Integers and Divisibility

Wittawat Jitkrittum
wittawat.com

Empirical Inference Department
Online Tea Talk

9 April 2020

Bet with Me

Bet with Me

- Me: Rearrange these 4 cards so that the number is divisible by 3 .

Bet with Me

- Me: Rearrange these 4 cards so that the number is divisible by 3 .
- Me: I bet 50 EUR that you can't. Want to try?

Bet with Me

- Me: Rearrange these 4 cards so that the number is divisible by 3 .
- Me: I bet 50 EUR that you can't. Want to try?

Should you accept the challenge?

You (thinking): $7294,4729,4792,9742, \ldots$.

Divisibility Tricks

- You should NOT take the challenge.

■ $\{2,7,4,9\}$ cannot be rearranged to be divisible by 3 .
■ How can we (mentally) determine this quickly?

Divisibility Tricks

- You should NOT take the challenge.

■ $\{2,7,4,9\}$ cannot be rearranged to be divisible by 3 .
■ How can we (mentally) determine this quickly?

In this talk:

Given some integers F, A,

discuss how to trick your friends

discuss quick methods to determine whether A is divisible by F.

Preliminary I

- Let $A \in \mathbb{Z}$ (integers) with n digits.

Write $A=a_{n-1} \cdots a_{1} a_{0}$ where $a_{i} \in\{0, \ldots, 9\}$.
■ Example: for $A=267, a_{2}=2, a_{1}=6$, and $a_{0}=7$.

Preliminary I

- Let $A \in \mathbb{Z}$ (integers) with n digits.

Write $A=a_{n-1} \cdots a_{1} a_{0}$ where $a_{i} \in\{0, \ldots, 9\}$.
■ Example: for $A=267, a_{2}=2, a_{1}=6$, and $a_{0}=7$.
■ Unique decomposition: $A=a_{n-1} 10^{n-1}+\cdots a_{2} 10^{2}+a_{1} 10+a_{0}$

- Example: $A=1369=1 \cdot 10^{3}+3 \cdot 10^{2}+6 \cdot 10+9$.

Preliminary II

- Write $D \mid A$ to mean " D divides A evenly" i.e., $\frac{A}{D}$ is an integer.

Preliminary II

- Write $D \mid A$ to mean " D divides A evenly" i.e., $\frac{A}{D}$ is an integer.

Lemma 1

Let $A, B \in \mathbb{Z}$. Let $D \in \mathbb{Z} \backslash\{0\}$. If $D \mid A$ and $D \mid B$, then $D \mid(A+B)$. This generalizes to more than two summands.

■ Example: $3 \mid 9$ and $3 \mid 6$. So $3|(9+6) \equiv 3| 15$.

Preliminary II

- Write $D \mid A$ to mean " D divides A evenly" i.e., $\frac{A}{D}$ is an integer.

Lemma 1

Let $A, B \in \mathbb{Z}$. Let $D \in \mathbb{Z} \backslash\{0\}$. If $D \mid A$ and $D \mid B$, then $D \mid(A+B)$. This generalizes to more than two summands.

■ Example: $3 \mid 9$ and $3 \mid 6$. So $3|(9+6) \equiv 3| 15$.

Lemma 2

Let $C:=A+B$. If $D \mid C$ and $D \mid A$, then $D \mid B$.

Preliminary II

- Write $D \mid A$ to mean " D divides A evenly" i.e., $\frac{A}{D}$ is an integer.

Lemma 1

Let $A, B \in \mathbb{Z}$. Let $D \in \mathbb{Z} \backslash\{0\}$. If $D \mid A$ and $D \mid B$, then $D \mid(A+B)$. This generalizes to more than two summands.

■ Example: $3 \mid 9$ and $3 \mid 6$. So $3|(9+6) \equiv 3| 15$.

Lemma 2

Let $C:=A+B$. If $D \mid C$ and $D \mid A$, then $D \mid B$.

Proof.

First note that if $D \mid A$, then $D \mid-A$. We have $B=C+-A$. Lemma 1 implies that $D \mid B$.

Divisibility by 3

- $A=a_{n-1} 10^{n-1}+\cdots+a_{1} 10+a_{0}$
- Let $S(A):=\sum_{i=0}^{n-1} a_{i}=a_{n-1}+\cdots+a_{1}+a_{0}$ (digit sum).

Proposition 3

$3 \mid A$ if and only if $3 \mid S(A)$.

Divisibility by 3

- $A=a_{n-1} 10^{n-1}+\cdots+a_{1} 10+a_{0}$
- Let $S(A):=\sum_{i=0}^{n-1} a_{i}=a_{n-1}+\cdots+a_{1}+a_{0}$ (digit sum).

Proposition 3

$3 \mid A$ if and only if $3 \mid S(A)$.

Proof.

Consider

$$
A-S(A)=a_{n-1}\left(10^{n-1}-1\right)+\cdots+a_{2} 99+a_{1} 9
$$

Divisibility by 3

- $A=a_{n-1} 10^{n-1}+\cdots+a_{1} 10+a_{0}$
- Let $S(A):=\sum_{i=0}^{n-1} a_{i}=a_{n-1}+\cdots+a_{1}+a_{0}$ (digit sum).

Proposition 3

$3 \mid A$ if and only if $3 \mid S(A)$.

Proof.

Consider

$$
A-S(A)=a_{n-1}\left(10^{n-1}-1\right)+\cdots+a_{2} 99+a_{1} 9 .
$$

So,

$$
A=\underbrace{a_{n-1}\left(10^{n-1}-1\right)+\cdots+a_{2} 99+a_{1} 9}_{\text {always divisible by } 3}+S(A) .
$$

If $3 \mid S(A)$, then $3 \mid A$ by Lemma 1.

Divisibility by 3

- $A=a_{n-1} 10^{n-1}+\cdots+a_{1} 10+a_{0}$
- Let $S(A):=\sum_{i=0}^{n-1} a_{i}=a_{n-1}+\cdots+a_{1}+a_{0}$ (digit sum).

Proposition 3

$3 \mid A$ if and only if $3 \mid S(A)$.

Proof.

Consider

$$
A-S(A)=a_{n-1}\left(10^{n-1}-1\right)+\cdots+a_{2} 99+a_{1} 9 .
$$

So,

$$
A=\underbrace{a_{n-1}\left(10^{n-1}-1\right)+\cdots+a_{2} 99+a_{1} 9}_{\text {always divisible by } 3}+S(A) .
$$

If $3 \mid S(A)$, then $3 \mid A$ by Lemma 1 .

- Independent of the order of the digits.
- The bet: $S(2749)=22$ which is not divisible by $3 . .$.

Divisibility by 7

■ $A=a_{n-1} \cdots a_{1} a_{0}$
■ $T_{7}(A):=a_{n-1} \cdots a_{1}-2 a_{0}$

Proposition 4

$7 \mid A$ if and only if $7 \mid T_{7}(A)$.

- This suggests a recursive algorithm:
- Rina Zazkis, 2002 calls it the Trimming Algorithm.

Divisibility by 7

- $A=a_{n-1} \cdots a_{1} a_{0}$
- $T_{7}(A):=a_{n-1} \cdots a_{1}-2 a_{0}$

Proposition 4

$7 \mid A$ if and only if $7 \mid T_{7}(A)$.

- This suggests a recursive algorithm:
$7|A \Longleftrightarrow 7| T_{7}(A) \Longleftrightarrow 7 \mid T_{7}\left(T_{7}(A)\right) \Longleftrightarrow \cdots$.
- Rina Zazkis, 2002 calls it the Trimming Algorithm.

Divisibility by 7

- $A=a_{n-1} \cdots a_{1} a_{0}$
- $T_{7}(A):=a_{n-1} \cdots a_{1}-2 a_{0}$

Proposition 4

$7 \mid A$ if and only if $7 \mid T_{7}(A)$.

- This suggests a recursive algorithm:

$$
7|A \Longleftrightarrow 7| T_{7}(A) \Longleftrightarrow 7 \mid T_{7}\left(T_{7}(A)\right) \Longleftrightarrow \cdots .
$$

- Rina Zazkis, 2002 calls it the Trimming Algorithm.

Example: $A=86415$

A	$T_{7}(A)$	$=$
86415	$8641-2 \cdot 5$	8631
8631	$863-2 \cdot 1$	861
861	$86-2 \cdot 1$	84

■ So, 7|86415 since $7 \mid 84$.

Proof: Divisibility by 7

- $A=a_{n-1} \cdots a_{1} a_{0} . \quad T_{7}(A):=a_{n-1} \cdots a_{1}-2 a_{0}$

Proposition 5
$7 \mid A$ if and only if $7 \mid T_{7}(A)$.
Proof.
Note

$$
A=10 a_{n-1} \cdots a_{1}+a_{0}
$$

Proof: Divisibility by 7

■ $A=a_{n-1} \cdots a_{1} a_{0} . \quad T_{7}(A):=a_{n-1} \cdots a_{1}-2 a_{0}$
Proposition 5
$7 \mid A$ if and only if $7 \mid T_{7}(A)$.
Proof.
Note

$$
\begin{aligned}
A & =10 a_{n-1} \cdots a_{1}+a_{0} \\
& =10 a_{n-1} \cdots a_{1}-20 a_{0}+20 a_{0}+a_{0}
\end{aligned}
$$

Proof: Divisibility by 7

■ $A=a_{n-1} \cdots a_{1} a_{0} . \quad T_{7}(A):=a_{n-1} \cdots a_{1}-2 a_{0}$
Proposition 5
$7 \mid A$ if and only if $7 \mid T_{7}(A)$.
Proof.
Note

$$
\begin{aligned}
A & =10 a_{n-1} \cdots a_{1}+a_{0} \\
& =10 a_{n-1} \cdots a_{1}-20 a_{0}+20 a_{0}+a_{0} \\
& =10\left(a_{n-1} \cdots a_{1}-2 a_{0}\right)+21 a_{0}
\end{aligned}
$$

Proof: Divisibility by 7

■ $A=a_{n-1} \cdots a_{1} a_{0} . \quad T_{7}(A):=a_{n-1} \cdots a_{1}-2 a_{0}$
Proposition 5
$7 \mid A$ if and only if $7 \mid T_{7}(A)$.
Proof.
Note

$$
\begin{aligned}
A & =10 a_{n-1} \cdots a_{1}+a_{0} \\
& =10 a_{n-1} \cdots a_{1}-20 a_{0}+20 a_{0}+a_{0} \\
& =10\left(a_{n-1} \cdots a_{1}-2 a_{0}\right)+21 a_{0} \\
& =10 T_{7}(A)+21 a_{0} .
\end{aligned}
$$

Proof: Divisibility by 7

- $A=a_{n-1} \cdots a_{1} a_{0} . \quad T_{7}(A):=a_{n-1} \cdots a_{1}-2 a_{0}$

Proposition 5
$7 \mid A$ if and only if $7 \mid T_{7}(A)$.
Proof.
Note

$$
\begin{aligned}
A & =10 a_{n-1} \cdots a_{1}+a_{0} \\
& =10 a_{n-1} \cdots a_{1}-20 a_{0}+20 a_{0}+a_{0} \\
& =10\left(a_{n-1} \cdots a_{1}-2 a_{0}\right)+21 a_{0} \\
& =10 T_{7}(A)+21 a_{0} .
\end{aligned}
$$

Since $7 \mid 21$, if $7 \mid T_{7}(A)$, Lemma 1 guarantees that $7 \mid A$.

Proof: Divisibility by 7

- $A=a_{n-1} \cdots a_{1} a_{0} . \quad T_{7}(A):=a_{n-1} \cdots a_{1}-2 a_{0}$

Proposition 5
$7 \mid A$ if and only if $7 \mid T_{7}(A)$.
Proof.
Note

$$
\begin{aligned}
A & =10 a_{n-1} \cdots a_{1}+a_{0} \\
& =10 a_{n-1} \cdots a_{1}-20 a_{0}+20 a_{0}+a_{0} \\
& =10\left(a_{n-1} \cdots a_{1}-2 a_{0}\right)+21 a_{0} \\
& =10 T_{7}(A)+21 a_{0} .
\end{aligned}
$$

Since $7 \mid 21$, if $7 \mid T_{7}(A)$, Lemma 1 guarantees that $7 \mid A$.
■ But where does 2 come from?

A General Trimming Algorithm

Given a prime number $p \notin\{2,5\}$, there exists $k \in \mathbb{Z}$ such that

$$
p|A \Longleftrightarrow p|\left[T_{p}(A):=a_{n-1} \cdots a_{1}-k a_{0}\right] .
$$

A General Trimming Algorithm

Given a prime number $p \notin\{2,5\}$, there exists $k \in \mathbb{Z}$ such that

$$
p|A \Longleftrightarrow p|\left[T_{p}(A):=a_{n-1} \cdots a_{1}-k a_{0}\right] .
$$

$$
A=10 a_{n-1} \cdots a_{1}+a_{0}
$$

A General Trimming Algorithm

Given a prime number $p \notin\{2,5\}$, there exists $k \in \mathbb{Z}$ such that

$$
p|A \Longleftrightarrow p|\left[T_{p}(A):=a_{n-1} \cdots a_{1}-k a_{0}\right] .
$$

$$
\begin{aligned}
A & =10 a_{n-1} \cdots a_{1}+a_{0} \\
& =10 a_{n-1} \cdots a_{1}-10 k a_{0}+10 k a_{0}+a_{0}
\end{aligned}
$$

A General Trimming Algorithm

Given a prime number $p \notin\{2,5\}$, there exists $k \in \mathbb{Z}$ such that

$$
p|A \Longleftrightarrow p|\left[T_{p}(A):=a_{n-1} \cdots a_{1}-k a_{0}\right] .
$$

$$
\begin{aligned}
A & =10 a_{n-1} \cdots a_{1}+a_{0} \\
& =10 a_{n-1} \cdots a_{1}-10 k a_{0}+10 k a_{0}+a_{0} \\
& =10\left(a_{n-1} \cdots a_{1}-k a_{0}\right)+a_{0}(10 k+1)
\end{aligned}
$$

A General Trimming Algorithm

Given a prime number $p \notin\{2,5\}$, there exists $k \in \mathbb{Z}$ such that

$$
p|A \Longleftrightarrow p|\left[T_{p}(A):=a_{n-1} \cdots a_{1}-k a_{0}\right] .
$$

$$
\begin{aligned}
A & =10 a_{n-1} \cdots a_{1}+a_{0} \\
& =10 a_{n-1} \cdots a_{1}-10 k a_{0}+10 k a_{0}+a_{0} \\
& =10\left(a_{n-1} \cdots a_{1}-k a_{0}\right)+a_{0}(10 k+1) \\
& =10 T_{p}(A)+a_{0}(10 k+1) .
\end{aligned}
$$

A General Trimming Algorithm

Given a prime number $p \notin\{2,5\}$, there exists $k \in \mathbb{Z}$ such that

$$
p|A \Longleftrightarrow p|\left[T_{p}(A):=a_{n-1} \cdots a_{1}-k a_{0}\right] .
$$

$$
\begin{aligned}
A & =10 a_{n-1} \cdots a_{1}+a_{0} \\
& =10 a_{n-1} \cdots a_{1}-10 k a_{0}+10 k a_{0}+a_{0} \\
& =10\left(a_{n-1} \cdots a_{1}-k a_{0}\right)+a_{0}(10 k+1) \\
& =10 T_{p}(A)+a_{0}(10 k+1) .
\end{aligned}
$$

Condition: Need to find k such that $p \mid 10 k+1$.

Find k such that $p \mid 10 k+1$
Given $p, p \mid 10 k+1$ if there exists $m \in \mathbb{Z}$ (quotient) such that

$$
\begin{aligned}
& m p=10 k+1 \\
\Longleftrightarrow & m p \text { is close to } 10 k \text { by } 1
\end{aligned}
$$

Find k such that $p \mid 10 k+1$
Given $p, p \mid 10 k+1$ if there exists $m \in \mathbb{Z}$ (quotient) such that

$$
\begin{aligned}
& m p=10 k+1 \\
\Longleftrightarrow & m p \text { is close to } 10 k \text { by } 1
\end{aligned}
$$

Write $p=p_{l-1} \cdots p_{1} p_{0}$.

Find k such that $p \mid 10 k+1$
Given $p, p \mid 10 k+1$ if there exists $m \in \mathbb{Z}$ (quotient) such that

$$
\begin{aligned}
& m p=10 k+1 \\
\Longleftrightarrow & m p \text { is close to } 10 k \text { by } 1
\end{aligned}
$$

Write $p=p_{l-1} \cdots p_{1} p_{0}$. Since $p \notin\{2,5\}$ is prime, we know $p_{0} \in\{1,3,7,9\}$.

Find k such that $p \mid 10 k+1$
Given $p, p \mid 10 k+1$ if there exists $m \in \mathbb{Z}$ (quotient) such that

$$
\begin{aligned}
& m p=10 k+1 \\
\Longleftrightarrow & m p \text { is close to } 10 k \text { by } 1
\end{aligned}
$$

Write $p=p_{l-1} \cdots p_{1} p_{0}$. Since $p \notin\{2,5\}$ is prime, we know $p_{0} \in\{1,3,7,9\}$.
■ Case 1: $p_{0} \in\{1,9\}$. Finding k is easy.

Find k such that $p \mid 10 k+1$
Given $p, p \mid 10 k+1$ if there exists $m \in \mathbb{Z}$ (quotient) such that

$$
\begin{aligned}
& m p=10 k+1 \\
\Longleftrightarrow & m p \text { is close to } 10 k \text { by } 1
\end{aligned}
$$

Write $p=p_{l-1} \cdots p_{1} p_{0}$. Since $p \notin\{2,5\}$ is prime, we know $p_{0} \in\{1,3,7,9\}$.

- Case 1: $p_{0} \in\{1,9\}$. Finding k is easy.
- Example: $p=29$.
- Choose $m=-1$ and $k=-3$
- so that $(-1) p-10(-3)=1$.

Similarly for $p_{0}=1$.

Find k such that $p \mid 10 k+1$

Given $p, p \mid 10 k+1$ if there exists $m \in \mathbb{Z}$ (quotient) such that

$$
\begin{aligned}
& m p=10 k+1 \\
\Longleftrightarrow & m p \text { is close to } 10 k \text { by } 1
\end{aligned}
$$

Write $p=p_{l-1} \cdots p_{1} p_{0}$. Since $p \notin\{2,5\}$ is prime, we know $p_{0} \in\{1,3,7,9\}$.

- Case 1: $p_{0} \in\{1,9\}$. Finding k is easy.
- Example: $p=29$.
- Choose $m=-1$ and $k=-3$
- so that $(-1) p-10(-3)=1$.

Similarly for $p_{0}=1$.
■ Case 2: $p_{0} \in\{3,7\}$. Reduce it to Case 1 .

- If $p_{0}=3$, consider $m=7$ so that $m p$ ends with 1 .
- If $p_{0}=7$, consider $m=3$ so that $m p$ ends with 1 .

Find k such that $p \mid 10 k+1$

Given $p, p \mid 10 k+1$ if there exists $m \in \mathbb{Z}$ (quotient) such that

$$
\begin{aligned}
& m p=10 k+1 \\
\Longleftrightarrow & m p \text { is close to } 10 k \text { by } 1
\end{aligned}
$$

Write $p=p_{l-1} \cdots p_{1} p_{0}$. Since $p \notin\{2,5\}$ is prime, we know $p_{0} \in\{1,3,7,9\}$.
\square Case 1: $p_{0} \in\{1,9\}$. Finding k is easy.

- Example: $p=29$.
- Choose $m=-1$ and $k=-3$
- so that $(-1) p-10(-3)=1$.

Similarly for $p_{0}=1$.
■ Case 2: $p_{0} \in\{3,7\}$. Reduce it to Case 1 .

- If $p_{0}=3$, consider $m=7$ so that $m p$ ends with 1 .
- If $p_{0}=7$, consider $m=3$ so that $m p$ ends with 1 .

■ When $p=7$, choose $m=3$ and $k=2$.

Other Tricks

- Divisibility by 2, 5, 10 is obvious.

Other Tricks

- Divisibility by 2, 5,10 is obvious.

■ Divisibility by $6 \Longrightarrow 6=2 \times 3$. So, do 2 -test and 3 -test.

Other Tricks

- Divisibility by $2,5,10$ is obvious.
- Divisibility by $6 \Longrightarrow 6=2 \times 3$. So, do 2-test and 3-test.
- Divisibility by $9 \Longrightarrow$ Same as 3 -test.

Other Tricks

- Divisibility by $2,5,10$ is obvious.
- Divisibility by $6 \Longrightarrow 6=2 \times 3$. So, do 2-test and 3-test.
- Divisibility by $9 \Longrightarrow$ Same as 3 -test.

■ Divisibility by $12 \Longrightarrow$ Do 3-test and 4-test.

Other Tricks

- Divisibility by 2, 5,10 is obvious.
- Divisibility by $6 \Longrightarrow 6=2 \times 3$. So, do 2-test and 3-test.

■ Divisibility by $9 \Longrightarrow$ Same as 3 -test.
■ Divisibility by $12 \Longrightarrow$ Do 3-test and 4-test.
More information:
■ Numberphile: https://www.youtube.com/watch?v=yi-s-TTpLxY
■ https://en.wikipedia.org/wiki/Divisibility_rule

- Zazkis, Rina. "Divisibility: A problem solving approach through generalizing and specializing." Humanistic Mathematics Network Journal 1.26 (2002): 18.
- Briggs, C. C. "Simple divisibility rules for the 1st 1000 prime numbers." arXiv preprint math/0001012 (2000).

Questions?

Thank you

Divisibility by 11

- $A=a_{n-1} 10^{n-1}+\cdots+a_{2} 100+a_{1} 10+a_{0}$
- Let $C(A)=\sum_{i=0}^{n-1}(-1)^{i} a_{i}=\cdots-a_{3}+a_{2}-a_{1}+a_{0}$

Proposition 6

$11 \mid A$ if and only if $11 \mid C(A)$.

Divisibility by 11

- $A=a_{n-1} 10^{n-1}+\cdots+a_{2} 100+a_{1} 10+a_{0}$
- Let $C(A)=\sum_{i=0}^{n-1}(-1)^{i} a_{i}=\cdots-a_{3}+a_{2}-a_{1}+a_{0}$

Proposition 6
$11 \mid A$ if and only if $11 \mid C(A)$.
Proof.

$$
A-C(A)=a_{1} 11+a_{2} 99+a_{3} 1001+a_{4} 999+\cdots
$$

Divisibility by 11

- $A=a_{n-1} 10^{n-1}+\cdots+a_{2} 100+a_{1} 10+a_{0}$
- Let $C(A)=\sum_{i=0}^{n-1}(-1)^{i} a_{i}=\cdots-a_{3}+a_{2}-a_{1}+a_{0}$

Proposition 6

$11 \mid A$ if and only if $11 \mid C(A)$.
Proof.

$$
\begin{aligned}
A-C(A) & =a_{1} 11+a_{2} 99+a_{3} 1001+a_{4} 999+\cdots \\
& =\sum_{\text {even } i}^{n-1} a_{i}\left[10^{i}-1\right]+\sum_{\text {odd } i}^{n-1} a_{i}\left[10^{i}+1\right]
\end{aligned}
$$

Divisibility by 11

- $A=a_{n-1} 10^{n-1}+\cdots+a_{2} 100+a_{1} 10+a_{0}$
- Let $C(A)=\sum_{i=0}^{n-1}(-1)^{i} a_{i}=\cdots-a_{3}+a_{2}-a_{1}+a_{0}$

Proposition 6

$11 \mid A$ if and only if $11 \mid C(A)$.
Proof.

$$
\begin{aligned}
A-C(A) & =a_{1} 11+a_{2} 99+a_{3} 1001+a_{4} 999+\cdots \\
& =\sum_{\text {even } i}^{n-1} a_{i}\left[10^{i}-1\right]+\sum_{\text {odd } i}^{n-1} a_{i}\left[10^{i}+1\right]
\end{aligned}
$$

■ $\left\{10^{i}-1 \mid\right.$ even $\left.i \geq 2\right\}=\{99,9999,999999, \ldots\}$. All divisible by 11.

Divisibility by 11

■ $A=a_{n-1} 10^{n-1}+\cdots+a_{2} 100+a_{1} 10+a_{0}$

- Let $C(A)=\sum_{i=0}^{n-1}(-1)^{i} a_{i}=\cdots-a_{3}+a_{2}-a_{1}+a_{0}$

Proposition 6

$11 \mid A$ if and only if $11 \mid C(A)$.
Proof.

$$
\begin{aligned}
A-C(A) & =a_{1} 11+a_{2} 99+a_{3} 1001+a_{4} 999+\cdots \\
& =\sum_{\text {even } i}^{n-1} a_{i}\left[10^{i}-1\right]+\sum_{\text {odd } i}^{n-1} a_{i}\left[10^{i}+1\right]
\end{aligned}
$$

■ $\left\{10^{i}-1 \mid\right.$ even $\left.i \geq 2\right\}=\{99,9999,999999, \ldots\}$. All divisible by 11.

$$
\begin{aligned}
\left\{10^{i}+1 \mid \text { odd } i\right\} & =\{11,1001,100001, \ldots\} \\
& =\{11,990+11,99990+11, \ldots\}(\text { All divisible by } 11)
\end{aligned}
$$

Divisibility by 4

$A=a_{n-1} 10^{n-1}+\cdots+a_{1} 10+a_{0}$

Proposition 7

$4 \mid A$ if and only if $4 \mid a_{1} a_{0}$.
Example: 836320 is divisible by 4 because 20 is divisible by 4 Sufficient to check divisibility on the two least significant digits.

Divisibility by 4

$A=a_{n-1} 10^{n-1}+\cdots+a_{1} 10+a_{0}$
Proposition 7
${ }_{4} \mid A$ if and only if $4 \mid a_{1} a_{0}$.
Example: 836320 is divisible by 4 because 20 is divisible by 4 .

- Sufficient to check divisibility on the two least significant digits.

Divisibility by 4

$$
A=a_{n-1} 10^{n-1}+\cdots+a_{1} 10+a_{0}
$$

Proposition 7

$4 \mid A$ if and only if $4 \mid a_{1} a_{0}$.
Example: 836320 is divisible by 4 because 20 is divisible by 4 .

- Sufficient to check divisibility on the two least significant digits.

Proof.

$A=\underbrace{a_{n-1} 10^{n-1}+\cdots+a_{2} 10^{2}}_{:=X}+\underbrace{a_{1} 10+a_{0}}_{:=Y}=X+Y$.
$(\Leftarrow):$

- Each term in X is divisible by 4 regardless of a_{n-1}, \ldots, a_{2}.

■ If $Y=a_{1} a_{0}$ is divisible by 4 , then the Lemma 1 guarantees $4 \mid A$.
(\Rightarrow) : Use Lemma 2

