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Overview
Have: Two collections of samples X; Y from unknown distributions
P and Q .

Positive emotions

X = { , , ; : : :g � P
Negative emotions

Y = { , , ; : : :g � Q
Goal: Learn distinguishing features that indicate how P and Q
differ.
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Distinguishing Feature(s)
Where is the best location to observe the difference of P(x) and
Q(y)?

P(x)

Why: best location = distinguishing feature.
Propose: a linear-time algorithm to find such data-driven
feature(s).
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Witness Function (Gretton et al., 2012)
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Witness Function (Gretton et al., 2012)

Observe X = fx1; : : : ;xng � P

Observe Y = fy1; : : : ;yng � Q
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Witness Function (Gretton et al., 2012)

Gaussian kernel on xi

Gaussian kernel on yi
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Witness Function (Gretton et al., 2012)

v

�̂P(v): mean embedding of P

�̂Q(v): mean embedding of Q
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Witness Function (Gretton et al., 2012)

v

witness2(v)
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Witness Function (Gretton et al., 2012)

v
Best feature =
v� that maximizes witness2(v)??

v�
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Failure Mode of the Witness Function

Sample size n = 3

witness2(v)

witness2(v) only cares about the “signal”.
Not the “noise” (variability) at each feature.
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The ME (Mean Embeddings) Statistic (Chwialkowski et al., 2015)

Variance of v = variance of v from X + variance of v from Y.
ME Statistic: �̂n(v) := n witness2(v)

variance of v .

Best location is v� that maximizes �̂n .
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Properties of the ME Statistic

Can construct a two-sample test using J features.
� H0 : P = Q vs. H1 : P 6= Q .

Choosing the best J features increases a lower bound on the test
power.
� Test power = P(reject H0 j H1 is true).

Runtime: O(n). Fast.
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Distinguishing Positive/Negative Emotions

+ :

happy neutral surprised

� :

afraid angry disgusted

35 females and 35 males
(Lundqvist et al., 1998).

48� 34 = 1632 dimensions.
Pixel features.

n = 201.

Test power comparable to the state-of-the-art MMD test.
Informative features: differences at the nose, and smile lines.
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Bayesian Inference Vs. Deep Learning Papers
Papers on Bayesian inference

X = { , , ; : : :g � P
Papers on deep learning

Y = { , , ; : : :g � Q
NIPS papers (1988-2015)
Sample size n = 216.
Random 2000 nouns (dimensions). TF-IDF representation.
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Bayesian Inference Vs. Deep Learning Papers

0.0

0.5

1.0
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⟶

No optimization

Learned informative feature (a new document):

infer, Bayes, Monte Carlo, adaptor, motif,
haplotype, ECG, covariance, Boltzmann
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Illustration: Two Informative Features

2D problem.

P : N ([0; 0]; I )

Q : N ([1; 0]; I )

J = 2 features.

Fix v1 to s.

Contour plot of
v2 7! �̂n(fv1;v2g).

fv1;v2g chosen to reveal the
difference of P and Q .

v2 ↦ ^̧tr
n=2(v1; v2)
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Summary

+ :

� :

g=)

Learned feature

Fast method to extract features
for distinguishing two distributions

Python code available: http://wittawat.com
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Questions?

Thank you
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Full ME Test Statistic

Let V = fv1; : : : ;vJg be the J test locations.

Let zn :=

0
BB@

�̂P(v1)� �̂Q(v1)
...

�̂P(vJ )� �̂Q(vJ )

1
CCA 2 RJ .

Let
(Sn)ij := dcovx[k(x;vi ); k(x;vj )] + dcovy[k(y;vi ); k(y;vj )] 2 R

J�J .
Then, the statistic

�̂n := nz>n (Sn + nI )
�1 zn ;

where n > 0 is a regularization parameter.
When J = 1,

�̂n = n
[�̂P(v)� �̂Q(v)]

2

n + varx[k(x;v)] + vary[k(y;v)]
:

Computing �̂n : O(J 3 + J 2n + Jdn).
Optimization of V: O(J 3 + J 2dn): 15/13



Distinguishing NIPS Articles

Bayesian inference, Deep learning, Learning theory
Random 2000 nouns (dimensions). TF-IDF representation.

Bayes-Bayes Bayes-Deep Bayes-Learn Learn-Deep
0.0
0.2
0.4
0.6
0.8
1.0

P
o
w

e
r 

⟶

ME-opt

ME-rand

MMD-quad

Learned informative features (bags of words):
Bayes-Deep: infer, Bayes, Monte Carlo, adaptor, motif, haplotype, ECG
Bayes-Learn: infer, Markov, graphic, segment, bandit, boundary, favor
Learn-Deep: deep, forward, delay, subgroup, bandit, receptor, invariance
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Preprocessing of NIPS articles

Remove stop words, and stem.
A paper belongs to a group if it has at least one keyword.

1 Bayesian inference (Bayes): graphical model, bayesian,
inference, mcmc, monte carlo, posterior, prior, variational,
markov, latent, probabilistic, exponential family.

2 Deep learning (Deep): deep, drop out, auto-encod,
convolutional, neural net, belief net, boltzmann.

3 Learning theory (Learn): learning theory, consistency,
theoretical guarantee, complexity, pac-bayes, pac-learning,
generalization, uniform converg, bound, deviation, inequality, risk
min, minimax, structural risk, VC, rademacher, asymptotic.

4 Neuroscience (Neuro): motor control, neural, neuron, spiking,
spike, cortex, plasticity, neural decod, neural encod, brain imag,
biolog, perception, cognitive, emotion, synap, neural population,
cortical, firing rate, firing-rate, sensor.
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Lower Bound on Test Power

Let K be a kernel class such that supk2K sup(x;y)2X 2 jk(x;y)j � B .
Let V be a collection in which each element is a set of J test
locations.
Assume ~c := supV2V;k2K k�

�1kF <1.

Proposition

The test power PH1

�
�̂n � T�

�
of the ME test satisfies

PH1

�
�̂n � T�

�
� L(�n) where

L(�n) := 1� 2e��1(�n�T�)2=n
� 2e�

[n (�n�T�)(n�1)��2n]2

�3n(2n�1)2 � 2e�[(�n�T�)=3�c3nn ]22
n=�4 ;

and c3; �1; : : : �4 are positive constants depending on only B ;J
and ~c. For large n, L(�n) is increasing in �n .

�n := n�>��1� is the population counterpart of �̂n .
� = Exy[z1] and � = Exy[(z1 � �)(z1 � �)>]. 18/13



Four Toy Problems
Data P Q

1. Same Gaussian (SG) N (0d ; Id) N (0d ; Id)

2. Gauss. mean difference (GMD) N (0d ; Id) N ((1; 0; : : : ; 0)>; Id)

3. Gauss. variance difference (GVD) N (0d ; Id) N (0d ;diag(2; 1; : : : ; 1))

4. Blobs (4� 4 grid of Gaussian blobs)

P : −10 −5 0 5 10
−10

−5

0

5

10
Blobs data. Sample from P.

Q : −10 −5 0 5 10
−10

−5

0

5

10
Blobs data. Sample from Q.

H0 is true in SG.
H1 is true in others.
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Rejection Rate vs. Sample Size
SG. d = 50:
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Test sample size
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GMD. d = 100.
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GVD. d = 50:
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Blobs. d = 2:

1000 2000 3000 4000 5000
Test sample size
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ME-full

ME-grid

SCF-full

SCF-grid

MMD-quad

MMD-lin
T 2

J = 5. Gaussian kernel.
Right level of type-1 error. Optimizing V; �2 helps. 20/13



Rejection Rate vs. Data Dimension
SG
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GVD
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GMD
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n := 10000. J = 5.

T-test has higher type-1 error as
dimension increases.

GMD: Optimizing V gives ME-full
a maximum test power.
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Test with smooth characteristic functions (Chwialkowski et al., 2015)

-2 -1 1 2

0.1

0.2

0.3

0.4

p(ω)

q(ω)

p̂(!); q̂(!) are characteristic functions of P ;Q .
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Illustration: SCF test

-2 -1 1 2

0.1

0.2

0.3

0.4

p(ω)

q(ω)

Checking the difference at finite locations may work.
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Illustration: SCF test

-2 -1 1 2

0.1

0.2

0.3

0.4

p(ω)

q(ω)

It may also fail if locations are poorly chosen.
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Illustration: SCF test

-10 -5 5 10

0.02

0.04

0.06

0.08

0.10

μp(ω)

μq(ω)

Smooth the characteristic functions.

Theoretically, any locations will reveal the difference.
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SCF test (Chwialkowski et al., 2015)

Test based on smooth characteristic functions (SCF) �P .
Characteristic function of P is p̂(w) := Ex�P exp(iw>x).
Convolve with an analytic smoothing kernel l(a) = exp

�
�kak2

2�2

�

�P(w) =
Z
Rd

p̂(w)l(v �w)dw
(algebra)

=
Z
Rd

exp(iv>x)̂l(x)dP(x);

where l̂ = inverse Fourier transform of l .
Test statistic: d2

�;J (P ;Q) = 1
J
PJ

j=1 (�P(vj )� �Q(vj ))
2
:

d̂2
�;J uses

�̂P(v) = 1
n
Pn

i=1 exp
�
iv>xi

�
l̂(xi ).

zi :=0
BBBBB@

...
l̂(xi ) sin(x>i vj )� l̂(yi ) sin(y>i vj )

l̂(xi ) cos(x>i vj )� l̂(yi ) cos(y>i vj )
...

1
CCCCCA :

Statistic
�̂n =

nzn (S + n)
�1 zn
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