A = a_{n-1}10^{n-1} + \dots + a_2100 + a_110 + a_0$$

• Let $C(A) = \sum_{i=0}^{n-1} (-1)^i a_i = \dots - a_3 + a_2 - a_1 + a_0$

Proposition 6

11|A if and only if 11|C(A).

Proof.

$$egin{aligned} A-C(A)&=a_1\mathbf{11}+a_2\mathbf{99}+a_3\mathbf{1001}+a_4\mathbf{999}+\cdots \ &=\sum_{\mathrm{even}\ i}^{n-1}a_i\left[\mathbf{10}^i-1
ight]+\sum_{\mathrm{odd}\ i}^{n-1}a_i\left[\mathbf{10}^i+1
ight] \end{aligned}$$

• $\{10^i - 1 \mid \text{even } i \ge 2\} = \{99, 9999, 999999, \ldots\}$. All divisible by 11. $\{10^i + 1 \mid \text{odd } i\} = \{11, 1001, 100001, \ldots\}$ $= \{11, 990 + 11, 99990 + 11, \ldots\}$ (All divisible by 11)

•
$$A = a_{n-1}10^{n-1} + \dots + a_2100 + a_110 + a_0$$

• Let $C(A) = \sum_{i=0}^{n-1} (-1)^i a_i = \dots - a_3 + a_2 - a_1 + a_0$

Proposition 6

11|A if and only if 11|C(A).

Proof.

$$egin{aligned} A-C(A) &= a_1 11 + a_2 99 + a_3 1001 + a_4 999 + \cdots \ &= \sum_{ ext{even } i}^{n-1} a_i \left[10^i - 1
ight] + \sum_{ ext{odd } i}^{n-1} a_i \left[10^i + 1
ight] \end{aligned}$$

• $\{10^i - 1 \mid \text{even } i \ge 2\} = \{99, 9999, 999999, \ldots\}$. All divisible by 11.

 $\left\{ \begin{aligned} 10^i + 1 \mid \text{odd } i \right\} &= \{ 11, 1001, 100001, \ldots \} \\ &= \{ 11, 990 + 11, 99990 + 11, \ldots \} \text{ (All divisible by 11)} \end{aligned}$

•
$$A = a_{n-1}10^{n-1} + \dots + a_2100 + a_110 + a_0$$

• Let $C(A) = \sum_{i=0}^{n-1} (-1)^i a_i = \dots - a_3 + a_2 - a_1 + a_0$

Proposition 6

11|A if and only if 11|C(A).

Proof.

$$egin{aligned} A-C(A) &= a_1 11 + a_2 99 + a_3 1001 + a_4 999 + \cdots \ &= \sum_{ ext{even } i}^{n-1} a_i \left[10^i - 1
ight] + \sum_{ ext{odd } i}^{n-1} a_i \left[10^i + 1
ight] \end{aligned}$$

• $\{10^i - 1 \mid \text{even } i \ge 2\} = \{99, 9999, 999999, \ldots\}$. All divisible by 11. $\{10^i + 1 \mid \text{odd } i\} = \{11, 1001, 100001, \ldots\}$ $= \{11, 990 + 11, 99990 + 11, \ldots\}$ (All divisible by 11)

 $A = a_{n-1}10^{n-1} + \dots + a_110 + a_0$

Proposition 7

 $4|A \text{ if and only if } 4|a_1a_0.$

Example: 836320 is divisible by 4 because 20 is divisible by 4.

Sufficient to check divisibility on the two least significant digits.

Proof.

$$A = \underbrace{a_{n-1}10^{n-1} + \dots + a_210^2}_{:=X} + \underbrace{a_110 + a_0}_{:=Y} = X + Y.$$

$$(\Leftarrow):$$
• Each term in X is divisible by 4 regardless of a_{n-1}, \dots, a_2 .
• If $Y = a_1a_0$ is divisible by 4, then the Lemma 1 guarantees $4|A$.
 $(\Rightarrow):$ Use Lemma 2

 $A = a_{n-1}10^{n-1} + \dots + a_110 + a_0$

Proposition 7

 $4|A \text{ if and only if } 4|a_1a_0.$

Example: 836320 is divisible by 4 because 20 is divisible by 4.

• Sufficient to check divisibility on the two least significant digits.

Proof.

$$A = \underbrace{a_{n-1}10^{n-1} + \dots + a_210^2}_{:=X} + \underbrace{a_110 + a_0}_{:=Y} = X + Y.$$

$$(\Leftarrow):$$
• Each term in X is divisible by 4 regardless of a_{n-1}, \dots, a_2 .
• If $Y = a_1a_0$ is divisible by 4, then the Lemma 1 guarantees $4|A$.
 $(\Rightarrow):$ Use Lemma 2

 $A = a_{n-1}10^{n-1} + \dots + a_110 + a_0$

Proposition 7

 $4|A \text{ if and only if } 4|a_1a_0.$

Example: 836320 is divisible by 4 because 20 is divisible by 4.

• Sufficient to check divisibility on the two least significant digits.

Proof.

$$A = \underbrace{a_{n-1}10^{n-1} + \dots + a_210^2}_{:=X} + \underbrace{a_110 + a_0}_{:=Y} = X + Y.$$

$$(\Leftarrow):$$
• Each term in X is divisible by 4 regardless of a_{n-1}, \dots, a_2 .
• If $Y = a_1a_0$ is divisible by 4, then the Lemma 1 guarantees $4|A$.
 $(\Rightarrow):$ Use Lemma 2