Interpretable Distribution Features with Maximum Testing Power

Wittawat Jitkrittum, Zoltán Szabó, Kacper Chwialkowski, Arthur Gretton

Gatsby Computational Neuroscience Unit, University College London

NIPS 2016, Barcelona Spain

Have: Two collections of samples X, Y from unknown distributions
 P and Q.

Positive emotions

Negative emotions

Goal: Learn distinguishing features that indicate how *P* and *Q* differ.

Have: Two collections of samples X, Y from unknown distributions
 P and Q.

Positive emotions

Negative emotions

• Goal: Learn distinguishing features that indicate how *P* and *Q* differ.

From the two collections

$$\{ \bigcup, \bigcup, \bigcup, \bigcup, \dots \}_{and} \{ \bigcup, \bigcup, \bigcup, \bigcup, \dots \},$$

produce a new point indicating where to look for the differences

From the two collections

$$\{ \bigcup, \bigcup, \bigcup, \bigcup, \dots \}_{and} \{ \bigcup, \bigcup, \bigcup, \bigcup, \dots \},$$

produce a new point indicating where to look for the differences

Where is the best location to observe the difference of $P(\mathbf{x})$ and $Q(\mathbf{y})$?

Where is the best location to observe the difference of $P(\mathbf{x})$ and $Q(\mathbf{y})$?

• Why: best location = distinguishing feature.

• **Propose:** a **linear-time** algorithm to find such data-driven feature(s).

Where is the best location to observe the difference of $P(\mathbf{x})$ and $Q(\mathbf{y})$?

Why: best location = distinguishing feature.

• **Propose:** a **linear-time** algorithm to find such data-driven feature(s).

Where is the best location to observe the difference of $P(\mathbf{x})$ and $Q(\mathbf{y})$?

- Why: best location = distinguishing feature.
- **Propose:** a **linear-time** algorithm to find such data-driven feature(s).

Where is the best location to observe the difference of $P(\mathbf{x})$ and $Q(\mathbf{y})$?

- Why: best location = distinguishing feature.
- Propose: a linear-time algorithm to find such data-driven feature(s).

Variance of v = variance of v from X + variance of v from Y.
 ME Statistic: \$\hat{\lambda}_n(v) := n \frac{\text{witness}^2(v)}{\text{variance of v}}\$.

Variance of v = variance of v from X + variance of v from Y.
 ME Statistic: \$\hat{\lambda}_n(v) := n \frac{\text{witness}^2(v)}{\text{variance of v}}\$.

• Can construct a two-sample test using J features.

• $H_0: P = Q$ vs. $H_1: P \neq Q$.

• Choosing the best J features increases a lower bound on the test power.

• Test power = $\mathbb{P}(\text{reject } H_0 \mid H_1 \text{ is true}).$

Runtime: $\mathcal{O}(n)$. Fast.

• Can construct a two-sample test using J features.

• $H_0: P = Q$ vs. $H_1: P \neq Q$.

• Choosing the best J features increases a lower bound on the test power.

• Test power = $\mathbb{P}(\text{reject } H_0 \mid H_1 \text{ is true}).$

Runtime: $\mathcal{O}(n)$. Fast.

• Can construct a two-sample test using J features.

• $H_0: P = Q$ vs. $H_1: P \neq Q$.

• Choosing the best J features increases a lower bound on the test power.

- Test power = $\mathbb{P}(\text{reject } H_0 \mid H_1 \text{ is true}).$
- **Runtime:** $\mathcal{O}(n)$. Fast.

neutral

surprised

afraid angry disgusted

- 35 females and 35 males (Lundqvist et al., 1998).
- 48 × 34 = 1632 dimensions. Pixel features.

n = 201.

Test power comparable to the state-of-the-art MMD test.

Test power comparable to the state-of-the-art MMD test.

Test power comparable to the state-of-the-art MMD test.

Test power comparable to the state-of-the-art MMD test.

surprised

afraid

neutral

disgusted

Learned feature

Test power comparable to the state-of-the-art MMD test.
Informative features: differences at the nose, and smile lines.

Learned feature

Test power comparable to the state-of-the-art MMD test.
Informative features: differences at the nose, and smile lines.

Bayesian Inference Vs. Deep Learning Papers

Papers on Bayesian inference

Papers on deep learning

- NIPS papers (1988-2015)
- Sample size n = 216.
- Random 2000 nouns (dimensions). TF-IDF representation.

Bayesian Inference Vs. Deep Learning Papers

Bayesian Inference Vs. Deep Learning Papers

Bayesian Inference Vs. Deep Learning Papers State-of-the-art Proposed (linear-time) No optimization MMD guadratic time) 1.00.5Power

Learned informative feature (a new document):

infer, Bayes, Monte Carlo, adaptor, motif, haplotype, ECG, covariance, Boltzmann

Illustration: Two Informative Features

■ 2D problem.

 $P:\mathcal{N}([0,0],I) \ Q:\mathcal{N}([1,0],I)$

- J = 2 features.
- Fix \mathbf{v}_1 to \blacktriangle .
- Contour plot of $\mathbf{v}_2 \mapsto \hat{\lambda}_n(\{\mathbf{v}_1, \mathbf{v}_2\}).$
- {v₁, v₂} chosen to reveal the difference of P and Q.

Learned feature

Fast method to extract features for distinguishing two distributions

Python code available: http://wittawat.com

Thank you

Full ME Test Statistic

• Let
$$\mathcal{V} = \{\mathbf{v}_1, \dots, \mathbf{v}_J\}$$
 be the J test locations.
• Let $\overline{\mathbf{z}}_n := \begin{pmatrix} \hat{\mu}_P(\mathbf{v}_1) - \hat{\mu}_Q(\mathbf{v}_1) \\ \vdots \\ \hat{\mu}_P(\mathbf{v}_J) - \hat{\mu}_Q(\mathbf{v}_J) \end{pmatrix} \in \mathbb{R}^J.$

Let

 $(\mathbf{S}_n)_{ij} := \widehat{\operatorname{cov}}_{\mathbf{x}}[k(\mathbf{x}, \mathbf{v}_i), k(\mathbf{x}, \mathbf{v}_j)] + \widehat{\operatorname{cov}}_{\mathbf{y}}[k(\mathbf{y}, \mathbf{v}_i), k(\mathbf{y}, \mathbf{v}_j)] \in \mathbb{R}^{J \times J}.$ **Then, the statistic**

$$\hat{\lambda}_n := n \overline{\mathbf{z}}_n^{ op} \left(\mathbf{S}_n + \gamma_n I
ight)^{-1} \overline{\mathbf{z}}_n$$
 ,

where $\gamma_n > 0$ is a regularization parameter.

• When J = 1,

$$\hat{\lambda}_n = n rac{\left[\hat{\mu}_P(\mathbf{v}) - \hat{\mu}_Q(\mathbf{v})
ight]^2}{\gamma_{\mathrm{n}} + \mathrm{var}_{\mathbf{x}}[k(\mathbf{x},\mathbf{v})] + \mathrm{var}_{\mathbf{y}}[k(\mathbf{y},\mathbf{v})]}.$$

Computing Â_n: O(J³ + J²n + Jdn).
 Optimization of V: O(J³ + J²dn).

15/13

Distinguishing NIPS Articles

- Bayesian inference, Deep learning, Learning theory
- Random 2000 nouns (dimensions). TF-IDF representation.

Learned informative features (bags of words):

Bayes-Deep: infer, Bayes, Monte Carlo, adaptor, motif, haplotype, ECG Bayes-Learn: infer, Markov, graphic, segment, bandit, boundary, favor Learn-Deep: deep, forward, delay, subgroup, bandit, receptor, invariance

Distinguishing NIPS Articles

- Bayesian inference, Deep learning, Learning theory
- Random 2000 nouns (dimensions). TF-IDF representation.

Learned informative features (bags of words):

Bayes-Deep: infer, Bayes, Monte Carlo, adaptor, motif, haplotype, ECG Bayes-Learn: infer, Markov, graphic, segment, bandit, boundary, favor Learn-Deep: deep, forward, delay, subgroup, bandit, receptor, invariance

Preprocessing of NIPS articles

- Remove stop words, and stem.
- A paper belongs to a group if it has at least one keyword.
- Bayesian inference (Bayes): graphical model, bayesian, inference, mcmc, monte carlo, posterior, prior, variational, markov, latent, probabilistic, exponential family.
- 2 Deep learning (Deep): deep, drop out, auto-encod, convolutional, neural net, belief net, boltzmann.
- 3 Learning theory (Learn): learning theory, consistency, theoretical guarantee, complexity, pac-bayes, pac-learning, generalization, uniform converg, bound, deviation, inequality, risk min, minimax, structural risk, VC, rademacher, asymptotic.
- 4 Neuroscience (Neuro): motor control, neural, neuron, spiking, spike, cortex, plasticity, neural decod, neural encod, brain imag, biolog, perception, cognitive, emotion, synap, neural population, cortical, firing rate, firing-rate, sensor.

Lower Bound on Test Power

- Let \mathcal{K} be a kernel class such that $\sup_{k \in \mathcal{K}} \sup_{(\mathbf{x}, \mathbf{y}) \in \mathcal{X}^2} |k(\mathbf{x}, \mathbf{y})| \leq B$.
- Let \mathbb{V} be a collection in which each element is a set of J test locations.
- Assume $\tilde{c} := \sup_{\mathcal{V} \in \mathbb{V}, k \in \mathcal{K}} \|\Sigma^{-1}\|_F < \infty.$

Proposition

The test power
$$\mathbb{P}_{H_1}\left(\hat{\lambda}_n \geq T_{oldsymbol{lpha}}
ight)$$
 of the ME test satisfies $\mathbb{P}_{H_1}\left(\hat{\lambda}_n \geq T_{oldsymbol{lpha}}
ight) \geq L(\lambda_n)$ where

$$L(\lambda_n) := 1 - 2e^{-\xi_1(\lambda_n - T_\alpha)^2/n} - 2e^{-\frac{[\gamma_n(\lambda_n - T_\alpha)(n-1) - \xi_2 n]^2}{\xi_3 n(2n-1)^2}} - 2e^{-[(\lambda_n - T_\alpha)/3 - \overline{c}_3 n \gamma_n]^2 \gamma_n^2/\xi_4},$$

and $\overline{c}_3, \xi_1, \ldots, \xi_4$ are positive constants depending on only B, Jand \tilde{c} . For large n, $L(\lambda_n)$ is increasing in λ_n .

Four Toy Problems

Data	Р	Q
1. Same Gaussian (SG)	$\mathcal{N}(0_d, I_d)$	$\mathcal{N}(0_d, I_d)$
2. Gauss. mean difference (GMD)	$\mathcal{N}(0_d, I_d)$	$\mathcal{N}((1,0,\ldots,0)^{ op}, I_d)$
3. Gauss. variance difference (GVD)	$\mathcal{N}(0_d, I_d)$	$\mathcal{N}(0_d, \operatorname{diag}(2, 1, \dots, 1))$
4 Blobs (4 × 4 grid of Gaussian blobs)		

H₀ is true in SG.
H₁ is true in others.

Rejection Rate vs. Sample Size

- J = 5. Gaussian kernel.
- **E** Right level of type-1 error. Optimizing \mathcal{V}, σ^2 helps.

20/13

Rejection Rate vs. Data Dimension

Test with smooth characteristic functions (Chwialkowski e

• $\hat{p}(\omega), \hat{q}(\omega)$ are characteristic functions of P, Q.

Illustration: SCF test

• Checking the difference at finite locations may work.

Illustration: SCF test

• It may also fail if locations are poorly chosen.

Illustration: SCF test

- Smooth the characteristic functions.
- Theoretically, any locations will reveal the difference.

SCF test (Chwialkowski et al., 2015)

- Test based on smooth characteristic functions (SCF) ϕ_P .
- Characteristic function of P is $\hat{p}(\mathbf{w}) := \mathbb{E}_{\mathbf{x} \sim P} \exp(i\mathbf{w}^{\top}\mathbf{x})$.
- Convolve with an analytic smoothing kernel $l(a) = \exp\left(-\frac{\|a\|^2}{2\sigma^2}\right)$

$$\begin{split} \boldsymbol{\phi}_{P}(\mathbf{w}) &= \int_{\mathbb{R}^{d}} \hat{p}(\mathbf{w}) l(\mathbf{v} - \mathbf{w}) \, \mathrm{d}\mathbf{w} \stackrel{(\text{algebra})}{=} \int_{\mathbb{R}^{d}} \exp(i\mathbf{v}^{\top}\mathbf{x}) \hat{l}(\mathbf{x}) \, \mathrm{d}P(\mathbf{x}), \\ \text{where } \hat{l} &= \text{inverse Fourier transform of } l. \\ \text{Test statistic: } d_{\phi,J}^{2}(P,Q) &= \frac{1}{J} \sum_{j=1}^{J} (\boldsymbol{\phi}_{P}(\mathbf{v}_{j}) - \boldsymbol{\phi}_{Q}(\mathbf{v}_{j}))^{2} \, . \\ \hat{d}_{\phi,J}^{2} \text{ uses} \\ \hat{\boldsymbol{\phi}}_{P}(\mathbf{v}) &= \frac{1}{n} \sum_{i=1}^{n} \exp\left(i\mathbf{v}^{\top}\mathbf{x}_{i}\right) \hat{l}(\mathbf{x}_{i}). \\ \mathbf{z}_{i} := & \text{Statistic} \\ \begin{pmatrix} \hat{l}(\mathbf{x}_{i}) \sin(\mathbf{x}_{i}^{\top}\mathbf{v}_{j}) - \hat{l}(\mathbf{y}_{i}) \sin(\mathbf{y}_{i}^{\top}\mathbf{v}_{j}) \\ \hat{l}(\mathbf{x}_{i}) \cos(\mathbf{x}_{i}^{\top}\mathbf{v}_{j}) - \hat{l}(\mathbf{y}_{i}) \cos(\mathbf{y}_{i}^{\top}\mathbf{v}_{j}) \\ \vdots & \end{pmatrix} . & \frac{\hat{\lambda}_{n}}{n \overline{z}_{n} \left(\mathbf{S} + \gamma_{n}\right)^{-1} \overline{z}_{n}} \\ & \frac{26}{12} \begin{bmatrix} \mathbf{v}_{1} \mathbf{v}_{1} \mathbf{v}_{1} \mathbf{v}_{2} \mathbf{v}_{1} \mathbf{v}_{1} \mathbf{v}_{2} \mathbf{v}_{2} \mathbf{v}_{1} \mathbf{v}_{2} \mathbf{v}_{2} \mathbf{v}_{1} \mathbf{v}_{2} \mathbf{v}_{2} \mathbf{v}_{2} \mathbf{v}_{2} \mathbf{v}_{1} \mathbf{v}_{2} \mathbf{v}$$

