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What Is Independence Testing?

Let X 2 Rdx ;Y 2 Rdy be random vectors following Pxy .
Given a joint sample f(xi ;yi )gni=1 � Pxy (unknown), test

H0 :Pxy = PxPy ;

vs. H1 :Pxy 6= PxPy :

Pxy = PxPy equivalent to X ? Y .
Compute a test statistic �̂n . Reject H0 if �̂n � T� (threshold).
T� = (1� �)-quantile of the null distribution.
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Goals

Want a test which is : : :

1 Non-parametric i.e., no parametric assumption on Pxy .

2 Linear-time i.e., computational complexity is O(n). Fast.

3 Adaptive i.e., has a well-defined criterion for parameter tuning.

Non-parametric O(n) Adaptive

Pearson correlation 7 3 3

HSIC [Gretton et al., 2005] 3 7 7

HSIC with RFFs� [Zhang et al., 2016] 3 3 7

FSIC (proposed) 3 3 3
� : RFFs = Random Fourier Features

Focus on cases where n (sample size) is large.
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Witness Function [Gretton et al., 2012]

A function showing the differences of two distributions P and Q .
Gaussian kernel: k(x;v) = exp

�
�kx�vk2

2�2

�

Empirical mean embedding of P : �̂P (v) = 1
n
Pn

i=1 k(xi ;v)
Maximum Mean Discrepancy (MMD): kûkRKHS.

� MMD(P ;Q) = 0 if and only if P = Q .
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Independence Test with HSIC [Gretton et al., 2005]

Hilbert-Schmidt Independence Criterion.

HSIC(X ;Y ) = MMD(Pxy ;PxPy) = kukRKHS

(need two kernels: k for X , and l for Y ).
Empirical witness:

û(v;w) = �̂xy(v;w)� �̂x (v)�̂y(w)

where �̂xy(v;w) = 1
n
Pn

i=1 k(xi ;v)l(yi ;w).

�̂xy(v;w)

�
�̂x (v)�̂y(w)

=

Witness û(v;w)

HSIC(X ;Y ) = 0 if and only if X and Y are independent.
Test statistic = kûkRKHS (“flatness” of û). Complexity: O(n2).

Key: Can we measure the flatness by other way that costs only O(n)?
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HSIC(X ;Y ) = 0 if and only if X and Y are independent.
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Proposal: The Finite Set Independence Criterion (FSIC)

Idea: Evaluate û2(v;w) at only finitely many test locations.

A set of random J locations: f(v1;w1); : : : ; (vJ ;wJ )g
\FSIC2(X ;Y ) = 1

J
PJ

i=1 û
2(vi ;wi )

0.000
0.003
0.006
0.009
0.012
0.015
0.018
0.021
0.024

Complexity: O((dx + dy)Jn). Linear time.
But, what about an unlucky set of locations??

� Can FSIC2(X ;Y ) = 0 even if X and Y are dependent??

No. Population FSIC(X ;Y ) = 0 iff X ? Y , almost surely.
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2(vi ;wi )

0.000
0.003
0.006
0.009
0.012
0.015
0.018
0.021
0.024

Complexity: O((dx + dy)Jn). Linear time.
But, what about an unlucky set of locations??

� Can FSIC2(X ;Y ) = 0 even if X and Y are dependent??

No. Population FSIC(X ;Y ) = 0 iff X ? Y , almost surely.

7/29



Proposal: The Finite Set Independence Criterion (FSIC)
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Requirements on the Kernels
Definition 1 (Analytic kernels).
k : X � X ! R is said to be analytic if for all x 2 X , v ! k(x;v) is a real
analytic function on X .

Analytic: Taylor series about x0 converges for all x0 2 X .

=) k is infinitely differentiable.

Definition 2 (Characteristic kernels).
Let P ;Q be two distributions, and g be a kernel.

Let �P (v) := Ez�P [g(z;v)] and �Q(v) := Ez�Q [g(z;v)].

g is said to be characteristic if P 6= Q implies �P 6= �Q .

P

Q
}MMD(P,Q)MMD(P,Q)

RKHSSpace of distributions

µP

µQ
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FSIC Is a Dependence Measure
Proposition 1.
Assume

1 The product kernel g((x;y); (x0;y0)) := k(x;x0)l(y;y0) is
characteristic and analytic (i.e., k ; l are Gaussian kernels).

2 Test locations f(vi ;wi )gJi=1 � � where � has a density.

Then, �-almost surely, FSIC(X ;Y ) = 0 iff X and Y are independent.

(v,w)

µ̂Pxy(v,w)

µ̂Px µ̂Py(v,w)

û2(v,w)

Under H1, u is not a zero function (P 7! Ez�P [g(z; �)] is injective).
u is analytic. So, Ru = f(v;w) j u(v;w) = 0g has 0 Lebesgue measure.
So, f(vi ;wi )gJi=1 � � will not be in Ru (with probability 1).
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Alternative View of the Witness u(v;w)

The witness u(v;w) can be rewritten as

u(v;w) := �xy(v;w)� �x (v)�y(w)

= Exy[k(x;v)l(y;w)]� Ex[k(x;v)]Ey[l(y;w)];

= covxy[k(x;v); l(y;w)]:

1 Transforming x 7! k(x;v) and y 7! l(y;w) (from Rdy to R).

2 Then, take the covariance.

The kernel transformations turn the linear covariance into a
dependence measure.
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Alternative Form of û(v;w)

Recall \FSIC2 = 1
J
PJ

i=1 û(vi ;wi )
2

Let[�x�y(v;w) be an unbiased estimator of �x (v)�y(w).

[�x�y(v;w) := 1
n(n�1)

Pn
i=1

P
j 6=i k(xi ;v)l(yj ;w).

An unbiased estimator of u(v;w) is

û(v;w) = �̂xy(v;w)�[�x�y(v;w)

=
2

n(n � 1)

X
i<j

h(v;w)((xi ;yi ); (xj ;yj ));

where

h(v;w)((x;y); (x0;y0)) :=
1
2
(k(x;v)� k(x0;v))(l(y;w)� l(y0;w)):

For a fixed (v;w), û(v;w) is a one-sample 2nd -order U-statistic.
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Asymptotic Distribution of û

\FSIC2(X ;Y ) =
1
J

JX
i=1

û2(vi ;wi ) =
1
J

û>û;

where û = (û(v1;w1); : : : ; û(vJ ;wJ ))
> :

Proposition 2 (Asymptotic distribution of û).

For any fixed locations f(vi ;wi )gJi=1, we have
p
n(û� u) d! N (0;�):

�ij = Exy[~k(x;vi )~l(y;wi )~k(x;vj )~l(y;wj )]� u(vi ;wi )u(vj ;wj ),
~k(x;v) := k(x;v)� Ex0k(x0;v),
~l(y;w) := l(y;w)� Ey0 l(y0;w).

Under H0,

n\FSIC2 =
n
J

û>û � weighted sum of dependent �2 variables.

Difficult to get (1� �)-quantile for the threshold.

12/29



Asymptotic Distribution of û
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Normalized FSIC (NFSIC)

\NFSIC2(X ;Y ) = �̂n := nû>
�
�̂ + nI

��1
û;

with a regularization parameter n � 0.

Key: NFSIC = FSIC normalized by the covariance.

Theorem 1 (NFSIC test is consistent).
Assume

1 The product kernel is characteristic and analytic.

2 limn!1 n = 0.

Then, for any k ; l and f(vi ;wi )gJi=1 � �,

1 Under H0, �̂n
d! �2(J ) as n !1.

2 Under H1, limn!1 P
�
�̂n � T�

�
= 1, �-almost surely.

Asymptotically, false positive rate is at � under H0, and always reject
under H1.

13/29



Normalized FSIC (NFSIC)

\NFSIC2(X ;Y ) = �̂n := nû>
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An Estimator of \NFSIC2

�̂n := nû>
�
�̂ + nI

��1
û;

Test locations f(vi ;wi )gJi=1 � �.
K = [k(vi ;xj )] 2 RJ�n
L = [l(wi ;yj )] 2 RJ�n . (No n � n Gram matrix.)

Estimators

1 û = (K�L)1n
n�1 � (K1n )�(L1n )

n(n�1) .

2 �̂ = ��>

n where � := (K� n�1K1n1>n ) � (L� n�1L1n1>n )� û1>n :

�̂n can be computed in O(J 3 + J 2n + (dx + dy)Jn) time.

Main Point: Linear in n . Cubic in J (small).
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û;

Test locations f(vi ;wi )gJi=1 � �.
K = [k(vi ;xj )] 2 RJ�n
L = [l(wi ;yj )] 2 RJ�n . (No n � n Gram matrix.)

Estimators
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Optimizing Test Locations f(vi ;wi)g
J
i=1

Test \NFSIC2 is consistent for any random locations f(vi ;wi )gJi=1.
In practice, tuning them will increase the test power.

0 20 40 60 80 100
^̧
n

Â2(J)

T®

ℙH1( ^̧n)

Idea: Pick locations and Gaussian widths
to maximize (lower bound of) test power.
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Optimization Objective = Power Lower Bound

Recall �̂n := nû>
�
�̂ + nI

��1
û.

Theorem 2 (A lower bound on the test power).

Let NFSIC2(X ;Y ) := �n := nu>��1u.

With some conditions, for any k ; l , and f(vi ;wi )gJi=1, the test power
satisfies P

�
�̂n � T�

�
� L(�n) where

L(�n) = 1� 62e��12
n (�n�T�)2=n � 2e�b0:5nc(�n�T�)

2=[�2n2]

� 2e�[(�n�T�)n (n�1)=3��3n�c32
nn(n�1)]

2
=[�4n2(n�1)];

where �1; : : : ; �4; c3 > 0 are constants. For large n, L(�n) is increasing
in �n .

Do: Locations and Gaussian widths = argmaxL(�n) = argmax�n
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�
�̂ + nI

��1
û.
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Optimization Procedure

NFSIC2(X ;Y ) := �n := nu>��1u is unknown.
Split the data into 2 disjoint sets: training (tr) and test (te) sets.

Procedure:

1 Estimate �n with �̂
(tr)
n (i.e., computed on the training set).

2 Optimize all f(vi ;wi )gJi=1 and Gaussian widths with gradient ascent.

3 Independence test with �̂
(te)
n . Reject H0 if �̂(te)n � T�.

Splitting avoids overfitting.

But, what does this do to P(�̂n � T�) when H0 holds?

Still asymptotically at �.
�n = 0 iff X ;Y independent.
So, under H0, we do argmax 0 = arbitrary locations.
Asymptotic null distribution is �2(J ) for any locations.
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Demo: 2D Rotation
µ̂xy(v,w)

µ̂x(v)µ̂y(w)

µ̂xy(v,w)− µ̂x(v)µ̂y(w) Σ̂(v,w)

λ̂n
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Demo: Sin Problem (! = 1)
µ̂xy(v,w)
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Simulation Settings

n = full sample size

All methods use Gaussian kernels for both X and Y .

Compare 6 methods

Method Description Tuning Test size Complex.

NFSIC-opt Proposed Gradient descent n=2 O(n)
NFSIC-med No tuning. Random locations n O(n)
QHSIC Full HSIC Median heu. n O(n2)

NyHSIC NyStrom HSIC Median heu. n O(n)
FHSIC HSIC + RFFs� Median heu. n O(n)
RDC RFFs + CCA Median heu. n O(n logn)

� : Random Fourier features

Given a problem, report rejection rate of H0.

10 features for all (except QHSIC). J = 10 in NFSIC.
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Toy Problem 1: Independent Gaussians

X � N (0; Idx ) and Y � N (0; Idy).

Independent X ;Y . So, H0 holds.

Set � := 0:05; dx = dy = 250.

NFSIC-opt NFSIC-med QHSIC NyHSIC FHSIC RDC
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Correct type-I errors (false positive rate).
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Toy Problem 2: Sinusoid

pxy(x ; y) / 1+ sin(!x ) sin(!y) where x ; y 2 (��; �).
Local changes between pxy and pxpy .

Set n = 4000.

NFSIC-opt NFSIC-med QHSIC NyHSIC FHSIC RDC
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Main Point: NFSIC can handle well the local changes in the joint space.
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Toy Problem 3: Gaussian Sign

y = jZ jQdx
i=1 sign(xi ), where x � N (0; Idy ) and Z � N (0; 1) (noise).

Full interaction among x1; : : : ; xdx .
Need to consider all x1; : : : ; xd to detect the dependency.
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Main Point: NFSIC can handle feature interaction.
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HSIC vs. FSIC
Recall the witness

û(v;w) = �̂xy(v;w)� �̂x (v)�̂y(w):

HSIC [Gretton et al., 2005]
= kûkRKHS

(v,w)

witness

Good when difference between
pxy and pxpy is spatially diffuse.

û is almost flat.

FSIC [proposed]
= 1

J
PJ

i=1 û
2(vi ;wi )

(v,w)

witness

Good when difference between
pxy and pxpy is local.

û is mostly zero, has many
peaks (feature interaction).
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Real Problem 1: Million Song Data
Song (X ) vs. year of release (Y ).

Western commercial tracks from 1922 to 2011
[Bertin-Mahieux et al., 2011].
X 2 R90 contains audio features.
Y 2 R is the year of release.

NFSIC-opt NFSIC-med QHSIC NyHSIC FHSIC RDC
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Real Problem 2: Videos and Captions
Youtube video (X ) vs. caption (Y ).

VideoStory46K [Habibian et al., 2014]
X 2 R2000: Fisher vector encoding of motion boundary histograms
descriptors [Wang and Schmid, 2013].
Y 2 R1878: bag of words. TF.
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Penalize Redundant Test Locations

Consider the Sin problem. Use J = 2 locations.
Optimization objective: �̂n .
Write t = (v;w). Fix t1 at F. Plot t2 ! �̂n(t1; t2).
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The optimized t1; t2 will not be in the same neighbourhood.

27/29



Test Power vs. J

Test power does not always increase with J (number of test locations).

n = 800.
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Accurate estimation of �̂ 2 RJ�J in �̂n = nû>
�
�̂ + nI

��1
û becomes

more difficult.

Large J defeats the purpose of a linear-time test.
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Conclusions

Proposed The Finite Set Independence Criterion (FSIC).
Independece test based on FSIC is

1 non-parametric,
2 linear-time,
3 adaptive (parameteris automatically tuned).

Future works

Any way to interpret the learned f(vi ;wi )gJi=1?

Relative efficiency of FSIC vs. block HSIC, RFF-HSIC.

https://github.com/wittawatj/fsic-test
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Questions?

Thank you

30/29



References I

Bertin-Mahieux, T., Ellis, D. P., Whitman, B., and Lamere, P. (2011).
The million song dataset.
In International Conference on Music Information Retrieval
(ISMIR).

Gretton, A., Borgwardt, K. M., Rasch, M. J., Schölkopf, B., and Smola,
A. (2012).
A Kernel Two-Sample Test.
Journal of Machine Learning Research, 13:723–773.

Gretton, A., Bousquet, O., Smola, A., and Schölkopf, B. (2005).
Measuring Statistical Dependence with Hilbert-Schmidt Norms.
In Algorithmic Learning Theory (ALT), pages 63–77.

31/29



References II

Habibian, A., Mensink, T., and Snoek, C. G. (2014).
Videostory: A new multimedia embedding for few-example recognition
and translation of events.
In ACM International Conference on Multimedia, pages 17–26.

Wang, H. and Schmid, C. (2013).
Action recognition with improved trajectories.
In IEEE International Conference on Computer Vision (ICCV),
pages 3551–3558.

Zhang, Q., Filippi, S., Gretton, A., and Sejdinovic, D. (2016).
Large-Scale Kernel Methods for Independence Testing.

32/29


	Appendix

