# Interpretable Distribution Features with Maximum Testing Power

Wittawat Jitkrittum, Zoltán Szabó, Kacper Chwialkowski, Arthur Gretton

Gatsby Computational Neuroscience Unit, University College London

NIPS 2016, Barcelona Spain



Have: Two collections of samples X, Y from unknown distributions
 P and Q.

#### **Positive emotions**



#### Negative emotions



Goal: Learn distinguishing features that indicate how *P* and *Q* differ.



Have: Two collections of samples X, Y from unknown distributions
 P and Q.

#### **Positive emotions**



#### Negative emotions



• Goal: Learn distinguishing features that indicate how *P* and *Q* differ.



From the two collections

$$\{ \bigcup, \bigcup, \bigcup, \bigcup, \dots \}_{and} \{ \bigcup, \bigcup, \bigcup, \bigcup, \dots \},$$

produce a new point indicating where to look for the differences





From the two collections

$$\{ \bigcup, \bigcup, \bigcup, \bigcup, \dots \}_{and} \{ \bigcup, \bigcup, \bigcup, \bigcup, \dots \},$$

produce a new point indicating where to look for the differences



Where is the best location to observe the difference of  $P(\mathbf{x})$  and  $Q(\mathbf{y})$ ?



Where is the best location to observe the difference of  $P(\mathbf{x})$  and  $Q(\mathbf{y})$ ?



• Why: best location = distinguishing feature.

• **Propose:** a **linear-time** algorithm to find such data-driven feature(s).

Where is the best location to observe the difference of  $P(\mathbf{x})$  and  $Q(\mathbf{y})$ ?



**Why:** best location = distinguishing feature.

• **Propose:** a **linear-time** algorithm to find such data-driven feature(s).

Where is the best location to observe the difference of  $P(\mathbf{x})$  and  $Q(\mathbf{y})$ ?



- Why: best location = distinguishing feature.
- **Propose:** a **linear-time** algorithm to find such data-driven feature(s).

Where is the best location to observe the difference of  $P(\mathbf{x})$  and  $Q(\mathbf{y})$ ?



- Why: best location = distinguishing feature.
- Propose: a linear-time algorithm to find such data-driven feature(s).





























Variance of v = variance of v from X + variance of v from Y.
 ME Statistic: \$\hat{\lambda}\_n(v) := n \frac{\text{witness}^2(v)}{\text{variance of v}}\$.











Variance of v = variance of v from X + variance of v from Y.
 ME Statistic: \$\hat{\lambda}\_n(v) := n \frac{\text{witness}^2(v)}{\text{variance of v}}\$.



#### • Can construct a two-sample test using J features.

•  $H_0: P = Q$  vs.  $H_1: P \neq Q$ .

• Choosing the best J features increases a lower bound on the test power.

• Test power =  $\mathbb{P}(\text{reject } H_0 \mid H_1 \text{ is true}).$ 

**Runtime**:  $\mathcal{O}(n)$ . Fast.

• Can construct a two-sample test using J features.

•  $H_0: P = Q$  vs.  $H_1: P \neq Q$ .

• Choosing the best J features increases a lower bound on the test power.

• Test power =  $\mathbb{P}(\text{reject } H_0 \mid H_1 \text{ is true}).$ 

**Runtime**:  $\mathcal{O}(n)$ . Fast.

• Can construct a two-sample test using J features.

•  $H_0: P = Q$  vs.  $H_1: P \neq Q$ .

• Choosing the best J features increases a lower bound on the test power.

- Test power =  $\mathbb{P}(\text{reject } H_0 \mid H_1 \text{ is true}).$
- **Runtime:**  $\mathcal{O}(n)$ . Fast.





neutral



surprised



afraid angry disgusted

- 35 females and 35 males (Lundqvist et al., 1998).
- 48 × 34 = 1632 dimensions. Pixel features.

n = 201.

**Test power** comparable to the state-of-the-art MMD test.



**Test power comparable to the state-of-the-art MMD test.** 



#### Test power comparable to the state-of-the-art MMD test.



#### Test power comparable to the state-of-the-art MMD test.









surprised



afraid



neutral

disgusted

#### Learned feature

Test power comparable to the state-of-the-art MMD test.
Informative features: differences at the nose, and smile lines.



#### Learned feature

Test power comparable to the state-of-the-art MMD test.
Informative features: differences at the nose, and smile lines.

# Bayesian Inference Vs. Deep Learning Papers

Papers on Bayesian inference



Papers on deep learning



- NIPS papers (1988-2015)
- Sample size n = 216.
- Random 2000 nouns (dimensions). TF-IDF representation.

# Bayesian Inference Vs. Deep Learning Papers





## Bayesian Inference Vs. Deep Learning Papers



# Bayesian Inference Vs. Deep Learning Papers State-of-the-art Proposed (linear-time) No optimization MMD guadratic time) 1.00.5Power

Learned informative feature (a new document):

infer, Bayes, Monte Carlo, adaptor, motif, haplotype, ECG, covariance, Boltzmann

## Illustration: Two Informative Features

■ 2D problem.

 $P:\mathcal{N}([0,0],I) \ Q:\mathcal{N}([1,0],I)$ 

- J = 2 features.
- Fix  $\mathbf{v}_1$  to  $\blacktriangle$ .
- Contour plot of  $\mathbf{v}_2 \mapsto \hat{\lambda}_n(\{\mathbf{v}_1, \mathbf{v}_2\}).$
- {v<sub>1</sub>, v<sub>2</sub>} chosen to reveal the difference of P and Q.







Learned feature

Fast method to extract features for distinguishing two distributions

Python code available: http://wittawat.com



# Thank you

### Full ME Test Statistic

• Let 
$$\mathcal{V} = \{\mathbf{v}_1, \dots, \mathbf{v}_J\}$$
 be the  $J$  test locations.  
• Let  $\overline{\mathbf{z}}_n := \begin{pmatrix} \hat{\mu}_P(\mathbf{v}_1) - \hat{\mu}_Q(\mathbf{v}_1) \\ \vdots \\ \hat{\mu}_P(\mathbf{v}_J) - \hat{\mu}_Q(\mathbf{v}_J) \end{pmatrix} \in \mathbb{R}^J.$ 

Let

 $(\mathbf{S}_n)_{ij} := \widehat{\operatorname{cov}}_{\mathbf{x}}[k(\mathbf{x}, \mathbf{v}_i), k(\mathbf{x}, \mathbf{v}_j)] + \widehat{\operatorname{cov}}_{\mathbf{y}}[k(\mathbf{y}, \mathbf{v}_i), k(\mathbf{y}, \mathbf{v}_j)] \in \mathbb{R}^{J \times J}.$ **Then, the statistic** 

$$\hat{\lambda}_n := n \overline{\mathbf{z}}_n^{ op} \left( \mathbf{S}_n + \gamma_n I 
ight)^{-1} \overline{\mathbf{z}}_n$$
 ,

where  $\gamma_n > 0$  is a regularization parameter.

• When J = 1,

$$\hat{\lambda}_n = n rac{\left[\hat{\mu}_P(\mathbf{v}) - \hat{\mu}_Q(\mathbf{v})
ight]^2}{\gamma_{\mathrm{n}} + \mathrm{var}_{\mathbf{x}}[k(\mathbf{x},\mathbf{v})] + \mathrm{var}_{\mathbf{y}}[k(\mathbf{y},\mathbf{v})]}.$$

Computing Â<sub>n</sub>: O(J<sup>3</sup> + J<sup>2</sup>n + Jdn).
 Optimization of V: O(J<sup>3</sup> + J<sup>2</sup>dn).

15/13

# **Distinguishing NIPS Articles**

- Bayesian inference, Deep learning, Learning theory
- Random 2000 nouns (dimensions). TF-IDF representation.



#### Learned informative features (bags of words):

Bayes-Deep: infer, Bayes, Monte Carlo, adaptor, motif, haplotype, ECG Bayes-Learn: infer, Markov, graphic, segment, bandit, boundary, favor Learn-Deep: deep, forward, delay, subgroup, bandit, receptor, invariance

# **Distinguishing NIPS Articles**

- Bayesian inference, Deep learning, Learning theory
- Random 2000 nouns (dimensions). TF-IDF representation.



#### Learned informative features (bags of words):

Bayes-Deep: infer, Bayes, Monte Carlo, adaptor, motif, haplotype, ECG Bayes-Learn: infer, Markov, graphic, segment, bandit, boundary, favor Learn-Deep: deep, forward, delay, subgroup, bandit, receptor, invariance

## Preprocessing of NIPS articles

- Remove stop words, and stem.
- A paper belongs to a group if it has at least one keyword.
- Bayesian inference (Bayes): graphical model, bayesian, inference, mcmc, monte carlo, posterior, prior, variational, markov, latent, probabilistic, exponential family.
- 2 Deep learning (Deep): deep, drop out, auto-encod, convolutional, neural net, belief net, boltzmann.
- 3 Learning theory (Learn): learning theory, consistency, theoretical guarantee, complexity, pac-bayes, pac-learning, generalization, uniform converg, bound, deviation, inequality, risk min, minimax, structural risk, VC, rademacher, asymptotic.
- 4 Neuroscience (Neuro): motor control, neural, neuron, spiking, spike, cortex, plasticity, neural decod, neural encod, brain imag, biolog, perception, cognitive, emotion, synap, neural population, cortical, firing rate, firing-rate, sensor.

#### Lower Bound on Test Power

- Let  $\mathcal{K}$  be a kernel class such that  $\sup_{k \in \mathcal{K}} \sup_{(\mathbf{x}, \mathbf{y}) \in \mathcal{X}^2} |k(\mathbf{x}, \mathbf{y})| \leq B$ .
- Let  $\mathbb{V}$  be a collection in which each element is a set of J test locations.
- Assume  $\tilde{c} := \sup_{\mathcal{V} \in \mathbb{V}, k \in \mathcal{K}} \|\Sigma^{-1}\|_F < \infty.$

### Proposition

The test power 
$$\mathbb{P}_{H_1}\left(\hat{\lambda}_n \geq T_{oldsymbol{lpha}}
ight)$$
 of the ME test satisfies  $\mathbb{P}_{H_1}\left(\hat{\lambda}_n \geq T_{oldsymbol{lpha}}
ight) \geq L(\lambda_n)$  where

$$L(\lambda_n) := 1 - 2e^{-\xi_1(\lambda_n - T_\alpha)^2/n} - 2e^{-\frac{[\gamma_n(\lambda_n - T_\alpha)(n-1) - \xi_2 n]^2}{\xi_3 n(2n-1)^2}} - 2e^{-[(\lambda_n - T_\alpha)/3 - \overline{c}_3 n \gamma_n]^2 \gamma_n^2/\xi_4},$$

and  $\overline{c}_3, \xi_1, \ldots, \xi_4$  are positive constants depending on only B, Jand  $\tilde{c}$ . For large n,  $L(\lambda_n)$  is increasing in  $\lambda_n$ .

### Four Toy Problems

| Data                                   | Р                       | Q                                                       |
|----------------------------------------|-------------------------|---------------------------------------------------------|
| 1. Same Gaussian $(SG)$                | $\mathcal{N}(0_d, I_d)$ | $\mathcal{N}(0_d, I_d)$                                 |
| 2. Gauss. mean difference $(GMD)$      | $\mathcal{N}(0_d, I_d)$ | $\mathcal{N}((1,0,\ldots,0)^{	op}, I_d)$                |
| 3. Gauss. variance difference $(GVD)$  | $\mathcal{N}(0_d, I_d)$ | $\mathcal{N}(0_d, \operatorname{diag}(2, 1, \dots, 1))$ |
| 4 Blobs (4 × 4 grid of Gaussian blobs) |                         |                                                         |



H<sub>0</sub> is true in SG.
H<sub>1</sub> is true in others.

#### Rejection Rate vs. Sample Size



- J = 5. Gaussian kernel.
- **E** Right level of type-1 error. Optimizing  $\mathcal{V}, \sigma^2$  helps.

20/13

### Rejection Rate vs. Data Dimension



### Test with smooth characteristic functions (Chwialkowski e



•  $\hat{p}(\omega), \hat{q}(\omega)$  are characteristic functions of P, Q.

### Illustration: SCF test



• Checking the difference at finite locations may work.

### Illustration: SCF test



• It may also fail if locations are poorly chosen.

### Illustration: SCF test



- Smooth the characteristic functions.
- Theoretically, any locations will reveal the difference.

### SCF test (Chwialkowski et al., 2015)

- Test based on smooth characteristic functions (SCF)  $\phi_P$ .
- Characteristic function of P is  $\hat{p}(\mathbf{w}) := \mathbb{E}_{\mathbf{x} \sim P} \exp(i\mathbf{w}^{\top}\mathbf{x})$ .
- Convolve with an analytic smoothing kernel  $l(a) = \exp\left(-\frac{\|a\|^2}{2\sigma^2}\right)$

$$\begin{split} \boldsymbol{\phi}_{P}(\mathbf{w}) &= \int_{\mathbb{R}^{d}} \hat{p}(\mathbf{w}) l(\mathbf{v} - \mathbf{w}) \, \mathrm{d}\mathbf{w} \stackrel{(\text{algebra})}{=} \int_{\mathbb{R}^{d}} \exp(i\mathbf{v}^{\top}\mathbf{x}) \hat{l}(\mathbf{x}) \, \mathrm{d}P(\mathbf{x}), \\ \text{where } \hat{l} &= \text{inverse Fourier transform of } l. \\ \text{Test statistic: } d_{\phi,J}^{2}(P,Q) &= \frac{1}{J} \sum_{j=1}^{J} (\boldsymbol{\phi}_{P}(\mathbf{v}_{j}) - \boldsymbol{\phi}_{Q}(\mathbf{v}_{j}))^{2} \, . \\ \hat{d}_{\phi,J}^{2} \text{ uses} \\ \hat{\boldsymbol{\phi}}_{P}(\mathbf{v}) &= \frac{1}{n} \sum_{i=1}^{n} \exp\left(i\mathbf{v}^{\top}\mathbf{x}_{i}\right) \hat{l}(\mathbf{x}_{i}). \\ \mathbf{z}_{i} := & \text{Statistic} \\ \begin{pmatrix} \hat{l}(\mathbf{x}_{i}) \sin(\mathbf{x}_{i}^{\top}\mathbf{v}_{j}) - \hat{l}(\mathbf{y}_{i}) \sin(\mathbf{y}_{i}^{\top}\mathbf{v}_{j}) \\ \hat{l}(\mathbf{x}_{i}) \cos(\mathbf{x}_{i}^{\top}\mathbf{v}_{j}) - \hat{l}(\mathbf{y}_{i}) \cos(\mathbf{y}_{i}^{\top}\mathbf{v}_{j}) \\ \vdots & \end{pmatrix} . & \frac{\hat{\lambda}_{n}}{n \overline{z}_{n} \left(\mathbf{S} + \gamma_{n}\right)^{-1} \overline{z}_{n}} \\ & \frac{26}{12} \begin{bmatrix} \mathbf{v}_{1} \mathbf{v}_{1} \mathbf{v}_{1} \mathbf{v}_{2} \mathbf{v}_{1} \mathbf{v}_{1} \mathbf{v}_{2} \mathbf{v}_{2} \mathbf{v}_{1} \mathbf{v}_{2} \mathbf{v}_{2} \mathbf{v}_{1} \mathbf{v}_{2} \mathbf{v}_{2} \mathbf{v}_{2} \mathbf{v}_{2} \mathbf{v}_{1} \mathbf{v}_{2} \mathbf{v}$$

