Determinantal Point Processes For Machine Learning

Alex Kulesza, Ben Taskar

Wittawat Jitkrittum

Gatsby Machine Learning Journal Club 31 Oct 2016

What is a determinantal point process (DPP)?

- A distribution over finite subsets of a fixed ground set \mathcal{Y}.
- In general, \mathcal{Y} can be uncountable.
- Here, we assume $\mathcal{Y}=\{1,2, \ldots, N\}$.

■ Parametrized by a similarity matrix $K \in \mathbb{R}^{N \times N}$. Similar items are less likely to co-occur. Encourage diversity.

■ Applications:

- Text summarization. Choose a diverse subset of sentences.
- Diverse search results for a search engine (conditional DPPs).
- A set of spike times.

What is a determinantal point process (DPP)?

- A distribution over finite subsets of a fixed ground set \mathcal{Y}.
- In general, \mathcal{Y} can be uncountable.
- Here, we assume $\mathcal{Y}=\{1,2, \ldots, N\}$.

■ If $\mathcal{Y}=\{a, b, c, d\}$ and $\mathbf{Y} \sim \operatorname{DPP}$, then we can ask $\mathcal{P}(\{a, d\} \subseteq \mathbf{Y})$.

- Parametrized by a similarity matrix $K \in \mathbb{R}^{N \times N}$. Similar items are less
likely to co-occur. Encourage diversity.

- Applications:
- Text summarization. Choose a diverse subset of sentences.
- Diverse search results for a search engine (conditional DPPs).

What is a determinantal point process (DPP)?

- A distribution over finite subsets of a fixed ground set \mathcal{Y}.
- In general, \mathcal{Y} can be uncountable.
- Here, we assume $\mathcal{Y}=\{1,2, \ldots, N\}$.

■ If $\mathcal{Y}=\{a, b, c, d\}$ and $\mathbf{Y} \sim \operatorname{DPP}$, then we can ask $\mathcal{P}(\{a, d\} \subseteq \mathbf{Y})$.
■ Parametrized by a similarity matrix $K \in \mathbb{R}^{N \times N}$. Similar items are less likely to co-occur. Encourage diversity.

- Applications:

What is a determinantal point process (DPP)?

- A distribution over finite subsets of a fixed ground set \mathcal{Y}.
- In general, \mathcal{Y} can be uncountable.
- Here, we assume $\mathcal{Y}=\{1,2, \ldots, N\}$.
$■$ If $\mathcal{Y}=\{a, b, c, d\}$ and $\mathbf{Y} \sim \operatorname{DPP}$, then we can ask $\mathcal{P}(\{a, d\} \subseteq \mathbf{Y})$.
■ Parametrized by a similarity matrix $K \in \mathbb{R}^{N \times N}$. Similar items are less likely to co-occur. Encourage diversity.

- Applications:
- Text summarization. Choose a diverse subset of sentences.
- Diverse search results for a search engine (conditional DPPs).
- A set of spike times.

Outline

- Basics of DPPs
- Properties: conditioning, restriction, complementation, etc.

■ L-ensembles: normalization, marginalization.

- Sampling from a DPP
- Dual representation.
- Mainly from

Determinantal point processes for machine learning Alex Kulesza, Ben Taskar
https://arxiv.org/abs/1207.6083
■ Took some slides from Lobato \& Ge, 2014. https://jmhldotorg.files.wordpress.com/2014/02/slidesrcc-dpps.pdf

Formal definition

■ Let $\mathcal{Y}=\{1, \ldots, N\}$ be a fixed ground set.

- A point process \mathcal{P} on \mathcal{Y} is a probability distribution on $2^{\mathcal{Y}}$.
- Let $K \in \mathbb{R}^{N \times N}$ be a symmetric similarity matrix su
- Eigenvalues are in $[0,1]$.
- \mathcal{P} is a DPP if, when $\mathrm{Y} \sim \mathcal{P}$, then for every $A \subseteq \mathcal{\mathcal { V }}$,

$$
\mathcal{P}(A \subseteq \mathbf{Y})=\operatorname{det}\left(K_{A}\right),
$$

where $K_{A}:=\left[K_{i j}\right]_{i, j \in A}$. Define $\operatorname{det}\left(K_{\emptyset}\right)=1$.

- K is called the marginal kernel.

Formal definition

$■$ Let $\mathcal{Y}=\{1, \ldots, N\}$ be a fixed ground set.

- A point process \mathcal{P} on \mathcal{Y} is a probability distribution on $2^{\mathcal{Y}}$.

■ Let $K \in \mathbb{R}^{N \times N}$ be a symmetric similarity matrix such that $0 \preceq K \preceq I$.

- Eigenvalues are in $[0,1]$.
- \mathcal{P} is a DPP if, when $\mathrm{Y} \sim \mathcal{P}$, then for every $A \subseteq \mathcal{V}$,
\square
where $K_{A}:=\left[K_{i j}\right]_{i, j \in A}$. Define $\operatorname{det}\left(K_{\oplus}\right)=1$.

- K is called the marginal kernel.

Formal definition

■ Let $\mathcal{Y}=\{1, \ldots, N\}$ be a fixed ground set.

- A point process \mathcal{P} on \mathcal{Y} is a probability distribution on $2^{\mathcal{Y}}$.

■ Let $K \in \mathbb{R}^{N \times N}$ be a symmetric similarity matrix such that $0 \preceq K \preceq I$.

- Eigenvalues are in $[0,1]$.

■ \mathcal{P} is a DPP if, when $\mathbf{Y} \sim \mathcal{P}$, then for every $A \subseteq \mathcal{Y}$,

$$
\mathcal{P}(A \subseteq \mathbf{Y})=\operatorname{det}\left(K_{A}\right),
$$

where $K_{A}:=\left[K_{i j}\right]_{i, j \in A}$. Define $\operatorname{det}\left(K_{\emptyset}\right)=1$.

$$
\begin{aligned}
& \mathcal{P}(A \subseteq \mathbf{Y})=\mathcal{P}(\mathbf{O} ? \mathbf{O} ?)=\left|\begin{array}{l}
\square \square \square \\
\square \square \square
\end{array}\right|=\mid
\end{aligned}
$$

- K is called the marginal kernel.

Negative correlations in DPPs

If $A=\{i, j\}$, then

$$
\begin{aligned}
\mathcal{P}(A \subseteq \mathbf{Y}) & =\left|\begin{array}{ll}
K_{i i} & K_{i j} \\
K_{j i} & K_{j j}
\end{array}\right| \\
& =K_{i i} K_{j j}-K_{i j} K_{j i} \\
& =\mathcal{P}(i \in \mathbf{Y}) \mathcal{P}(j \in \mathbf{Y})-K_{i j}^{2} .
\end{aligned}
$$

■ Off-diagonal entries determine the negative correlations.
■ If K is diagonal, items in Y are independent (Poisson point process).
n If $K_{i j}=\sqrt{ } K_{i i} K_{j j}$, then i and j never appear together in Y .
■ Correlations are always negative.
" $D P P_{s}$ cannot ropresent distributions where elements are more likely to co-occur than if they were independent."

Negative correlations in DPPs

If $A=\{i, j\}$, then

$$
\begin{aligned}
\mathcal{P}(A \subseteq \mathbf{Y}) & =\left|\begin{array}{ll}
K_{i i} & K_{i j} \\
K_{j i} & K_{j j}
\end{array}\right| \\
& =K_{i i} K_{j j}-K_{i j} K_{j i} \\
& =\mathcal{P}(i \in \mathbf{Y}) \mathcal{P}(j \in \mathbf{Y})-K_{i j}^{2} .
\end{aligned}
$$

- Off-diagonal entries determine the negative correlations.
- If K is diagonal, items in Y are independent (Poisson point process).

■ If $K_{i j}=\sqrt{K_{i i} K_{j j}}$, then i and j never appear together in \mathbf{Y}.
■ Correlations are always negative.
"DPPs cannot represent distributions where elements are more likely to co-occur than if they were independent."

Negative correlations in DPPs

If $A=\{i, j\}$, then

$$
\begin{aligned}
\mathcal{P}(A \subseteq \mathbf{Y}) & =\left|\begin{array}{ll}
K_{i i} & K_{i j} \\
K_{j i} & K_{j j}
\end{array}\right| \\
& =K_{i i} K_{j j}-K_{i j} K_{j i} \\
& =\mathcal{P}(i \in \mathbf{Y}) \mathcal{P}(j \in \mathbf{Y})-K_{i j}^{2} .
\end{aligned}
$$

- Off-diagonal entries determine the negative correlations.

■ If K is diagonal, items in \mathbf{Y} are independent (Poisson point process).
■ If $K_{i j}=\sqrt{K_{i i} K_{j j}}$, then i and j never appear together in \mathbf{Y}.
"DPPs cannot represent distributions where elements are more likely to co-occur than if they were independent."

Negative correlations in DPPs

If $A=\{i, j\}$, then

$$
\begin{aligned}
\mathcal{P}(A \subseteq \mathbf{Y}) & =\left|\begin{array}{ll}
K_{i i} & K_{i j} \\
K_{j i} & K_{j j}
\end{array}\right| \\
& =K_{i i} K_{j j}-K_{i j} K_{j i} \\
& =\mathcal{P}(i \in \mathbf{Y}) \mathcal{P}(j \in \mathbf{Y})-K_{i j}^{2} .
\end{aligned}
$$

- Off-diagonal entries determine the negative correlations.
- If K is diagonal, items in \mathbf{Y} are independent (Poisson point process).
- If $K_{i j}=\sqrt{K_{i i} K_{j j}}$, then i and j never appear together in \mathbf{Y}.
- Correlations are always negative.
"DPPs cannot represent distributions where elements are more likely to co-occur than if they were independent."

Property 1: conditioning in DPPs

(slide from Lobato \& Ge, 2014)

■ DPPs are closed under conditioning.

$$
\begin{aligned}
\mathcal{P}(B \subseteq \mathbf{Y} \mid A \subseteq \mathbf{Y}) & =\frac{\mathcal{P}(A \cup B \subseteq \mathbf{Y})}{\mathcal{P}(A \subseteq \mathbf{Y})} \\
& =\frac{\operatorname{det}\left(K_{A \cup B}\right)}{\operatorname{det}\left(K_{A}\right)}=\operatorname{det}\left(K_{B}-K_{B A} K_{A}^{-1} K_{A B}\right) \\
& =\operatorname{det}\left(\left[K-K_{\star A} K_{A}^{-1} K_{A \star}\right]_{B}\right) .
\end{aligned}
$$

Schur Complement of K_{A}.
$\operatorname{det}\left(K_{A \cup B}\right)=$ $\operatorname{det}\left(K_{A}\right) \operatorname{det}\left(K_{B}-K_{B A} K_{A}^{-1} K_{A B}\right)$.

Restriction, and complement

- Assume $\mathbf{Z} \sim \operatorname{DPP}(K)$ with ground set \mathcal{Y}.

Property 2: restriction

- Let $A \subseteq \mathcal{Y}$.
- Define $\mathbf{Y}:=\mathbf{Z} \cap A$.
- Then, $\mathbf{Y} \sim \operatorname{DPP}\left(K_{A}\right)$.

Same as changing the ground set \mathcal{Y} to A.

Property 3: complement

- Define $\mathbf{Y}:=\mathcal{Y} \backslash \mathbf{Z}$.
- Then, $\mathrm{Y} \sim \operatorname{DPP}(I-K)$.

That is, $\mathcal{P}(A \cap \mathbf{Y}=\emptyset)=\operatorname{det}\left(\bar{K}_{A}\right)=\operatorname{det}\left(I-K_{A}\right)$.

Restriction, and complement

- Assume $\mathbf{Z} \sim \operatorname{DPP}(K)$ with ground set \mathcal{Y}.

Property 2: restriction

- Let $A \subseteq \mathcal{Y}$.
- Define $\mathbf{Y}:=\mathbf{Z} \cap A$.
- Then, $\mathbf{Y} \sim \operatorname{DPP}\left(K_{A}\right)$.

Same as changing the ground set \mathcal{Y} to A.

Property 3: complement
■ Define $\mathbf{Y}:=\mathcal{Y} \backslash \mathbf{Z}$.

- Then, $\mathbf{Y} \sim \operatorname{DPP}(I-K)$.

That is, $\mathcal{P}(A \cap \mathbf{Y}=\emptyset)=\operatorname{det}\left(\bar{K}_{A}\right)=\operatorname{det}\left(I-K_{A}\right)$.

Domination, and scaling

- Assume $\mathbf{Z} \sim \operatorname{DPP}(K)$ with ground set \mathcal{Y}.

Property 4: domination
If $K \preceq K^{\prime}$ (i.e., $K^{\prime}-K$ is positive semidefinite), then for any $A \subseteq \mathcal{Y}$,

$$
\operatorname{det}\left(K_{A}\right) \leq \operatorname{det}\left(K_{A}^{\prime}\right) .
$$

- $\operatorname{DPP}\left(A^{\prime}\right)$ assigns higher marginal probabilities to every set A.

Property 5: scaling

If $K=\gamma K^{\prime}$ for some $0 \leq \gamma<1$, then for $A \subseteq \mathcal{V}$,

$$
\operatorname{det}\left(K_{A}\right)=\gamma^{|A|} \operatorname{det}\left(K_{A}^{\prime}\right) .
$$

■ $\operatorname{DPP}(K)$ generates sample from $\operatorname{DPP}\left(K^{\prime}\right)$. Then, delete each item with probability $1-\gamma$

Domination, and scaling

- Assume $\mathbf{Z} \sim \operatorname{DPP}(K)$ with ground set \mathcal{Y}.

Property 4: domination
If $K \preceq K^{\prime}$ (i.e., $K^{\prime}-K$ is positive semidefinite), then for any $A \subseteq \mathcal{Y}$,

$$
\operatorname{det}\left(K_{A}\right) \leq \operatorname{det}\left(K_{A}^{\prime}\right) .
$$

- $\operatorname{DPP}\left(A^{\prime}\right)$ assigns higher marginal probabilities to every set A.

Property 5: scaling
If $K=\gamma K^{\prime}$ for some $0 \leq \gamma<1$, then for $A \subseteq \mathcal{Y}$,

$$
\operatorname{det}\left(K_{A}\right)=\gamma^{|A|} \operatorname{det}\left(K_{A}^{\prime}\right) .
$$

- $\operatorname{DPP}(K)$ generates sample from $\operatorname{DPP}\left(K^{\prime}\right)$. Then, delete each item with probability $1-\gamma$.

L-ensembles

- An L-ensemble defines a DPP through a real, symmetric matrix $L \succeq 0$:

$$
\mathcal{P}_{L}(\mathbf{Y}=Y) \propto \operatorname{det}\left(L_{Y}\right) .
$$

- No need $L \preceq I$.
- For modeling data, this parameterization is more convenient.

To get the normalizer,

Theorem (2.1)
For any $A \subseteq \mathcal{Y}$,
$\operatorname{det}\left(L_{Y}\right)=\operatorname{det}\left(L+I_{\bar{A}}\right)$,
where $\bar{A}=\mathcal{Y} \backslash A$.

■ The normalizer is $\sum_{Y \subset \mathcal{Y}} \operatorname{det}\left(L_{Y}\right)=\operatorname{det}(L+I)$. Complexity: $O\left(N^{3}\right)$.

L-ensembles

- An L-ensemble defines a DPP through a real, symmetric matrix $L \succeq 0$:

$$
\mathcal{P}_{L}(\mathbf{Y}=Y) \propto \operatorname{det}\left(L_{Y}\right) .
$$

- No need $L \preceq I$.
- For modeling data, this parameterization is more convenient.

To get the normalizer,
Theorem (2.1)
For any $A \subseteq \mathcal{Y}$,

$$
\sum_{A \subseteq Y \subseteq \mathcal{Y}} \operatorname{det}\left(L_{Y}\right)=\operatorname{det}\left(L+I_{\bar{A}}\right),
$$

where $\bar{A}=\mathcal{Y} \backslash A$.

L-ensembles

- An L-ensemble defines a DPP through a real, symmetric matrix $L \succeq \mathbf{0}$:

$$
\mathcal{P}_{L}(\mathbf{Y}=Y) \propto \operatorname{det}\left(L_{Y}\right)
$$

- No need $L \preceq I$.
- For modeling data, this parameterization is more convenient.

To get the normalizer,
Theorem (2.1)
For any $A \subseteq \mathcal{Y}$,

$$
\sum_{A \subseteq Y \subseteq \mathcal{Y}} \operatorname{det}\left(L_{Y}\right)=\operatorname{det}\left(L+I_{\bar{A}}\right),
$$

where $\bar{A}=\mathcal{Y} \backslash A$.
■ The normalizer is $\sum_{Y \subseteq \mathcal{Y}} \operatorname{det}\left(L_{Y}\right)=\operatorname{det}(L+I)$. Complexity: $O\left(N^{3}\right)$.

Geometric interpretation

- Let $L=B^{\top} B$ for some $B=\left(B_{1}|\cdots| B_{N}\right) \in \mathbb{R}^{D \times N}$.

$$
\mathcal{P}_{L}(\mathbf{Y}=Y) \propto \operatorname{det}\left(L_{Y}\right)=\operatorname{vol}^{2}\left(\left\{B_{i}\right\}_{i \in Y}\right)
$$

■ Probability determined by the volume spanned by $\left\{B_{i}\right\}_{i \in Y}$.

- Diverse set $\Longrightarrow \approx$ orthogonal vectors \Longrightarrow span large volumes.
- Items with large-magnitude feature vectors $\left(B_{i}\right)$ are more likely to appear.

Geometric interpretation

- Let $L=B^{\top} B$ for some $B=\left(B_{1}|\cdots| B_{N}\right) \in \mathbb{R}^{D \times N}$.

$$
\mathcal{P}_{L}(\mathbf{Y}=Y) \propto \operatorname{det}\left(L_{Y}\right)=\operatorname{vol}^{2}\left(\left\{B_{i}\right\}_{i \in Y}\right)
$$

■ Probability determined by the volume spanned by $\left\{B_{i}\right\}_{i \in Y}$.
■ Diverse set $\Longrightarrow \approx$ orthogonal vectors \Longrightarrow span large volumes.

- Items with large-magnitude feature vectors (B_{i}) are more likely to appear.

Inference: normalization \& marginalization

- Assume $L=\sum_{n=1}^{N} \lambda_{n} \mathbf{v}_{n} \mathbf{v}_{n}^{\top}=V D V^{\top}$.

Normalizer: $\operatorname{det}(L+I)$.

- Then,

$$
\begin{aligned}
\operatorname{det}(L+I) & =\operatorname{det}\left(V D V^{\top}+V V^{\top}\right) \\
& =\operatorname{det}(V) \operatorname{det}(D+I) \operatorname{det}\left(V^{\top}\right)=\prod_{n=1}^{N}\left(\lambda_{n}+1\right)
\end{aligned}
$$

Marginalization: (get $\mathcal{P}(A \subseteq Y)$ from $\left.\mathcal{P}_{L}(\mathrm{Y}=Y)\right)$
Theorem (2.2)
An L-ensemble is a DPP with marginal kernel

Inference: normalization \& marginalization

- Assume $L=\sum_{n=1}^{N} \lambda_{n} \mathbf{v}_{n} \mathbf{v}_{n}^{\top}=V D V^{\top}$.

Normalizer: $\operatorname{det}(L+I)$.

- Then,

$$
\begin{aligned}
\operatorname{det}(L+I) & =\operatorname{det}\left(V D V^{\top}+V V^{\top}\right) \\
& =\operatorname{det}(V) \operatorname{det}(D+I) \operatorname{det}\left(V^{\top}\right)=\prod_{n=1}^{N}\left(\lambda_{n}+1\right) .
\end{aligned}
$$

Marginalization: (get $\mathcal{P}(A \subseteq \mathbf{Y})$ from $\left.\mathcal{P}_{L}(\mathbf{Y}=Y)\right)$
Theorem (2.2)
An L-ensemble is a DPP with marginal kernel

$$
\begin{aligned}
K & =I-(L+I)^{-1}=L(L+I)^{-1} \\
& =V D V^{\top}\left[V(D+I)^{-1} V^{\top}\right]=\sum_{n=1}^{N} \frac{\lambda_{n}}{\lambda_{n}+1} \mathbf{v}_{n} \mathbf{v}_{n}^{\top} .
\end{aligned}
$$

Sampling from a DPP

\square Let $L=\sum_{n=1}^{N} \lambda_{n} \mathbf{v}_{n} \mathbf{v}_{n}^{\top}$. Let $I=\left(\mathbf{e}_{1}|\ldots| \mathbf{e}_{N}\right)$.

```
\(1 J \leftarrow \emptyset\)
2 for \(n=1, \ldots, N\) :
    - \(J \leftarrow J \cup\{n\}\) with probability \(\frac{\lambda_{n}}{\lambda_{n}+1}\)
    \(3 V \leftarrow\left(\mathbf{v}_{n}\right)_{n \in J} \in \mathbb{R}^{N \times|J|} \%|J|\) is the number of items to sample
    4 while \(|V|>0\) :
    \(1 \mathrm{p}:=\left[\frac{1}{|V|} \sum_{\mathrm{v} \in \mathrm{V}}\left(\mathrm{v}^{\top} \mathrm{e}_{i}\right)^{2}\right]_{i=1}^{N}=\frac{1}{|V|}\left(\|V(1,:)\|^{2}, \ldots,\|V(N,:)\|^{2}\right)\)
    2 Draw \(i \sim\) Discrete(p)
    \(4 V \leftarrow V_{\perp}\), an orthonormal basis for the subspace of \(V\) orthogonal to \(\mathrm{e}_{2}\).
        (run Gram-Schmidt)
```

- 4.4: The dimension of V is reduced by 1.

■ Runs in time $O\left(N k^{3}\right)$ where $k=|J|$. Gram-Schmidt costs $O\left(N k^{2}\right)$.
■ Eigen-decomposition of $L: O\left(N^{3}\right)$ (only once).

- Can be approximated by computing only top k eigenvectors.

Sampling from a DPP

\square Let $L=\sum_{n=1}^{N} \lambda_{n} \mathbf{v}_{n} \mathbf{v}_{n}^{\top}$. Let $I=\left(\mathbf{e}_{1}|\ldots| \mathbf{e}_{N}\right)$.

```
\(1 J \leftarrow \emptyset\)
2 for \(n=1, \ldots, N\) :
            - \(J \leftarrow J \cup\{n\}\) with probability \(\frac{\lambda_{n}}{\lambda_{n}+1}\)
\(3 V \leftarrow\left(\mathbf{v}_{n}\right)_{n \in J} \in \mathbb{R}^{N \times|J|} \%|J|\) is the number of items to sample
4 while
\(1 \mathrm{p}:=\left[\frac{1}{|V|} \sum_{\mathrm{v} \in V}\left(\mathrm{v}^{\top} \mathrm{e}_{i}\right)^{2}\right]_{i=1}^{N}=\frac{1}{|V|}\left(\|V(1,:)\|^{2}, \ldots,\|V(N,:)\|^{2}\right)\)
2 Draw \(i \sim \operatorname{Discrete(p)}\)
\(3 \quad Y \leftarrow Y \cup\{i\}\)
4
4


(run Gram-Schmidt)
```

- 4.4: The dimension of V is reduced by 1.

■ Runs in time $O\left(N k^{3}\right)$ where $k=|J|$. Gram-Schmidt costs $O\left(N k^{2}\right)$.
■ Eigen-decomposition of $L: O\left(N^{3}\right)$ (only once).
Can be approximated by computing only top k eigenvectors.

Sampling from a DPP

■ Let $L=\sum_{n=1}^{N} \lambda_{n} \mathbf{v}_{n} \mathbf{v}_{n}^{\top}$. Let $I=\left(\mathbf{e}_{1}|\ldots| \mathbf{e}_{N}\right)$.
$1 J \leftarrow \emptyset$
2 for $n=1, \ldots, N$:

- $J \leftarrow J \cup\{n\}$ with probability $\frac{\lambda_{n}}{\lambda_{n}+1}$
$3 V \leftarrow\left(\mathbf{v}_{n}\right)_{n \in J} \in \mathbb{R}^{N \times|J|} \%|J|$ is the number of items to sample
4 while $|V|>0$:
$1 \mathbf{p}:=\left[\frac{1}{|V|} \sum_{\mathbf{v} \in V}\left(\mathbf{v}^{\top} \mathbf{e}_{i}\right)^{2}\right]_{i=1}^{N}=\frac{1}{|V|}\left(\|V(1,:)\|^{2}, \ldots,\|V(N,:)\|^{2}\right)$
2 Draw $i \sim$ Discrete(p)
3 Y
$4 V \leftarrow V_{\perp}$, an orthonormal basis for the subspace of V orthogonal to e_{2} (run Gram-Schmidt)
- 4.4: The dimension of V is reduced by 1.

■ Runs in time $O\left(N k^{3}\right)$ where $k=|J|$. Gram-Schmidt costs $O\left(N k^{2}\right)$.
■ Eigen-decomposition of $L: O\left(N^{3}\right)$ (only once).
Can be approximated by computing only top k eigenvectors.

Sampling from a DPP

\square Let $L=\sum_{n=1}^{N} \lambda_{n} \mathbf{v}_{n} \mathbf{v}_{n}^{\top}$. Let $I=\left(\mathbf{e}_{1}|\ldots| \mathbf{e}_{N}\right)$.
$1 J \leftarrow \emptyset$
2 for $n=1, \ldots, N$:

- $J \leftarrow J \cup\{n\}$ with probability $\frac{\lambda_{n}}{\lambda_{n}+1}$
$3 V \leftarrow\left(\mathbf{v}_{n}\right)_{n \in J} \in \mathbb{R}^{N \times|J|} \%|J|$ is the number of items to sample
4 while $|V|>0$:
$1 \mathbf{p}:=\left[\frac{1}{|V|} \sum_{\mathbf{v} \in V}\left(\mathbf{v}^{\top} \mathbf{e}_{i}\right)^{2}\right]_{i=1}^{N}=\frac{1}{|V|}\left(\|V(1,:)\|^{2}, \ldots,\|V(N,:)\|^{2}\right)$
2 Draw $i \sim \operatorname{Discrete}(\mathbf{p})$
$3 \quad Y \leftarrow Y \cup\{i\}$
$4 V \leftarrow V_{\perp}$, an orthonormal basis for the subspace of V orthogonal to \mathbf{e}_{i}. (run Gram-Schmidt)
- 4.4: The dimension of V is reduced by 1.

■ Eigen-decomposition of $L: O\left(N^{3}\right)$ (only once).
Can be approximated by computing only top k eigenvectors.

Sampling from a DPP

- Let $L=\sum_{n=1}^{N} \lambda_{n} \mathbf{v}_{n} \mathbf{v}_{n}^{\top}$. Let $I=\left(\mathbf{e}_{1}|\ldots| \mathbf{e}_{N}\right)$.
$1 J \leftarrow \emptyset$
2 for $n=1, \ldots, N$:
- $J \leftarrow J \cup\{n\}$ with probability $\frac{\lambda_{n}}{\lambda_{n}+1}$
$3 V \leftarrow\left(\mathbf{v}_{n}\right)_{n \in J} \in \mathbb{R}^{N \times|J|} \%|J|$ is the number of items to sample
4 while $|V|>0$:
$1 \mathbf{p}:=\left[\frac{1}{|V|} \sum_{\mathbf{v} \in V}\left(\mathbf{v}^{\top} \mathbf{e}_{i}\right)^{2}\right]_{i=1}^{N}=\frac{1}{|V|}\left(\|V(1,:)\|^{2}, \ldots,\|V(N,:)\|^{2}\right)$
2 Draw $i \sim \operatorname{Discrete}(\mathbf{p})$
$3 Y \leftarrow Y \cup\{i\}$
$4 V \leftarrow V_{\perp}$, an orthonormal basis for the subspace of V orthogonal to \mathbf{e}_{i}. (run Gram-Schmidt)
- 4.4: The dimension of V is reduced by 1 .

■ Runs in time $O\left(N k^{3}\right)$ where $k=|J|$. Gram-Schmidt costs $O\left(N k^{2}\right)$.
Can be approximated by computing only top k eigenvectors.

Sampling from a DPP

■ Let $L=\sum_{n=1}^{N} \lambda_{n} \mathbf{v}_{n} \mathbf{v}_{n}^{\top}$. Let $I=\left(\mathbf{e}_{1}|\ldots| \mathbf{e}_{N}\right)$.
$1 J \leftarrow \emptyset$
2 for $n=1, \ldots, N$:

- $J \leftarrow J \cup\{n\}$ with probability $\frac{\lambda_{n}}{\lambda_{n}+1}$
$3 V \leftarrow\left(\mathbf{v}_{n}\right)_{n \in J} \in \mathbb{R}^{N \times|J|} \%|J|$ is the number of items to sample
4 while $|V|>0$:
$1 \mathbf{p}:=\left[\frac{1}{|V|} \sum_{\mathbf{v} \in V}\left(\mathbf{v}^{\top} \mathbf{e}_{i}\right)^{2}\right]_{i=1}^{N}=\frac{1}{|V|}\left(\|V(1,:)\|^{2}, \ldots,\|V(N,:)\|^{2}\right)$
2 Draw $i \sim \operatorname{Discrete}(\mathbf{p})$
$3 \quad Y \leftarrow Y \cup\{i\}$
$4 V \leftarrow V_{\perp}$, an orthonormal basis for the subspace of V orthogonal to \mathbf{e}_{i}. (run Gram-Schmidt)
- 4.4: The dimension of V is reduced by 1 .
- Runs in time $O\left(N k^{3}\right)$ where $k=|J|$. Gram-Schmidt costs $O\left(N k^{2}\right)$.
- Eigen-decomposition of L : $O\left(N^{3}\right)$ (only once).
- Can be approximated by computing only top k eigenvectors.

Visualization of the sampling process

(a) Sampling points on an interval

(b) Sampling points in the plane

■ Discrete $[0,1]$ (2D plane). Show \mathbf{p} in step 4.1.

- Diversifying.

Property 6: cardinality

- Recall $L=\sum_{n=1}^{N} \lambda_{n} \mathbf{v}_{n} \mathbf{v}_{n}^{\top}$ and $K=\sum_{n=1}^{N} \frac{\lambda_{n}}{\lambda_{n}+1} \mathbf{v}_{n} \mathbf{v}_{n}^{\top}$.
- Let $h_{n} \sim \operatorname{Bernoulli}\left(\frac{\lambda_{n}}{\lambda_{n}+1}\right) . h_{n} \in\{0,1\}$.
- Then, $|\mathbf{Y}|=\sum_{n=1}^{N} h_{n}$.
- Follows from step 2 of the sampling procedure.

Consequences

$1|Y| \leq \operatorname{rank}(L)$ because $\operatorname{rank}(L)=\#$ nonzero λ_{n}.
$2 \mathbb{E}[|\mathrm{Y}|]=\sum_{n=1}^{N} \frac{\lambda_{n}}{\lambda_{n 1}+1}=\operatorname{tr}(K)$.
${ }^{3} \mathbb{V}[|\mathbf{Y}|]=\sum_{n=1}^{N} \frac{\lambda_{n}}{\lambda_{n 1}+1}\left(1-\frac{\lambda_{n}}{\lambda_{n 1}+1}\right)=\sum_{n=1}^{N} \frac{\lambda_{n}}{\left(\lambda_{n}+1\right)^{2}}$

Property 6: cardinality

- Recall $L=\sum_{n=1}^{N} \lambda_{n} \mathbf{v}_{n} \mathbf{v}_{n}^{\top}$ and $K=\sum_{n=1}^{N} \frac{\lambda_{n}}{\lambda_{n}+1} \mathbf{v}_{n} \mathbf{v}_{n}^{\top}$.
- Let $h_{n} \sim \operatorname{Bernoulli}\left(\frac{\lambda_{n}}{\lambda_{n}+1}\right) . h_{n} \in\{0,1\}$.
- Then, $|\mathbf{Y}|=\sum_{n=1}^{N} h_{n}$.
- Follows from step 2 of the sampling procedure.

Consequences

$1|\mathbf{Y}| \leq \operatorname{rank}(L)$ because $\operatorname{rank}(L)=\#$ nonzero λ_{n}.
$2 \mathbb{E}[|\mathbf{Y}|]=\sum_{n=1}^{N} \frac{\lambda_{n}}{\lambda_{n 1}+1}=\operatorname{tr}(K)$.
$3 \mathbb{V}[|\mathbf{Y}|]=\sum_{n=1}^{N} \frac{\lambda_{n}}{\lambda_{n 1}+1}\left(1-\frac{\lambda_{n}}{\lambda_{n 1}+1}\right)=\sum_{n=1}^{N} \frac{\lambda_{n}}{\left(\lambda_{n}+1\right)^{2}}$

Finding the mode

Finding the set $Y \subseteq \mathcal{Y}$ that maximizes $\mathcal{P}_{L}(Y)$ is NP-hard.
Submodularity: \mathcal{P}_{L} is log-submodular, that is,

$$
\log \mathcal{P}_{L}(Y \cup\{i\})-\log \mathcal{P}_{L}(Y) \geq \log \mathcal{P}_{L}\left(Y^{\prime} \cup\{i\}\right)-\log \mathcal{P}_{L}\left(Y^{\prime}\right)
$$

whenever $Y \subseteq Y^{\prime} \subseteq \mathcal{Y}-\{i\}$.
Many results exists for approximately maximizing monotone submodular functions. However, \mathcal{P}_{L} is highly non-monotone! In practice, this is not a problem [Kulesza et al., 2012].

DPP decomposition: quality vs diversity

We can take the notation $L=B^{\mathrm{T}} B$ one step further.
Each column B_{i} satisfies $B_{i}=q_{i} \phi_{i}$, where

- $q_{i} \in \mathbb{R}^{+}$is a quality term.
- $\phi_{i} \in \mathbb{R}^{D},\left\|\phi_{i}\right\|=1$ is a vector of diversity features.

We now have $\mathcal{P}_{L}(Y) \propto\left[\prod_{i \in Y} q_{i}^{2}\right] \operatorname{det}\left(S_{Y}\right)$.
The first factor increases with the quality of the items in Y.
The second factor increases with the diversity of the items in Y.

Dual representation I

Most algorithms require manipulating L through inversion, eigendecomposition, etc...

When N is very large, directly working with the $N \times N$ matrix L is not efficient.

Let B be the $D \times N$ matrix with $B_{i}=q_{i} \phi_{i}$ so that $L=B^{\mathrm{T}} B$. Instead, we work with the $D \times D$ matrix $C=B B^{\mathrm{T}}$.

Dual representation II

- C and L have the same (non-zero) eigenvalues.
- Their eigenvectors are linearly related.
- Working with C scales as a function of $D \ll N$.

Proposition:

$$
C=B B^{\mathrm{T}}=\sum_{n=1}^{D} \lambda_{n} \hat{\mathbf{v}}_{n} \hat{\mathbf{v}}_{n}^{\mathrm{T}}
$$

is an eigendecomposition of C if and only if

$$
L=B^{\mathrm{T}} B=\sum_{n=1}^{D} \lambda_{n}\left[\frac{1}{\sqrt{\lambda_{n}}} B^{\mathrm{T}} \hat{\mathbf{v}}_{n}\right]\left[\frac{1}{\sqrt{\lambda_{n}}} B^{\mathrm{T}} \hat{\mathbf{v}}_{n}\right]^{\mathrm{T}}
$$

is an eigendecomposition of L.
■ C is sufficient to perform nearly all forms of DPP inference efficiently.

Inference in the dual form

- Assume $L=B^{\top} B \in \mathbb{R}^{N \times N}$ and $C=B B^{\top}=\sum_{n=1}^{D} \lambda \hat{\mathbf{v}}_{n} \hat{\mathbf{v}}_{n}^{\top} \in \mathbb{R}^{D \times D}$ Normalization:

$$
\operatorname{det}(L+I)=\prod_{n=1}^{D}\left(\lambda_{n}+1\right)=\operatorname{det}(C+I)
$$

Marginalization:

- Recall $L=\sum_{n=1}^{D} \lambda_{n}\left[\frac{1}{\lambda_{n}} B^{\top} \hat{\mathbf{v}}_{n}\right]\left[\frac{1}{\lambda_{n}} B^{\top} \hat{\mathbf{v}}_{n}\right]^{\top}$.

■ So,

$$
\begin{aligned}
K_{i j} & =\sum_{n=1}^{D} \frac{\lambda_{n}}{\lambda_{n}+1}\left[\frac{1}{\lambda_{n}} B_{i}^{\top} \hat{\mathbf{v}}_{n}\right]\left[\frac{1}{\lambda_{n}} B_{j}^{\top} \hat{\mathbf{v}}_{n}\right]^{\top} \\
& =q_{i} q_{j} \sum_{n=1}^{D} \frac{1}{\lambda_{n}+1}\left(\phi_{i}^{\top} \hat{\mathbf{v}}_{n}\right)\left(\phi_{j}^{\top} \hat{\mathbf{v}}_{n}\right),
\end{aligned}
$$

which can be computed in $O\left(D^{2}\right)$ time.
■ Say $A \in \mathcal{Y}$ such that $|A|=k$. Then, $\mathcal{P}(A \subseteq \mathbf{Y})=\operatorname{det}\left(K_{A}\right)$ can be computed in $O\left(D^{2} k^{2}+k^{3}\right)$.

Other interesting things we did not discuss

- Proofs of all the results.
- Related processes: Poisson point processes, Matern repulsive, random sequential adsorption.
- Decomposing DPPs into elementary DPPs.
- Random projections approximately preserve volumes. Can be used to reduce D. Faster.

■ Supervised learning with conditional DPPs $\mathcal{P}(\mathbf{Y}=Y \mid X) \propto \operatorname{det}\left(L_{Y}(X)\right)$.

- k-DPPs: a distribution over all subsets $Y \subseteq \mathbf{Y}$ with cardinality k.
- Learning θ for K_{θ} ?

Questions?

Thank you

References I

- Some materials from https:
//jmhldotorg.files.wordpress.com/2014/02/slidesrcc-dpps.pdf.

