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My PhD Thesis

At Gatsby Unit, University College London.
� Supervisor: Arthur Gretton.

Thesis: Kernel-Based Distribution Features for Statistical Tests and
Bayesian Inference
� Study algorithms to extract interpretable “features” from

distributions

Focus: scalable algorithms O(n) + theoretical justification

Problems tackled:

1

2

3 Dependence measure

4 Amortized message passing with expectation propagation
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� Supervisor: Arthur Gretton.

Thesis: Kernel-Based Distribution Features for Statistical Tests and
Bayesian Inference
� Study algorithms to extract interpretable “features” from

distributions

Focus: scalable algorithms O(n) + theoretical justification

Problems tackled:

1 Two-sample testing  (this talk)

2 Goodness-of-fit testing  (this talk)

3 Dependence measure

4 Amortized message passing with expectation propagation
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Problem Setting: Distribution Comparison

?

(unknown) (model)

z }| {
y1; y2; : : : ; yn

Goodness-of-fit testingTwo-sample testing

z }| {
x1; x2; : : : ; xn

Test goal: Do data follow the model p?
1 Nonparametric.
2 Linear-time. Runtime is O(n). Fast.

3 Interpretable. Tell where the model is wrong. F.
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Interpretable Goodness-of-Fit Test (NeurIPS 2017 Best Paper)
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Interpretable Goodness-of-Fit Test (NeurIPS 2017 Best Paper)

Robbery event coordinates
(samples from q).

Goal: Model spatial
density.
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Interpretable Goodness-of-Fit Test (NeurIPS 2017 Best Paper)

A candidate model
p = Mixture of 2 Gaussians.

Is p a good model?

5/13



Interpretable Goodness-of-Fit Test (NeurIPS 2017 Best Paper)

Score surface
(black = large mismatch)
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Interpretable Goodness-of-Fit Test (NeurIPS 2017 Best Paper)

F = optimized v.
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Interpretable Goodness-of-Fit Test (NeurIPS 2017 Best Paper)

F = optimized v.
No robbery in Lake Michigan.

Sharp data boundary. Not fol-
low Gaussian tails.
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The Witness Function [Gretton et al., 2012]
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The Witness Function [Gretton et al., 2012]

Observe Yn = fy1; : : : ;yng � Q

Observe Xn = fx1; : : : ;xng � P
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The Witness Function [Gretton et al., 2012]

Gaussian kernel k on yi

Gaussian kernel k on xi
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The Witness Function [Gretton et al., 2012]

v

�Q(v) = Ey�Qk(y;v)

�P(v) = Ex�Pk(x;v)
(mean embedding of P)
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The Witness Function [Gretton et al., 2012]

v
MMD(P ;Q) = kwitnesskRKHS
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The Witness Function [Gretton et al., 2012]

v
MMD(P ;Q) = kwitnesskRKHS

MMD costs O(n2) to estimate.
Does not show where p; q differ.
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Proposal: The Unnormalized Mean Embeddings Statistic

[Chwialkowski et al., 2015, Jitkrittum et al., 2016]

v

�Q(v) = Ey�Qk(y;v)

�P(v) = Ex�Pk(x;v)
(mean embedding of P)

witness(v) = �Q(v)� �P (v)| {z }

witness2(v) = (�Q(v)� �P(v))2| {z }
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Proposal: The Unnormalized Mean Embeddings Statistic

[Chwialkowski et al., 2015, Jitkrittum et al., 2016]

v

�Q(v) = Ey�Qk(y;v)

�P(v) = Ex�Pk(x;v)
(mean embedding of P)

witness(v) = �Q(v)� �P (v)| {z }

witness2(v) = (�Q(v)� �P(v))2| {z }

Given J optimized test locations V := fvj gJj=1 = fF ; : : : ;F g,

UME2(P ;Q) =
1
J

JX
j=1

witness2(vj ):

Can be estimated in O(Jn).
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Interpretable Two-Sample Test with UME (NeurIPS 2016, oral)

Propose: Find test location(s) v which maximize the probability of
detecting differences (test power) between q and p.

Show that argmaxv score(v) =) argmaxv test power.

score(v) = witness2(v)
uncertainty(v)
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detecting differences (test power) between q and p.

Show that argmaxv score(v) =) argmaxv test power.
score(v) = witness2(v)

uncertainty(v)
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witness(v) = Ey�q [ v ]� Ex�p[ v ]
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Interpretable Two-Sample Test with UME (NeurIPS 2016, oral)
Propose: Find test location(s) v which maximize the probability of
detecting differences (test power) between q and p.

Show that argmaxv score(v) =) argmaxv test power.
score(v) = witness2(v)
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Interpretable Two-Sample Test with UME (NeurIPS 2016, oral)
Propose: Find test location(s) v which maximize the probability of
detecting differences (test power) between q and p.

Show that argmaxv score(v) =) argmaxv test power.
score(v) = witness2(v)

uncertainty(v)

score: 13

witness(v) = Ey�q [ v ]� Ex�p[ v ]
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Interpretable Two-Sample Test with UME (NeurIPS 2016, oral)
Propose: Find test location(s) v which maximize the probability of
detecting differences (test power) between q and p.

Show that argmaxv score(v) =) argmaxv test power.
score(v) = witness2(v)

uncertainty(v)

score: 25

Best v

witness(v) = Ey�q [ v ]� Ex�p[ v ]
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Bayesian Inference Vs. Deep Learning Papers

Papers on Bayesian inference

X = { , , ; : : :g � p
Papers on deep learning

Y ={ , , ; : : :g � q

NeurIPS papers (1988-2015)

Sample size n = 216.

Random 2000 nouns (dimensions). TF-IDF representation.
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Bayesian Inference Vs. Deep Learning Papers

0.0

0.5

1.0
P
o
w

e
r 

⟶

No optimization

Learned test location F (a new document):

infer, Bayes, Monte Carlo, adaptor, motif,
haplotype, ECG, covariance, Boltzmann
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Interpretable Goodness-of-Fit Test (NeurIPS 2017 Best Paper)

Problem: No sample from p. Cannot estimate Ex�p [kv(x)].
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Interpretable Goodness-of-Fit Test (NeurIPS 2017 Best Paper)

Problem: No sample from p. Cannot estimate Ex�p [kv(x)].

Idea: Define Tp such that Ex�p(Tpkv)(x) = 0; for any v.

(Stein) witness(v) = Ey�q [ Tpkv(y) ]

Proposal: Good v should have high

score(v) =
SteinWitness2(v)
uncertainty(v)

:
signal-to-noise
ratio

score(v) can be estimated in linear-time.
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What is Tpkv?

Recall Steinwitness(v) = Ey�q(Tpkv)(y)�((((((
((

Ex�p(Tpkv)(x)

Ex�p [(Tpkv)(x)] =
Z 1

�1

�
1

�
��p(x)

d
dx

[kv(x)p(x)]
�
�
��p(x)dx

=

Z 1

�1

d
dx

[kv(x)p(x)]dx

= [kv(x)p(x)]x=1x=�1

= 0

(assume limjxj!1 k(v;x)p(x))
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Conclusions

Proposed new tests for two-sample
and goodness-of-fit testing:

1 Nonparametric

2 Linear-time

3 Interpretable with F

NeurIPS 2019 Tutorial
Interpretable Comparison of Distributions and Models
Wittawat Jitkrittum, Dougal Sutherland, Arthur Gretton
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Questions?

Thank you
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The Unnormalized Mean Embeddings (UME) Statistic

UME2(P ;Q) =
1
J

JX
j=1

(�P (vj )� �Q(vj ))2:

Proposition 1 (Chwialkowski et al., 2015, Jitkrittum et al., 2016).

Assume

1 Kernel k is real analytic, integrable, and characteristic,

2 V is drawn from �, a distribution with a density e.g., standard
normal.

Then, for any J > 0, any P ;Q, UME2(P ;Q) = 0 iff P = Q, �-almost
surely.

Key: Evaluating witness2 is enough to detect the difference (in
theory).
Runtime complexity: O(Jn). J is small e.g., 10.
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Distinguishing Positive/Negative Emotions

+ :
happy neutral surprised

� :
afraid angry disgusted

35 females and 35 males
(Lundqvist et al., 1998).

48� 34 = 1632 dimensions.
Pixel features.

n = 201.

Test power comparable to the state-of-the-art MMD test.

Informative features: differences at the nose, and smile lines.
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+ :
happy neutral surprised

� :
afraid angry disgusted

+ vs. -
0.0

0.5

1.0

P
o
w

e
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⟶

No optimization

Proposed

MMD (quadratic time)

Test power comparable to the state-of-the-art MMD test.

Informative features: differences at the nose, and smile lines.
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Distinguishing Positive/Negative Emotions
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Proposal: The Finite-Set Independence Criterion (FSIC)
1 Pick 2 positive definite kernels: k for X , and l for Y .

� Gaussian kernel: k(x;v) = exp
�
�

kx�vk2
2�2

x

�
.

2 Pick some test location (v;w) 2 Rdx � Rdy

3:Transform (x;y) 7! (k(x;v); l(y;w)) then measure covariance

Rdx � Rdy ! R� R

FSIC2(X ;Y ) = cov2
(x;y)�Pxy

[k(x;v); l(y;w)] :

−10 0 10
x

−2

0

2

y

Data (v, w)

0.0 0.5 1.0
k(x, v)

0.0

0.5

l(
y
,w

)

correlation: 0.087
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score(v) =
SteinWitness2(v)
uncertainty(v)

:

18/13



Proposal: Model Criticism with the Stein Witness

score: 0.034

(Tpkv)(x)

= v

score(v) =
SteinWitness2(v)
uncertainty(v)

:

18/13



Proposal: Model Criticism with the Stein Witness

score: 0.17

score(v) =
SteinWitness2(v)
uncertainty(v)

:

18/13



Proposal: Model Criticism with the Stein Witness

score: 0.26

score(v) =
SteinWitness2(v)
uncertainty(v)

:

18/13



Proposal: Model Criticism with the Stein Witness

score: 0.33

score(v) =
SteinWitness2(v)
uncertainty(v)

:

18/13



Proposal: Model Criticism with the Stein Witness

score: 0.37

score(v) =
SteinWitness2(v)
uncertainty(v)

:

18/13



Proposal: Model Criticism with the Stein Witness

score: 0.44

score(v) =
SteinWitness2(v)
uncertainty(v)

:

18/13



Proposal: Model Criticism with the Stein Witness
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Proposal: The Finite Set Stein Discrepancy (FSSD)

Stein witness function: g(v) := Ex�q
h

1
p(x)

d
dx [kv(x)p(x)]

i
.

- 4 - 2 2 4

0.1

0.2

0.3

0.4

p(x)

q(x)

g(x)

FSSD statistic: Evaluate g2 at J test locations V = fv1; : : : ;vJg.

FSSD2 =
1
dJ

JX
j=1

kg(vj )k22:
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FSSD is a Discrepancy Measure
FSSD2 = 1

dJ
PJ

j=1 kg(vj )k22:

Theorem 1 (FSSD is a discrepancy measure).
Main conditions:

1 (Nice kernel) Kernel k is C0-universal, and real analytic e.g.,
Gaussian kernel.

2 (Vanishing boundary) limkxk!1 p(x)kv(x) = 0.

3 (Avoid “blind spots”) Locations v1; : : : ;vJ � � which has a
density.

Then, for any J � 1, �-almost surely,

FSSD2 = 0 () p = q.

Summary: Evaluating the witness at random locations is sufficient to
detect the discrepancy between p; q .
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What is Tpkv?

Recall witness(v) = Ex�q(Tpkv)(x)�((((((
((

Ey�p(Tpkv)(y)
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Bahadur Slope and Bahadur Efficiency
Bahadur slope u rate of p-value ! 0 under H1 as n !1.
Measure a test’s sensitivity to the departure from H0.

H0 : � = 0;

H1 : � 6= 0:

Typically pvaln � exp
�
�1

2c(�)n
�
where c(�) > 0 under H1, and

c(0) = 0 [Bahadur, 1960].
c(�) higher =) more sensitive. Good.
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(2)
n

Bahadur slope

c(�) := �2 plim
n!1

log (1� F (Tn))

n
;

where F (t) = CDF of Tn under H0.

Bahadur efficiency = ratio of slopes
of two tests.
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Gaussian Mean Shift Problem
Consider p = N (0; 1) and q = N (�q ; 1).

Assume J = 1 location for n\FSSD2. Gaussian kernel (bandwidth =
�2
k )

c(FSSD)(�q ; v ; �2
k ) =

�
2
k

�
�

2
k + 2

�3
�

2
qe

v2

�
2
k
+2
�

(v��q )2

�
2
k
+1q

2
�2
k
+ 1

�
�

2
k + 1

� �
�

6
k + 4�4

k + (v2 + 5)�2
k + 2

� :
For LKS, Gaussian kernel (bandwidth = �2).

c(LKS)(�q ; �
2) =

�
�

2
�5=2 �

�
2 + 4

�5=2
�

4
q

2 (�2 + 2) (�8 + 8�6 + 21�4 + 20�2 + 12)
:

Theorem 2 (FSSD is at least two times more efficient).

Fix �2
k = 1 for n\FSSD2. Then, 8�q 6= 0, 9v 2 R, 8�2 > 0, we have

Bahadur efficiency
c(FSSD)(�q ; v ; �2

k )

c(LKS)(�q ; �2)
> 2:
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Bahadur Slopes of FSSD and LKS

Theorem 3.

The Bahadur slope of n\FSSD2 is

c(FSSD) := FSSD2=!1;

where !1 is the maximum eigenvalue of �p := covx�p [� (x)].
The Bahadur slope of the linear-time kernel Stein (LKS) statisticp
ncS2

l is

c(LKS) =
1
2
[Eqhp(x;x0)]

2

Ep

h
h2
p (x;x0)

i ;
where hp is the U-statistic kernel of the KSD statistic.
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Illustration: Optimization Objective
Consider J = 1 location.
Training objective

\FSSD2(v)c�H1 (v)
(gray), p in wireframe, fxigni=1 � q in

purple, H = best v.
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