An Adaptive Test of Independence with Analytic Kernel Embeddings

> Wittawat Jitkrittum Gatsby Unit, University College London wittawat@gatsby.ucl.ac.uk

Probabilistic Graphical Model Workshop 2017 Institute of Statistical Mathematics, Tokyo

24 Feb 2017

Coauthors:

Arthur Gretton Gatsby Unit, UCL

Zoltán Szabó École Polytechnique

Preprint:

An Adaptive Test of Independence with Analytic Kernel Embeddings Wittawat Jitkrittum, Zoltán Szabó, Arthur Gretton https://arxiv.org/abs/1610.04782

Python code: https://github.com/wittawatj/fsic-test

Let X ∈ ℝ^{d_x}, Y ∈ ℝ^{d_y} be random vectors following P_{xy}.
Given a joint sample {(x_i, y_i)}ⁿ_{i=1} ~ P_{xy} (unknown), test H₀:P_{xy} = P_xP_y, vs. H₁:P_{xy} ≠ P_xP_y.

P_{xy} = P_xP_y equivalent to X ⊥ Y.
Compute a test statistic λ̂_n. Reject H₀ if λ̂_n ≥ T_α (threshold).
T_α = (1 − α)-quantile of the null distribution.

Let X ∈ ℝ^{d_x}, Y ∈ ℝ^{d_y} be random vectors following P_{xy}.
Given a joint sample {(x_i, y_i)}ⁿ_{i=1} ~ P_{xy} (unknown), test

 $H_0: P_{xy} = P_x P_y,$ vs. $H_1: P_{xy} \neq P_x P_y.$

• $P_{xy} = P_x P_y$ equivalent to $X \perp Y$.

Compute a test statistic λ̂_n. Reject H₀ if λ̂_n ≥ T_α (threshold).
 T_α = (1 − α)-quantile of the null distribution.

Let X ∈ ℝ^{d_x}, Y ∈ ℝ^{d_y} be random vectors following P_{xy}.
Given a joint sample {(x_i, y_i)}ⁿ_{i=1} ~ P_{xy} (unknown), test

 $H_0: P_{xy} = P_x P_y,$ vs. $H_1: P_{xy} \neq P_x P_y.$

P_{xy} = P_xP_y equivalent to X ⊥ Y.
Compute a test statistic λ̂_n. Reject H₀ if λ̂_n ≥ T_α (threshold).
T_α = (1 − α)-quantile of the null distribution.

Let X ∈ ℝ^{d_x}, Y ∈ ℝ^{d_y} be random vectors following P_{xy}.
Given a joint sample {(x_i, y_i)}ⁿ_{i=1} ~ P_{xy} (unknown), test

 $H_0: P_{xy} = P_x P_y,$ vs. $H_1: P_{xy} \neq P_x P_y.$

P_{xy} = P_xP_y equivalent to X ⊥ Y.
Compute a test statistic λ̂_n. Reject H₀ if λ̂_n ≥ T_α (threshold).
T_α = (1 − α)-quantile of the null distribution.

Want a test which is ...

1 Non-parametric i.e., no parametric assumption on P_{xy} .

- I Linear-time i.e., computational complexity is $\mathcal{O}(n)$. Fast.
- 3 Adaptive i.e., has a well-defined criterion for parameter tuning.

	Non-parametric	$\mathcal{O}(n)$	Adaptive
Pearson correlation	X	1	1
HSIC [Gretton et al., 2005]	\checkmark	X	×
HSIC with RFFs* [Zhang et al., 2016]	\checkmark	\checkmark	×
FSIC (proposed)	\checkmark	\checkmark	\checkmark

* : RFFs = Random Fourier Features

Want a test which is ...

- 1 Non-parametric i.e., no parametric assumption on P_{xy} .
- 2 Linear-time i.e., computational complexity is $\mathcal{O}(n)$. Fast.
- 3 Adaptive i.e., has a well-defined criterion for parameter tuning.

	Non-parametric	$\mathcal{O}(n)$	Adaptive
Pearson correlation	X	1	1
HSIC [Gretton et al., 2005]	\checkmark	X	×
HSIC with RFFs* [Zhang et al., 2016]	\checkmark	\checkmark	×
FSIC (proposed)	\checkmark	\checkmark	\checkmark

* : RFFs = Random Fourier Features

Want a test which is ...

- **1** Non-parametric i.e., no parametric assumption on P_{xy} .
- 2 Linear-time i.e., computational complexity is $\mathcal{O}(n)$. Fast.
- **3** Adaptive i.e., has a well-defined criterion for parameter tuning.

	Non-parametric	$\mathcal{O}(n)$	Adaptive
Pearson correlation	X	1	1
HSIC [Gretton et al., 2005]	\checkmark	X	×
HSIC with RFFs* [Zhang et al., 2016]	\checkmark	\checkmark	X
FSIC (proposed)	\checkmark	\checkmark	\checkmark

* : RFFs = Random Fourier Features

Want a test which is ...

- **1** Non-parametric i.e., no parametric assumption on P_{xy} .
- 2 Linear-time i.e., computational complexity is $\mathcal{O}(n)$. Fast.
- 3 Adaptive i.e., has a well-defined criterion for parameter tuning.

	Non-parametric	$\mathcal{O}(n)$	Adaptive
Pearson correlation	×	1	1
HSIC [Gretton et al., 2005]	\checkmark	×	×
HSIC with RFFs* [Zhang et al., 2016]	\checkmark	1	×
FSIC (proposed)	✓	1	1

* : RFFs = Random Fourier Features

Want a test which is ...

- **1** Non-parametric i.e., no parametric assumption on P_{xy} .
- 2 Linear-time i.e., computational complexity is $\mathcal{O}(n)$. Fast.
- 3 Adaptive i.e., has a well-defined criterion for parameter tuning.

	Non-parametric	$\mathcal{O}(n)$	Adaptive
Pearson correlation	×	1	1
HSIC [Gretton et al., 2005]	1	×	×
HSIC with RFFs* [Zhang et al., 2016]	1	1	×
FSIC (proposed)	1	1	1

 $\overline{*}$: RFFs = Random Fourier Features

- A function showing the differences of two distributions P and Q.
- Gaussian kernel: $k(\mathbf{x}, \mathbf{v}) = \exp\left(-\frac{\|\mathbf{x}-\mathbf{v}\|^2}{2\sigma^2}\right)$
- Empirical mean embedding of $P:\ \hat{\mu}_P(\mathbf{v}) = rac{1}{n}\sum_{i=1}^n k(\mathbf{x}_i,\mathbf{v})$
- Maximum Mean Discrepancy (MMD): $\|\hat{u}\|_{\text{RKHS}}$.
 - MMD(P, Q) = 0 if and only if P = Q.

• A function showing the differences of two distributions P and Q.

Gaussian kernel: $k(\mathbf{x}, \mathbf{v}) = \exp\left(-\frac{||\mathbf{x}-\mathbf{v}||^2}{2\sigma^2}\right)$

- Empirical mean embedding of $P: \ \hat{\mu}_P(\mathbf{v}) = \frac{1}{n} \sum_{i=1}^n k(\mathbf{x}_i, \mathbf{v})$
- Maximum Mean Discrepancy (MMD): $\|\hat{u}\|_{\text{RKHS}}$.

• MMD(P, Q) = 0 if and only if P = Q.

- A function showing the differences of two distributions P and Q.
 Gaussian kernel: k(x, v) = exp (- \frac{||x-v||^2}{2\sigma^2})
- Empirical mean embedding of P: μ̂_P(**v**) = ¹/_n Σⁿ_{i=1} k(**x**_i, **v**)
 Maximum Mean Discrepancy (MMD): || û ||_{RKHS}.

• MMD(P, Q) = 0 if and only if P = Q.

- A function showing the differences of two distributions P and Q.
 Gaussian kernel: k(x, v) = exp (- (||x-v||²)/(2σ²))
- Empirical mean embedding of P: μ̂_P(**v**) = 1/n Σⁿ_{i=1} k(**x**_i, **v**)
 Maximum Mean Discrepancy (MMD): || û ||_{RKHS}.

• MMD(P, Q) = 0 if and only if P = Q.

- A function showing the differences of two distributions P and Q.
 Gaussian kernel: k(x, v) = exp (- (||x-v||²)/(2σ²))
- Empirical mean embedding of $P: \hat{\mu}_P(\mathbf{v}) = \frac{1}{n} \sum_{i=1}^n k(\mathbf{x}_i, \mathbf{v})$ Maximum Mean Discrepancy (MMD): $\|\hat{u}\|_{\text{RKHS}}$.
 - MMD(P, Q) = 0 if and only if P = Q.

- A function showing the differences of two distributions P and Q.
- Gaussian kernel: $k(\mathbf{x}, \mathbf{v}) = \exp\left(-\frac{\|\mathbf{x}-\mathbf{v}\|^2}{2\sigma^2}\right)$
- Empirical mean embedding of P: $\hat{\mu}_P(\mathbf{v}) = \frac{1}{n} \sum_{i=1}^n k(\mathbf{x}_i, \mathbf{v})$
- Maximum Mean Discrepancy (MMD): $\|\hat{u}\|_{\text{RKHS}}$.
 - MMD(P, Q) = 0 if and only if P = Q.

Hilbert-Schmidt Independence Criterion.

 $\mathrm{HSIC}(X, Y) = \mathrm{MMD}(P_{xy}, P_x P_y) = \|u\|_{\mathrm{RKHS}}$

(need two kernels: k for X, and l for Y).

Empirical witness:

 $\hat{u}(\mathbf{v},\mathbf{w}) = \hat{\mu}_{xy}(\mathbf{v},\mathbf{w}) - \hat{\mu}_x(\mathbf{v})\hat{\mu}_y(\mathbf{w})$ where $\hat{\mu}_{xy}(\mathbf{v},\mathbf{w}) = rac{1}{n}\sum_{i=1}^n k(\mathbf{x}_i,\mathbf{v})l(\mathbf{y}_i,\mathbf{w}).$

HSIC(X, Y) = 0 if and only if X and Y are independent.
Test statistic = || û ||_{RKHS} ("flatness" of û). Complexity: O(n²).

■ <u>Hilbert-Schmidt</u> Independence <u>Criterion</u>.

 $\operatorname{HSIC}(X, Y) = \operatorname{MMD}(P_{xy}, P_x P_y) = ||u||_{\operatorname{RKHS}}$

(need two kernels: k for X, and l for Y).

• Empirical witness:

 $\hat{u}(\mathbf{v}, \mathbf{w}) = \hat{\mu}_{xy}(\mathbf{v}, \mathbf{w}) - \hat{\mu}_x(\mathbf{v})\hat{\mu}_y(\mathbf{w})$ where $\hat{\mu}_{xy}(\mathbf{v}, \mathbf{w}) = \frac{1}{n} \sum_{i=1}^n k(\mathbf{x}_i, \mathbf{v}) l(\mathbf{y}_i, \mathbf{w}).$

HSIC(X, Y) = 0 if and only if X and Y are independent.
Test statistic = || û ||_{RKHS} ("flatness" of û). Complexity: O(n²).

■ <u>Hilbert-Schmidt</u> Independence <u>Criterion</u>.

 $\operatorname{HSIC}(X, Y) = \operatorname{MMD}(P_{xy}, P_x P_y) = ||u||_{\operatorname{RKHS}}$

(need two kernels: k for X, and l for Y).

Empirical witness:

 $\hat{u}(\mathbf{v},\mathbf{w})=\hat{\mu}_{xy}(\mathbf{v},\mathbf{w})-\hat{\mu}_{x}(\mathbf{v})\hat{\mu}_{y}(\mathbf{w})$

where $\hat{\mu}_{xy}(\mathbf{v}, \mathbf{w}) = \frac{1}{n} \sum_{i=1}^{n} k(\mathbf{x}_i, \mathbf{v}) l(\mathbf{y}_i, \mathbf{w}).$

 $\hat{\mu}_{xy}(\mathbf{v}, \mathbf{w}) \qquad \hat{\mu}_{x}(\mathbf{v})\hat{\mu}_{y}(\mathbf{w})$ HSIC(X, Y) = 0 if and only if X and Y are independent. $Test \text{ statistic} = \|\hat{u}\|_{RKHS} \text{ ("flatness" of } \hat{u}). \text{ Complexity: } \mathcal{O}(n^{2}).$

■ <u>Hilbert-Schmidt</u> Independence <u>Criterion</u>.

 $\operatorname{HSIC}(X, Y) = \operatorname{MMD}(P_{xy}, P_x P_y) = ||u||_{\operatorname{RKHS}}$

(need two kernels: k for X, and l for Y).

Empirical witness:

 $\hat{\mu}_{xu}(\mathbf{v},\mathbf{w})$

 $\hat{u}(\mathbf{v},\mathbf{w})=\hat{\mu}_{xy}(\mathbf{v},\mathbf{w})-\hat{\mu}_{x}(\mathbf{v})\hat{\mu}_{y}(\mathbf{w})$

where $\hat{\mu}_{xy}(\mathbf{v}, \mathbf{w}) = \frac{1}{n} \sum_{i=1}^{n} k(\mathbf{x}_i, \mathbf{v}) l(\mathbf{y}_i, \mathbf{w}).$

Witness $\hat{u}(\mathbf{v},\mathbf{w})$

HSIC(X, Y) = 0 if and only if X and Y are independent.
Test statistic = || û ||_{RKHS} ("flatness" of û). Complexity: O(n²).

 $\hat{\mu}_x(\mathbf{v})\hat{\mu}_y(\mathbf{w})$

■ <u>Hilbert-Schmidt</u> Independence <u>Criterion</u>.

 $\mathrm{HSIC}(X, Y) = \mathrm{MMD}(P_{xy}, P_x P_y) = \|u\|_{\mathrm{RKHS}}$

(need two kernels: k for X, and l for Y).

• Empirical witness:

 $\hat{u}(\mathbf{v},\mathbf{w})=\hat{\mu}_{xy}(\mathbf{v},\mathbf{w})-\hat{\mu}_{x}(\mathbf{v})\hat{\mu}_{y}(\mathbf{w})$

where $\hat{\mu}_{xy}(\mathbf{v}, \mathbf{w}) = \frac{1}{n} \sum_{i=1}^{n} k(\mathbf{x}_i, \mathbf{v}) l(\mathbf{y}_i, \mathbf{w}).$

μ̂_{xy}(v, w) μ̂_x(v)μ̂_y(w) Witness û(v, w)
HSIC(X, Y) = 0 if and only if X and Y are independent.
Test statistic = ||û||_{RKHS} ("flatness" of û). Complexity: O(n²).

■ <u>Hilbert-Schmidt</u> Independence <u>Criterion</u>.

 $\operatorname{HSIC}(X, Y) = \operatorname{MMD}(P_{xy}, P_x P_y) = ||u||_{\operatorname{RKHS}}$

(need two kernels: k for X, and l for Y).

Empirical witness:

 $\hat{u}(\mathbf{v},\mathbf{w})=\hat{\mu}_{xy}(\mathbf{v},\mathbf{w})-\hat{\mu}_{x}(\mathbf{v})\hat{\mu}_{y}(\mathbf{w})$

where $\hat{\mu}_{xy}(\mathbf{v}, \mathbf{w}) = \frac{1}{n} \sum_{i=1}^{n} k(\mathbf{x}_i, \mathbf{v}) l(\mathbf{y}_i, \mathbf{w}).$

μ̂_{xy}(v, w) μ̂_x(v)μ̂_y(w) Witness û(v, w)
 HSIC(X, Y) = 0 if and only if X and Y are independent.
 Test statistic = ||û||_{RKHS} ("flatness" of û). Complexity: O(n²).

■ <u>Hilbert-Schmidt</u> Independence <u>Criterion</u>.

 $\mathrm{HSIC}(X, Y) = \mathrm{MMD}(P_{xy}, P_x P_y) = \|u\|_{\mathrm{RKHS}}$

(need two kernels: k for X, and l for Y).

Empirical witness:

 $\hat{u}(\mathbf{v},\mathbf{w})=\hat{\mu}_{xy}(\mathbf{v},\mathbf{w})-\hat{\mu}_{x}(\mathbf{v})\hat{\mu}_{y}(\mathbf{w})$

where $\hat{\mu}_{xy}(\mathbf{v}, \mathbf{w}) = \frac{1}{n} \sum_{i=1}^{n} k(\mathbf{x}_i, \mathbf{v}) l(\mathbf{y}_i, \mathbf{w}).$

 $\hat{\mu}_{xy}(\mathbf{v}, \mathbf{w}) \qquad \hat{\mu}_x(\mathbf{v})\hat{\mu}_y(\mathbf{w}) \qquad \text{Witness } \hat{u}(\mathbf{v}, \mathbf{w})$ $\blacksquare \text{HSIC}(X, Y) = 0 \text{ if and only if } X \text{ and } Y \text{ are independent.}$

• Test statistic = $\|\hat{u}\|_{\text{RKHS}}$ ("flatness" of \hat{u}). Complexity: $\mathcal{O}(n^2)$.

Idea: Evaluate $\hat{u}^2(\mathbf{v}, \mathbf{w})$ at only finitely many test locations.

• A set of random J locations: $\{(\mathbf{v}_1, \mathbf{w}_1), \dots, (\mathbf{v}_J, \mathbf{w}_J)\}$ • $\widehat{\mathrm{FSIC}}^2(X, Y) = \frac{1}{T} \sum_{i=1}^{J} \hat{u}^2(\mathbf{v}_i, \mathbf{w}_i)$

• Complexity: $\mathcal{O}((d_x + d_y)Jn)$. Linear time.

But, what about an unlucky set of locations??

• Can $FSIC^2(X, Y) = 0$ even if X and Y are dependent??

Idea: Evaluate $\hat{u}^2(\mathbf{v}, \mathbf{w})$ at only finitely many test locations.

- Complexity: $\mathcal{O}((d_x + d_y)Jn)$. Linear time.
- **But**, what about an unlucky set of locations??
 - Can $FSIC^2(X, Y) = 0$ even if X and Y are dependent??

Idea: Evaluate $\hat{u}^2(\mathbf{v}, \mathbf{w})$ at only finitely many test locations.

A set of random J locations: $\{(\mathbf{v}_1, \mathbf{w}_1), \dots, (\mathbf{v}_J, \mathbf{w}_J)\}$ FSIC² $(X, Y) = \frac{1}{7} \sum_{i=1}^{J} \hat{u}^2(\mathbf{v}_i, \mathbf{w}_i)$

• Complexity: $\mathcal{O}((d_x + d_y)Jn)$. Linear time.

But, what about an unlucky set of locations??

• Can $FSIC^2(X, Y) = 0$ even if X and Y are dependent??

Idea: Evaluate $\hat{u}^2(\mathbf{v}, \mathbf{w})$ at only finitely many test locations.

- Complexity: $\mathcal{O}((d_x + d_y)Jn)$. Linear time.
- But, what about an unlucky set of locations??
 - Can $FSIC^2(X, Y) = 0$ even if X and Y are dependent??

Idea: Evaluate $\hat{u}^2(\mathbf{v}, \mathbf{w})$ at only finitely many test locations.

- Complexity: $\mathcal{O}((d_x + d_y)Jn)$. Linear time.
- But, what about an unlucky set of locations??
 - Can $FSIC^2(X, Y) = 0$ even if X and Y are dependent??

Idea: Evaluate $\hat{u}^2(\mathbf{v}, \mathbf{w})$ at only finitely many test locations.

- Complexity: $\mathcal{O}((d_x + d_y)Jn)$. Linear time.
- But, what about an unlucky set of locations??
 - Can $FSIC^2(X, Y) = 0$ even if X and Y are dependent??
- No. Population FSIC(X, Y) = 0 iff $X \perp Y$, almost surely.

Requirements on the Kernels

Definition 1 (Analytic kernels).

 $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is said to be <u>analytic</u> if for all $\mathbf{x} \in \mathcal{X}$, $\mathbf{v} \to k(\mathbf{x}, \mathbf{v})$ is a real analytic function on \mathcal{X} .

- Analytic: Taylor series about \mathbf{x}_0 converges for all $\mathbf{x}_0 \in \mathcal{X}$.
- \implies k is infinitely differentiable.

Definition 2 (Characteristic kernels).

- Let P, Q be two distributions, and g be a kernel.
- Let $\mu_P(\mathbf{v}) := \mathbb{E}_{\mathbf{z} \sim P}[g(\mathbf{z}, \mathbf{v})]$ and $\mu_Q(\mathbf{v}) := \mathbb{E}_{\mathbf{z} \sim Q}[g(\mathbf{z}, \mathbf{v})].$

g is said to be characteristic if $P \neq Q$ implies $\mu_P \neq \mu_Q$.

Requirements on the Kernels

Definition 1 (Analytic kernels).

 $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is said to be <u>analytic</u> if for all $\mathbf{x} \in \mathcal{X}$, $\mathbf{v} \to k(\mathbf{x}, \mathbf{v})$ is a real analytic function on \mathcal{X} .

- Analytic: Taylor series about \mathbf{x}_0 converges for all $\mathbf{x}_0 \in \mathcal{X}$.
- \implies k is infinitely differentiable.

Definition 2 (Characteristic kernels).

- Let P, Q be two distributions, and g be a kernel.
- Let $\mu_P(\mathbf{v}) := \mathbb{E}_{\mathbf{z} \sim P}[g(\mathbf{z}, \mathbf{v})]$ and $\mu_Q(\mathbf{v}) := \mathbb{E}_{\mathbf{z} \sim Q}[g(\mathbf{z}, \mathbf{v})].$

g is said to be characteristic if $P \neq Q$ implies $\mu_P \neq \mu_Q$.

Proposition 1.

Assume

- The product kernel g((x, y), (x', y')) := k(x, x')l(y, y') is characteristic and analytic (i.e., k, l are Gaussian kernels).
- 2 Test locations $\{(\mathbf{v}_i, \mathbf{w}_i)\}_{i=1}^J \sim \eta$ where η has a density.

Then, η -almost surely, FSIC(X, Y) = 0 iff X and Y are independent.

Proposition 1.

Assume

- 1 The product kernel $g((\mathbf{x}, \mathbf{y}), (\mathbf{x}', \mathbf{y}')) := k(\mathbf{x}, \mathbf{x}')l(\mathbf{y}, \mathbf{y}')$ is <u>characteristic</u> and <u>analytic</u> (i.e., k, l are Gaussian kernels).
- 2 Test locations $\{(\mathbf{v}_i, \mathbf{w}_i)\}_{i=1}^J \sim \eta$ where η has a density.

Then, η -almost surely, FSIC(X, Y) = 0 iff X and Y are independent.

Let's plot

Proposition 1.

Assume

- 1 The product kernel $g((\mathbf{x}, \mathbf{y}), (\mathbf{x}', \mathbf{y}')) := k(\mathbf{x}, \mathbf{x}')l(\mathbf{y}, \mathbf{y}')$ is <u>characteristic</u> and <u>analytic</u> (i.e., k, l are Gaussian kernels).
- 2 Test locations $\{(\mathbf{v}_i, \mathbf{w}_i)\}_{i=1}^J \sim \eta$ where η has a density.

Then, η -almost surely, FSIC(X, Y) = 0 iff X and Y are independent.

Proposition 1.

Assume

- 1 The product kernel $g((\mathbf{x}, \mathbf{y}), (\mathbf{x}', \mathbf{y}')) := k(\mathbf{x}, \mathbf{x}')l(\mathbf{y}, \mathbf{y}')$ is <u>characteristic</u> and <u>analytic</u> (i.e., k, l are Gaussian kernels).
- 2 Test locations $\{(\mathbf{v}_i, \mathbf{w}_i)\}_{i=1}^J \sim \eta$ where η has a density.

Then, η -almost surely, FSIC(X, Y) = 0 iff X and Y are independent.

FSIC Is a Dependence Measure

Proposition 1.

Assume

- 1 The product kernel $g((\mathbf{x}, \mathbf{y}), (\mathbf{x}', \mathbf{y}')) := k(\mathbf{x}, \mathbf{x}')l(\mathbf{y}, \mathbf{y}')$ is <u>characteristic</u> and <u>analytic</u> (i.e., k, l are Gaussian kernels).
- **2** Test locations $\{(\mathbf{v}_i, \mathbf{w}_i)\}_{i=1}^J \sim \eta$ where η has a density.

Then, η -almost surely, FSIC(X, Y) = 0 iff X and Y are independent.

Under H₁, u is not a zero function (P → E_{z~P}[g(z, ·)] is injective).
u is analytic. So, R_u = {(v, w) | u(v, w) = 0} has 0 Lebesgue measure.
So, {(v_i, w_i)}_{i=1}^J ~ η will not be in R_u (with probability 1).

Alternative View of the Witness $u(\mathbf{v}, \mathbf{w})$

The witness $u(\mathbf{v}, \mathbf{w})$ can be rewritten as

$$egin{aligned} &u(\mathbf{v},\mathbf{w}):=\mu_{xy}(\mathbf{v},\mathbf{w})-\mu_x(\mathbf{v})\mu_y(\mathbf{w})\ &=\mathbb{E}_{\mathbf{xy}}[k(\mathbf{x},\mathbf{v})l(\mathbf{y},\mathbf{w})]-\mathbb{E}_{\mathbf{x}}[k(\mathbf{x},\mathbf{v})]\mathbb{E}_{\mathbf{y}}[l(\mathbf{y},\mathbf{w})],\ &=\mathrm{cov}_{\mathbf{xy}}[k(\mathbf{x},\mathbf{v}),l(\mathbf{y},\mathbf{w})]. \end{aligned}$$

- 1 Transforming $\mathbf{x} \mapsto k(\mathbf{x}, \mathbf{v})$ and $\mathbf{y} \mapsto l(\mathbf{y}, \mathbf{w})$ (from \mathbb{R}^{d_y} to \mathbb{R}).
- 2 Then, take the covariance.

The kernel transformations turn the linear covariance into a dependence measure.

Alternative View of the Witness $u(\mathbf{v}, \mathbf{w})$

The witness $u(\mathbf{v}, \mathbf{w})$ can be rewritten as

$$egin{aligned} &u(\mathbf{v},\mathbf{w}):=\mu_{xy}(\mathbf{v},\mathbf{w})-\mu_x(\mathbf{v})\mu_y(\mathbf{w})\ &=\mathbb{E}_{\mathbf{xy}}[k(\mathbf{x},\mathbf{v})l(\mathbf{y},\mathbf{w})]-\mathbb{E}_{\mathbf{x}}[k(\mathbf{x},\mathbf{v})]\mathbb{E}_{\mathbf{y}}[l(\mathbf{y},\mathbf{w})],\ &=\mathrm{cov}_{\mathbf{xy}}[k(\mathbf{x},\mathbf{v}),l(\mathbf{y},\mathbf{w})]. \end{aligned}$$

- 1 Transforming $\mathbf{x} \mapsto k(\mathbf{x}, \mathbf{v})$ and $\mathbf{y} \mapsto l(\mathbf{y}, \mathbf{w})$ (from \mathbb{R}^{d_y} to \mathbb{R}).
- 2 Then, take the covariance.

The kernel transformations turn the linear covariance into a dependence measure.

Alternative Form of $\hat{u}(\mathbf{v}, \mathbf{w})$

• Recall
$$\widehat{\text{FSIC}^2} = \frac{1}{J} \sum_{i=1}^J \hat{u}(\mathbf{v}_i, \mathbf{w}_i)^2$$

• Let $\widehat{\mu_x \mu_y}(\mathbf{v}, \mathbf{w})$ be an unbiased estimator of $\mu_x(\mathbf{v})\mu_y(\mathbf{w})$.

 $= \widehat{\mu_x \mu_y}(\mathbf{v}, \mathbf{w}) := \frac{1}{n(n-1)} \sum_{i=1}^n \sum_{j \neq i} k(\mathbf{x}_i, \mathbf{v}) l(\mathbf{y}_j, \mathbf{w}).$

An unbiased estimator of $u(\mathbf{v}, \mathbf{w})$ is

$$egin{aligned} \hat{u}(\mathbf{v},\mathbf{w}) &= \hat{\mu}_{xy}(\mathbf{v},\mathbf{w}) - \widehat{\mu_x\mu_y}(\mathbf{v},\mathbf{w}) \ &= rac{2}{n(n-1)}\sum_{i < j}h_{(\mathbf{v},\mathbf{w})}((\mathbf{x}_i,\mathbf{y}_i),(\mathbf{x}_j,\mathbf{y}_j)), \end{aligned}$$

where

$$h_{(\mathbf{v},\mathbf{w})}((\mathbf{x},\mathbf{y}),(\mathbf{x}',\mathbf{y}')):=rac{1}{2}(k(\mathbf{x},\mathbf{v})-k(\mathbf{x}',\mathbf{v}))(l(\mathbf{y},\mathbf{w})-l(\mathbf{y}',\mathbf{w})).$$

For a fixed (\mathbf{v}, \mathbf{w}) , $\hat{u}(\mathbf{v}, \mathbf{w})$ is a one-sample 2nd-order U-statistic.

Alternative Form of $\hat{u}(\mathbf{v}, \mathbf{w})$

• Recall
$$\widehat{\text{FSIC}^2} = \frac{1}{J} \sum_{i=1}^{J} \hat{u}(\mathbf{v}_i, \mathbf{w}_i)^2$$

• Let $\widehat{\mu_x \mu_y}(\mathbf{v}, \mathbf{w})$ be an unbiased estimator of $\mu_x(\mathbf{v})\mu_y(\mathbf{w})$.

$$\widehat{\mu_x \mu_y}(\mathbf{v},\mathbf{w}) := \frac{1}{n(n-1)} \sum_{i=1}^n \sum_{j \neq i} k(\mathbf{x}_i,\mathbf{v}) l(\mathbf{y}_j,\mathbf{w}).$$

An unbiased estimator of $u(\mathbf{v}, \mathbf{w})$ is

$$egin{aligned} \hat{u}(\mathbf{v},\mathbf{w}) &= \hat{\mu}_{xy}(\mathbf{v},\mathbf{w}) - \widehat{\mu_x\mu_y}(\mathbf{v},\mathbf{w}) \ &= rac{2}{n(n-1)}\sum_{i < j}h_{(\mathbf{v},\mathbf{w})}((\mathbf{x}_i,\mathbf{y}_i),(\mathbf{x}_j,\mathbf{y}_j)), \end{aligned}$$

where

$$h_{(\mathbf{v},\mathbf{w})}((\mathbf{x},\mathbf{y}),(\mathbf{x}',\mathbf{y}')):=rac{1}{2}(k(\mathbf{x},\mathbf{v})-k(\mathbf{x}',\mathbf{v}))(l(\mathbf{y},\mathbf{w})-l(\mathbf{y}',\mathbf{w})).$$

For a fixed (\mathbf{v}, \mathbf{w}) , $\hat{u}(\mathbf{v}, \mathbf{w})$ is a one-sample 2nd-order U-statistic.

Alternative Form of $\hat{u}(\mathbf{v}, \mathbf{w})$

Recall
$$\widehat{\text{FSIC}^2} = \frac{1}{J} \sum_{i=1}^{J} \hat{u}(\mathbf{v}_i, \mathbf{w}_i)^2$$
Let $\widehat{\mu_x \mu_y}(\mathbf{v}, \mathbf{w})$ be an unbiased estimator of $\mu_x(\mathbf{v})\mu_y(\mathbf{w})$.
 $\widehat{\mu_x \mu_y}(\mathbf{v}, \mathbf{w}) := \frac{1}{n(n-1)} \sum_{i=1}^n \sum_{j \neq i} k(\mathbf{x}_i, \mathbf{v}) l(\mathbf{y}_j, \mathbf{w}).$

An unbiased estimator of $u(\mathbf{v}, \mathbf{w})$ is

$$egin{aligned} \hat{u}(\mathbf{v},\mathbf{w}) &= \hat{\mu}_{xy}(\mathbf{v},\mathbf{w}) - \widehat{\mu_x\mu_y}(\mathbf{v},\mathbf{w}) \ &= rac{2}{n(n-1)}\sum_{i < j}h_{(\mathbf{v},\mathbf{w})}((\mathbf{x}_i,\mathbf{y}_i),(\mathbf{x}_j,\mathbf{y}_j)), \end{aligned}$$

where

$$h_{(\mathbf{v},\mathbf{w})}((\mathbf{x},\mathbf{y}),(\mathbf{x}',\mathbf{y}')):=rac{1}{2}(k(\mathbf{x},\mathbf{v})-k(\mathbf{x}',\mathbf{v}))(l(\mathbf{y},\mathbf{w})-l(\mathbf{y}',\mathbf{w})).$$

For a fixed (v, w), $\hat{u}(v, w)$ is a one-sample 2nd-order U-statistic.

$$\widehat{\mathrm{FSIC}^2}(X, Y) = \frac{1}{J} \sum_{i=1}^J \hat{u}^2(\mathbf{v}_i, \mathbf{w}_i) = \frac{1}{J} \hat{\mathbf{u}}^\top \hat{\mathbf{u}},$$

where $\hat{\mathbf{u}} = (\hat{u}(\mathbf{v}_1, \mathbf{w}_1), \dots, \hat{u}(\mathbf{v}_J, \mathbf{w}_J))^\top$.

Proposition 2 (Asymptotic distribution of \hat{u}).

For any fixed locations $\{(\mathbf{v}_i,\mathbf{w}_i)\}_{i=1}^J$, we have $\sqrt{n}(\hat{\mathbf{u}}-\mathbf{u})\stackrel{d}{
ightarrow}\mathcal{N}(\mathbf{0},\Sigma).$

 $= \Sigma_{ij} = \mathbb{E}_{\mathbf{x}\mathbf{y}}[\tilde{k}(\mathbf{x},\mathbf{v}_i)\tilde{l}(\mathbf{y},\mathbf{w}_i)\tilde{k}(\mathbf{x},\mathbf{v}_j)\tilde{l}(\mathbf{y},\mathbf{w}_j)] - u(\mathbf{v}_i,\mathbf{w}_i)u(\mathbf{v}_j,\mathbf{w}_j),$

Under H_0

$$n\widehat{\mathrm{FSIC}^2} = rac{n}{7} \hat{\mathbf{u}}^{ op} \hat{\mathbf{u}} \sim ext{weighted sum of dependent } \chi^2 ext{ variables.}$$

$$\widehat{\mathrm{FSIC}^2}(X, Y) = \frac{1}{J} \sum_{i=1}^J \hat{u}^2(\mathbf{v}_i, \mathbf{w}_i) = \frac{1}{J} \hat{\mathbf{u}}^\top \hat{\mathbf{u}},$$

where $\hat{\mathbf{u}} = (\hat{u}(\mathbf{v}_1, \mathbf{w}_1), \dots, \hat{u}(\mathbf{v}_J, \mathbf{w}_J))^\top$.

Proposition 2 (Asymptotic distribution of \hat{u}).

For any fixed locations $\{(\mathbf{v}_i, \mathbf{w}_i)\}_{i=1}^J$, we have $\sqrt{n}(\hat{\mathbf{u}} - \mathbf{u}) \stackrel{d}{\rightarrow} \mathcal{N}(\mathbf{0}, \Sigma)$.

$$\begin{split} & \Sigma_{ij} = \mathbb{E}_{\mathbf{x}\mathbf{y}}[\tilde{k}(\mathbf{x},\mathbf{v}_i)\tilde{l}(\mathbf{y},\mathbf{w}_i)\tilde{k}(\mathbf{x},\mathbf{v}_j)\tilde{l}(\mathbf{y},\mathbf{w}_j)] - u(\mathbf{v}_i,\mathbf{w}_i)u(\mathbf{v}_j,\mathbf{w}_j), \\ & \tilde{k}(\mathbf{x},\mathbf{v}) := k(\mathbf{x},\mathbf{v}) - \mathbb{E}_{\mathbf{x}'}k(\mathbf{x}',\mathbf{v}), \\ & \tilde{l}(\mathbf{y},\mathbf{w}) := l(\mathbf{y},\mathbf{w}) - \mathbb{E}_{\mathbf{y}'}l(\mathbf{y}',\mathbf{w}). \end{split}$$

Under H_0

 $\widehat{n\mathrm{FSIC}^2} = rac{n}{\tau} \hat{\mathbf{u}}^{ op} \hat{\mathbf{u}} \sim ext{weighted sum of dependent } \chi^2 ext{ variables}.$

$$\widehat{\mathrm{FSIC}^2}(X, Y) = \frac{1}{J} \sum_{i=1}^J \hat{u}^2(\mathbf{v}_i, \mathbf{w}_i) = \frac{1}{J} \hat{\mathbf{u}}^\top \hat{\mathbf{u}},$$

where $\hat{\mathbf{u}} = (\hat{u}(\mathbf{v}_1, \mathbf{w}_1), \dots, \hat{u}(\mathbf{v}_J, \mathbf{w}_J))^\top$.

Proposition 2 (Asymptotic distribution of \hat{u}).

For any fixed locations $\{(\mathbf{v}_i, \mathbf{w}_i)\}_{i=1}^J$, we have $\sqrt{n}(\hat{\mathbf{u}} - \mathbf{u}) \stackrel{d}{\rightarrow} \mathcal{N}(\mathbf{0}, \Sigma)$.

$$\begin{split} & \Sigma_{ij} = \mathbb{E}_{\mathbf{x}\mathbf{y}}[\tilde{k}(\mathbf{x},\mathbf{v}_i)\tilde{l}(\mathbf{y},\mathbf{w}_i)\tilde{k}(\mathbf{x},\mathbf{v}_j)\tilde{l}(\mathbf{y},\mathbf{w}_j)] - u(\mathbf{v}_i,\mathbf{w}_i)u(\mathbf{v}_j,\mathbf{w}_j), \\ & \tilde{k}(\mathbf{x},\mathbf{v}) := k(\mathbf{x},\mathbf{v}) - \mathbb{E}_{\mathbf{x}'}k(\mathbf{x}',\mathbf{v}), \\ & \tilde{l}(\mathbf{y},\mathbf{w}) := l(\mathbf{y},\mathbf{w}) - \mathbb{E}_{\mathbf{y}'}l(\mathbf{y}',\mathbf{w}). \end{split}$$

Under H_0

 $n\widehat{\mathrm{FSIC}^2} = rac{n}{7}\hat{\mathbf{u}}^{ op}\hat{\mathbf{u}} \sim ext{weighted sum of dependent } \chi^2 ext{ variables}.$

$$\widehat{\mathrm{FSIC}^2}(X, Y) = \frac{1}{J} \sum_{i=1}^J \hat{u}^2(\mathbf{v}_i, \mathbf{w}_i) = \frac{1}{J} \hat{\mathbf{u}}^\top \hat{\mathbf{u}},$$

where $\hat{\mathbf{u}} = (\hat{u}(\mathbf{v}_1, \mathbf{w}_1), \dots, \hat{u}(\mathbf{v}_J, \mathbf{w}_J))^\top$.

Proposition 2 (Asymptotic distribution of \hat{u}).

For any fixed locations $\{(\mathbf{v}_i, \mathbf{w}_i)\}_{i=1}^J$, we have $\sqrt{n}(\hat{\mathbf{u}} - \mathbf{u}) \stackrel{d}{\rightarrow} \mathcal{N}(\mathbf{0}, \Sigma)$.

$$\begin{split} & \Sigma_{ij} = \mathbb{E}_{\mathbf{x}\mathbf{y}}[\tilde{k}(\mathbf{x},\mathbf{v}_i)\tilde{l}(\mathbf{y},\mathbf{w}_i)\tilde{k}(\mathbf{x},\mathbf{v}_j)\tilde{l}(\mathbf{y},\mathbf{w}_j)] - u(\mathbf{v}_i,\mathbf{w}_i)u(\mathbf{v}_j,\mathbf{w}_j), \\ & \tilde{k}(\mathbf{x},\mathbf{v}) := k(\mathbf{x},\mathbf{v}) - \mathbb{E}_{\mathbf{x}'}k(\mathbf{x}',\mathbf{v}), \\ & \tilde{l}(\mathbf{y},\mathbf{w}) := l(\mathbf{y},\mathbf{w}) - \mathbb{E}_{\mathbf{y}'}l(\mathbf{y}',\mathbf{w}). \end{split}$$

Under H_0 ,

 $\widehat{n\mathrm{FSIC}^2} = rac{n}{J} \hat{\mathbf{u}}^{ op} \hat{\mathbf{u}} \sim ext{weighted sum of dependent } \chi^2 ext{ variables.}$

$$\widehat{\mathrm{FSIC}^2}(X, Y) = \frac{1}{J} \sum_{i=1}^J \hat{u}^2(\mathbf{v}_i, \mathbf{w}_i) = \frac{1}{J} \hat{\mathbf{u}}^\top \hat{\mathbf{u}},$$

where $\hat{\mathbf{u}} = (\hat{u}(\mathbf{v}_1, \mathbf{w}_1), \dots, \hat{u}(\mathbf{v}_J, \mathbf{w}_J))^\top$.

Proposition 2 (Asymptotic distribution of \hat{u}).

For any fixed locations $\{(\mathbf{v}_i, \mathbf{w}_i)\}_{i=1}^J$, we have $\sqrt{n}(\hat{\mathbf{u}} - \mathbf{u}) \stackrel{d}{\rightarrow} \mathcal{N}(\mathbf{0}, \Sigma)$.

$$\begin{split} & \Sigma_{ij} = \mathbb{E}_{\mathbf{x}\mathbf{y}}[\tilde{k}(\mathbf{x},\mathbf{v}_i)\tilde{l}(\mathbf{y},\mathbf{w}_i)\tilde{k}(\mathbf{x},\mathbf{v}_j)\tilde{l}(\mathbf{y},\mathbf{w}_j)] - u(\mathbf{v}_i,\mathbf{w}_i)u(\mathbf{v}_j,\mathbf{w}_j), \\ & \tilde{k}(\mathbf{x},\mathbf{v}) := k(\mathbf{x},\mathbf{v}) - \mathbb{E}_{\mathbf{x}'}k(\mathbf{x}',\mathbf{v}), \\ & \tilde{l}(\mathbf{y},\mathbf{w}) := l(\mathbf{y},\mathbf{w}) - \mathbb{E}_{\mathbf{y}'}l(\mathbf{y}',\mathbf{w}). \end{split}$$

Under H_0 ,

 $n\widehat{\mathrm{FSIC}^2} = rac{n}{I} \hat{\mathbf{u}}^{ op} \hat{\mathbf{u}} \sim ext{weighted sum of dependent } \chi^2 ext{ variables}.$

$$\widehat{\mathrm{NFSIC}}^2(X,\,Y) = \hat{\lambda}_n := n \hat{\mathbf{u}}^{ op} \left(\hat{\Sigma} + oldsymbol{\gamma}_n \mathbf{I}
ight)^{-1} \hat{\mathbf{u}},$$

with a regularization parameter $\gamma_n \geq 0$.

Key: NFSIC = FSIC normalized by the covariance.

Theorem 1 (NFSIC test is consistent).

Assume

- 1 The product kernel is characteristic and analytic.
- $2 \quad \lim_{n\to\infty} \gamma_n = 0.$

- 1 Under H_0 , $\hat{\lambda}_n \stackrel{d}{\rightarrow} \chi^2(J)$ as $n \rightarrow \infty$.
- 2 Under H₁, $\lim_{n \to \infty} \mathbb{P}\left(\hat{\lambda}_n \geq T_{lpha}\right) = 1$, η -almost surely.

$$\widehat{\mathrm{NFSIC}}^2(X,\,Y) = \hat{\lambda}_n := n \hat{\mathbf{u}}^{ op} \left(\hat{\Sigma} + \mathbf{\gamma}_n \mathbf{I}
ight)^{-1} \hat{\mathbf{u}},$$

with a regularization parameter $\gamma_n \geq 0$.

Key: NFSIC = FSIC normalized by the covariance.

Theorem 1 (NFSIC test is consistent).

Assume

- 1 The product kernel is characteristic and analytic.
- $2 \quad \lim_{n\to\infty} \gamma_n = 0.$

- 1 Under H_0 , $\hat{\lambda}_n \stackrel{d}{\rightarrow} \chi^2(J)$ as $n \rightarrow \infty$.
- 2 Under H₁, $\lim_{n \to \infty} \mathbb{P}\left(\hat{\lambda}_n \geq T_{lpha}\right) = 1$, η -almost surely.

$$\widehat{\mathrm{NFSIC}}^2(X,\,Y) = \hat{\lambda}_n := n \hat{\mathbf{u}}^{ op} \left(\hat{\Sigma} + oldsymbol{\gamma}_n \mathbf{I}
ight)^{-1} \hat{\mathbf{u}}_n$$

with a regularization parameter $\gamma_n \geq 0$.

Key: NFSIC = FSIC normalized by the covariance.

Theorem 1 (NFSIC test is consistent).

Assume

- 1 The product kernel is characteristic and analytic.
- 2 $\lim_{n\to\infty}\gamma_n=0.$

- 1 Under H_0 , $\hat{\lambda}_n \stackrel{d}{\rightarrow} \chi^2(J)$ as $n \rightarrow \infty$.
- 2 Under H1, $\lim_{n o\infty}\mathbb{P}\left(\hat{\lambda}_n\geq T_{oldsymbol{lpha}}
 ight)=$ 1, η -almost surely.

$$\widehat{\mathrm{NFSIC}}^2(X,\,Y) = \hat{\lambda}_n := n \hat{\mathbf{u}}^{ op} \left(\hat{\Sigma} + oldsymbol{\gamma}_n \mathbf{I}
ight)^{-1} \hat{\mathbf{u}}_n$$

with a regularization parameter $\gamma_n \geq 0$.

Key: NFSIC = FSIC normalized by the covariance.

Theorem 1 (NFSIC test is consistent).

Assume

- 1 The product kernel is characteristic and analytic.
- 2 $\lim_{n\to\infty}\gamma_n=0.$

- 1 Under H_0 , $\hat{\lambda}_n \xrightarrow{d} \chi^2(J)$ as $n \to \infty$.
- 2 Under H_1 , $\lim_{n o\infty}\mathbb{P}\left(\hat{\lambda}_n\geq T_{lpha}
 ight)=1$, $\eta ext{-almost surely}.$

$$\widehat{\mathrm{NFSIC}}^2(X,\,Y) = \hat{\lambda}_n := n \hat{\mathbf{u}}^{ op} \left(\hat{\Sigma} + \mathbf{\gamma}_n \mathbf{I}
ight)^{-1} \hat{\mathbf{u}}_n$$

with a regularization parameter $\gamma_n \geq 0$.

Key: NFSIC = FSIC normalized by the covariance.

Theorem 1 (NFSIC test is consistent).

Assume

- 1 The product kernel is characteristic and analytic.
- 2 $\lim_{n\to\infty}\gamma_n=0.$

- 1 Under H_0 , $\hat{\lambda}_n \stackrel{d}{\rightarrow} \chi^2(J)$ as $n \rightarrow \infty$.
- 2 Under H_1 , $\lim_{n \to \infty} \mathbb{P}\left(\hat{\lambda}_n \geq T_{\alpha}\right) = 1$, η -almost surely.

$$\widehat{\mathrm{NFSIC}}^2(X,\,Y) = \hat{\lambda}_n := n \hat{\mathbf{u}}^ op \left(\hat{\Sigma} + oldsymbol{\gamma}_n \mathbf{I}
ight)^{-1} \hat{\mathbf{u}}_n$$

with a regularization parameter $\gamma_n \geq 0$.

Key: NFSIC = FSIC normalized by the covariance.

Theorem 1 (NFSIC test is consistent).

Assume

- 1 The product kernel is characteristic and analytic.
- 2 $\lim_{n\to\infty}\gamma_n=0.$

Then, for any k, l and $\{(\mathbf{v}_i, \mathbf{w}_i)\}_{i=1}^J \sim \eta$,

- 1 Under H_0 , $\hat{\lambda}_n \stackrel{d}{\rightarrow} \chi^2(J)$ as $n \rightarrow \infty$.
- 2 Under H_1 , $\lim_{n \to \infty} \mathbb{P}\left(\hat{\lambda}_n \geq T_{\alpha}\right) = 1$, η -almost surely.

Asymptotically, false positive rate is at α under H_0 , and always reject under H_1 .

$$\hat{\lambda}_n := n \hat{\mathbf{u}}^ op \left(\hat{\Sigma} + \gamma_n \mathbf{I}
ight)^{-1} \hat{\mathbf{u}},$$

Test locations
$$\{(\mathbf{v}_i, \mathbf{w}_i)\}_{i=1}^J \sim \eta$$
.

- **K** = $[k(\mathbf{v}_i, \mathbf{x}_j)] \in \mathbb{R}^{J \times n}$
- **L** = $[l(\mathbf{w}_i, \mathbf{y}_j)] \in \mathbb{R}^{J \times n}$. (No $n \times n$ Gram matrix.)

1
$$\hat{\mathbf{u}} = \frac{(\mathbf{K} \circ \mathbf{L}) \mathbf{1}_n}{n-1} - \frac{(\mathbf{K} \mathbf{1}_n) \circ (\mathbf{L} \mathbf{1}_n)}{n(n-1)}.$$

2 $\hat{\Sigma} = \frac{\Gamma \Gamma^{\top}}{n}$ where $\Gamma := (\mathbf{K} - n^{-1} \mathbf{K} \mathbf{1}_n \mathbf{1}_n^{\top}) \circ (\mathbf{L} - n^{-1} \mathbf{L} \mathbf{1}_n \mathbf{1}_n^{\top}) - \hat{\mathbf{u}} \mathbf{1}_n^{\top}$

 $\hat{\lambda}_n$ can be computed in $\mathcal{O}(J^3 + J^2n + (d_x + d_y)Jn)$ time.

$$\hat{\lambda}_n := n \hat{\mathbf{u}}^ op \left(\hat{\Sigma} + \gamma_n \mathbf{I}
ight)^{-1} \hat{\mathbf{u}},$$

1
$$\hat{\mathbf{u}} = \frac{(\mathbf{K} \circ \mathbf{L}) \mathbf{1}_n}{n-1} - \frac{(\mathbf{K} \mathbf{1}_n) \circ (\mathbf{L} \mathbf{1}_n)}{n(n-1)}.$$

2 $\hat{\Sigma} = \frac{\Gamma \Gamma^\top}{n}$ where $\Gamma := (\mathbf{K} - n^{-1} \mathbf{K} \mathbf{1}_n \mathbf{1}_n^\top) \circ (\mathbf{L} - n^{-1} \mathbf{L} \mathbf{1}_n \mathbf{1}_n^\top) - \hat{\mathbf{u}} \mathbf{1}_n^\top.$

• $\hat{\lambda}_n$ can be computed in $\mathcal{O}(J^3 + J^2n + (d_x + d_y)Jn)$ time.

$$\hat{\lambda}_n := n \hat{\mathbf{u}}^ op \left(\hat{\Sigma} + \gamma_n \mathbf{I}
ight)^{-1} \hat{\mathbf{u}},$$

• Test locations
$$\{(\mathbf{v}_i, \mathbf{w}_i)\}_{i=1}^J \sim \eta$$
.

- $\mathbf{K} = [k(\mathbf{v}_i, \mathbf{x}_j)] \in \mathbb{R}^{J imes n}$
- $\mathbf{L} = [l(\mathbf{w}_i, \mathbf{y}_j)] \in \mathbb{R}^{J \times n}$. (No $n \times n$ Gram matrix.)

1
$$\hat{\mathbf{u}} = \frac{(\mathbf{K} \circ \mathbf{L}) \mathbf{1}_n}{n-1} - \frac{(\mathbf{K} \mathbf{1}_n) \circ (\mathbf{L} \mathbf{1}_n)}{n(n-1)}.$$

2 $\hat{\Sigma} = \frac{\Gamma \Gamma^{\top}}{n}$ where $\Gamma := (\mathbf{K} - n^{-1} \mathbf{K} \mathbf{1}_n \mathbf{1}_n^{\top}) \circ (\mathbf{L} - n^{-1} \mathbf{L} \mathbf{1}_n \mathbf{1}_n^{\top}) - \hat{\mathbf{u}} \mathbf{1}_n^{\top}.$

 $\hat{\lambda}_n$ can be computed in $\mathcal{O}(J^3 + J^2n + (d_x + d_y)Jn)$ time.

$$\hat{\lambda}_n := n \hat{\mathbf{u}}^ op \left(\hat{\Sigma} + \gamma_n \mathbf{I}
ight)^{-1} \hat{\mathbf{u}},$$

• Test locations
$$\{(\mathbf{v}_i, \mathbf{w}_i)\}_{i=1}^J \sim \eta$$
.

•
$$\mathbf{K} = [k(\mathbf{v}_i, \mathbf{x}_j)] \in \mathbb{R}^{J imes n}$$

• $\mathbf{L} = [l(\mathbf{w}_i, \mathbf{y}_j)] \in \mathbb{R}^{J \times n}$. (No $n \times n$ Gram matrix.)

Estimators

1
$$\hat{\mathbf{u}} = \frac{(\mathbf{K} \circ \mathbf{L}) \mathbf{1}_n}{n-1} - \frac{(\mathbf{K} \mathbf{1}_n) \circ (\mathbf{L} \mathbf{1}_n)}{n(n-1)}.$$

2 $\hat{\Sigma} = \frac{\Gamma \Gamma^{\top}}{n}$ where $\Gamma := (\mathbf{K} - n^{-1} \mathbf{K} \mathbf{1}_n \mathbf{1}_n^{\top}) \circ (\mathbf{L} - n^{-1} \mathbf{L} \mathbf{1}_n \mathbf{1}_n^{\top}) - \hat{\mathbf{u}} \mathbf{1}_n^{\top}.$

 $\hat{\lambda}_n$ can be computed in $\mathcal{O}(J^3 + J^2n + (d_x + d_y)Jn)$ time.

$$\hat{\lambda}_n := n \hat{\mathbf{u}}^ op \left(\hat{\Sigma} + \gamma_n \mathbf{I}
ight)^{-1} \hat{\mathbf{u}},$$

1
$$\hat{\mathbf{u}} = \frac{(\mathbf{K} \circ \mathbf{L}) \mathbf{1}_n}{n-1} - \frac{(\mathbf{K} \mathbf{1}_n) \circ (\mathbf{L} \mathbf{1}_n)}{n(n-1)}.$$

2 $\hat{\Sigma} = \frac{\Gamma \Gamma^{\top}}{n}$ where $\Gamma := (\mathbf{K} - n^{-1} \mathbf{K} \mathbf{1}_n \mathbf{1}_n^{\top}) \circ (\mathbf{L} - n^{-1} \mathbf{L} \mathbf{1}_n \mathbf{1}_n^{\top}) - \hat{\mathbf{u}} \mathbf{1}_n^{\top}.$

• $\hat{\lambda}_n$ can be computed in $\mathcal{O}(J^3 + J^2n + (d_x + d_y)Jn)$ time.

• Test $\widehat{\text{NFSIC}^2}$ is consistent for any random locations $\{(\mathbf{v}_i, \mathbf{w}_i)\}_{i=1}^J$.

■ In practice, tuning them will increase the test power.

- Test $\widehat{\text{NFSIC}^2}$ is consistent for any random locations $\{(\mathbf{v}_i, \mathbf{w}_i)\}_{i=1}^J$.
- In practice, tuning them will increase the test power.

Test NFSIC² is consistent for any random locations {(v_i, w_i)}^J_{i=1}.
 In practice, tuning them will increase the test power.

Test NFSIC² is consistent for any random locations {(v_i, w_i)}^J_{i=1}.
 In practice, tuning them will increase the test power.

Under $H_0: X \perp Y$, we have $\hat{\lambda}_n \sim \chi^2(J)$ as $n \to \infty$.

Test NFSIC² is consistent for any random locations {(v_i, w_i)}^J_{i=1}.
 In practice, tuning them will increase the test power.

Under H_1 , $\hat{\lambda}_n$ will be large. Follows some distribution $\mathbb{P}_{H_1}(\hat{\lambda}_n)$

Test NFSIC² is consistent for any random locations {(v_i, w_i)}^J_{i=1}.
 In practice, tuning them will increase the test power.

Test power = $\mathbb{P}(\text{reject } H_0 \mid H_1 \text{ true}) = \mathbb{P}(\hat{\lambda}_n \geq T_{\alpha})$

Test NFSIC² is consistent for any random locations {(v_i, w_i)}^J_{i=1}.
 In practice, tuning them will increase the test power.

Test power = $\mathbb{P}(\text{reject } H_0 \mid H_1 \text{ true}) = \mathbb{P}(\hat{\lambda}_n \geq T_{\alpha})$

Idea: Pick locations and Gaussian widths to maximize (lower bound of) test power.

Test NFSIC² is consistent for any random locations {(v_i, w_i)}^J_{i=1}.
 In practice, tuning them will increase the test power.

Test power = $\mathbb{P}(\text{reject } H_0 \mid H_1 \text{ true}) = \mathbb{P}(\hat{\lambda}_n \geq T_{\alpha})$

Idea: Pick locations and Gaussian widths to maximize (lower bound of) test power.

$$\blacksquare \text{ Recall } \hat{\lambda}_n := n \hat{\mathbf{u}}^\top \left(\hat{\Sigma} + \gamma_n \mathbf{I} \right)^{-1} \hat{\mathbf{u}}.$$

Theorem 2 (A lower bound on the test power).

• Let $\operatorname{NFSIC}^2(X, Y) := \lambda_n := n \mathbf{u}^\top \Sigma^{-1} \mathbf{u}$.

With some conditions, for any k, l, and $\{(\mathbf{v}_i, \mathbf{w}_i)\}_{i=1}^J$, the test power satisfies $\mathbb{P}(\hat{\lambda}_n \geq T_{\alpha}) \geq L(\lambda_n)$ where

$$L(\lambda_n) = 1 - 62e^{-\xi_1\gamma_n^2(\lambda_n - T_{lpha})^2/n} - 2e^{-\lfloor 0.5n
floor (\lambda_n - T_{lpha})^2/[\xi_2 n^2]} \ - 2e^{-[(\lambda_n - T_{lpha})\gamma_n(n-1)/3 - \xi_3 n - c_3\gamma_n^2 n(n-1)]^2/[\xi_4 n^2(n-1)]},$$

where $\xi_1, \ldots, \xi_4, c_3 > 0$ are constants. For large n, $L(\lambda_n)$ is increasing in λ_n .

$$\blacksquare \ \text{Recall} \ \hat{\lambda}_n := n \hat{\mathbf{u}}^\top \left(\hat{\Sigma} + \gamma_n \mathbf{I} \right)^{-1} \hat{\mathbf{u}}.$$

Theorem 2 (A lower bound on the test power).

• Let
$$\operatorname{NFSIC}^2(X, Y) := \lambda_n := n \mathbf{u}^\top \Sigma^{-1} \mathbf{u}$$
.

With some conditions, for any k, l, and $\{(\mathbf{v}_i, \mathbf{w}_i)\}_{i=1}^J$, the test power satisfies $\mathbb{P}(\hat{\lambda}_n \geq T_{\alpha}) \geq L(\lambda_n)$ where

$$egin{aligned} L(\lambda_n) &= 1 - 62 e^{-\xi_1 \gamma_n^2 (\lambda_n - T_lpha)^2 / n} - 2 e^{-\lfloor 0.5n
floor (\lambda_n - T_lpha)^2 / \left[\xi_2 n^2
ight]} \ &- 2 e^{-\left[(\lambda_n - T_lpha) \gamma_n (n-1)/3 - \xi_3 n - c_3 \gamma_n^2 n (n-1)
ight]^2 / \left[\xi_4 n^2 (n-1)
ight]}, \end{aligned}$$

where $\xi_1, \ldots, \xi_4, c_3 > 0$ are constants. For large n, $L(\lambda_n)$ is increasing in λ_n .

$$\blacksquare \ \text{Recall} \ \hat{\lambda}_n := n \hat{\mathbf{u}}^\top \left(\hat{\Sigma} + \gamma_n \mathbf{I} \right)^{-1} \hat{\mathbf{u}}.$$

Theorem 2 (A lower bound on the test power).

• Let $\operatorname{NFSIC}^2(X, Y) := \lambda_n := n \mathbf{u}^\top \Sigma^{-1} \mathbf{u}$.

With some conditions, for any k, l, and $\{(\mathbf{v}_i, \mathbf{w}_i)\}_{i=1}^J$, the test power satisfies $\mathbb{P}(\hat{\lambda}_n \geq T_{\alpha}) \geq L(\lambda_n)$ where

$$L(\lambda_n) = 1 - 62e^{-\xi_1\gamma_n^2(\lambda_n - T_\alpha)^2/n} - 2e^{-\lfloor 0.5n \rfloor (\lambda_n - T_\alpha)^2/[\xi_2 n^2]} \\ - 2e^{-[(\lambda_n - T_\alpha)\gamma_n(n-1)/3 - \xi_3 n - c_3\gamma_n^2 n(n-1)]^2/[\xi_4 n^2(n-1)]},$$

where $\xi_1, \ldots, \xi_4, c_3 > 0$ are constants. For large n, $L(\lambda_n)$ is increasing in λ_n .

$$\blacksquare \ \text{Recall} \ \hat{\lambda}_n := n \hat{\mathbf{u}}^\top \left(\hat{\Sigma} + \gamma_n \mathbf{I} \right)^{-1} \hat{\mathbf{u}}.$$

Theorem 2 (A lower bound on the test power).

• Let $\operatorname{NFSIC}^2(X, Y) := \lambda_n := n \mathbf{u}^\top \Sigma^{-1} \mathbf{u}$.

With some conditions, for any k, l, and $\{(\mathbf{v}_i, \mathbf{w}_i)\}_{i=1}^J$, the test power satisfies $\mathbb{P}(\hat{\lambda}_n \geq T_{\alpha}) \geq L(\lambda_n)$ where

$$L(\lambda_n) = 1 - 62e^{-\xi_1\gamma_n^2(\lambda_n - T_\alpha)^2/n} - 2e^{-\lfloor 0.5n \rfloor (\lambda_n - T_\alpha)^2/[\xi_2 n^2]} \\ - 2e^{-[(\lambda_n - T_\alpha)\gamma_n(n-1)/3 - \xi_3 n - c_3\gamma_n^2 n(n-1)]^2/[\xi_4 n^2(n-1)]},$$

where $\xi_1, \ldots, \xi_4, c_3 > 0$ are constants. For large n, $L(\lambda_n)$ is increasing in λ_n .

Optimization Procedure

• NFSIC² $(X, Y) := \lambda_n := n \mathbf{u}^\top \Sigma^{-1} \mathbf{u}$ is unknown.

Split the data into 2 disjoint sets: training (tr) and test (te) sets.

Procedure:

- 1 Estimate λ_n with $\hat{\lambda}_n^{(\text{tr})}$ (i.e., computed on the training set).
- 2 Optimize all $\{(\mathbf{v}_i, \mathbf{w}_i)\}_{i=1}^J$ and Gaussian widths with gradient ascent.
- 3 Independence test with $\hat{\lambda}_n^{(ext{te})}.$ Reject H_0 if $\hat{\lambda}_n^{(ext{te})} \geq T_lpha.$

Splitting avoids overfitting.

Optimization Procedure

- NFSIC²(X, Y) := $\lambda_n := n \mathbf{u}^\top \Sigma^{-1} \mathbf{u}$ is unknown.
- Split the data into 2 disjoint sets: training (tr) and test (te) sets.

Procedure:

- 1 Estimate λ_n with $\hat{\lambda}_n^{(\text{tr})}$ (i.e., computed on the training set).
- 2 Optimize all $\{(\mathbf{v}_i, \mathbf{w}_i)\}_{i=1}^J$ and Gaussian widths with gradient ascent.
- 3 Independence test with $\hat{\lambda}_n^{(ext{te})}.$ Reject H_0 if $\hat{\lambda}_n^{(ext{te})} \geq T_{lpha}.$

Splitting avoids overfitting.

Optimization Procedure

- NFSIC² $(X, Y) := \lambda_n := n \mathbf{u}^\top \Sigma^{-1} \mathbf{u}$ is unknown.
- Split the data into 2 disjoint sets: training (tr) and test (te) sets.

Procedure:

- **1** Estimate λ_n with $\hat{\lambda}_n^{(tr)}$ (i.e., computed on the training set).
- **2** Optimize all $\{(\mathbf{v}_i, \mathbf{w}_i)\}_{i=1}^J$ and Gaussian widths with gradient ascent.
- 3 Independence test with $\hat{\lambda}_n^{(\text{te})}$. Reject H_0 if $\hat{\lambda}_n^{(\text{te})} \geq T_{\alpha}$.

• Splitting avoids overfitting.

Optimization Procedure

- NFSIC² $(X, Y) := \lambda_n := n \mathbf{u}^\top \Sigma^{-1} \mathbf{u}$ is unknown.
- Split the data into 2 disjoint sets: training (tr) and test (te) sets.

Procedure:

- **1** Estimate λ_n with $\hat{\lambda}_n^{(tr)}$ (i.e., computed on the training set).
- **2** Optimize all $\{(\mathbf{v}_i, \mathbf{w}_i)\}_{i=1}^J$ and Gaussian widths with gradient ascent.
- 3 Independence test with $\hat{\lambda}_n^{(\text{te})}$. Reject H_0 if $\hat{\lambda}_n^{(\text{te})} \geq T_{\alpha}$.

• Splitting avoids overfitting.

But, what does this do to $\mathbb{P}(\hat{\lambda}_n \geq T_{\alpha})$ when H_0 holds?

Optimization Procedure

- NFSIC² $(X, Y) := \lambda_n := n \mathbf{u}^\top \Sigma^{-1} \mathbf{u}$ is unknown.
- Split the data into 2 disjoint sets: training (tr) and test (te) sets.

Procedure:

- **1** Estimate λ_n with $\hat{\lambda}_n^{(tr)}$ (i.e., computed on the training set).
- **2** Optimize all $\{(\mathbf{v}_i, \mathbf{w}_i)\}_{i=1}^J$ and Gaussian widths with gradient ascent.
- 3 Independence test with $\hat{\lambda}_n^{(\mathrm{te})}$. Reject H_0 if $\hat{\lambda}_n^{(\mathrm{te})} \geq T_{\alpha}$.

• Splitting avoids overfitting.

But, what does this do to $\mathbb{P}(\hat{\lambda}_n \geq T_{\alpha})$ when H_0 holds?

- Still asymptotically at α .
- $\lambda_n = 0$ iff X, Y independent.
- So, under H_0 , we do $\arg \max 0 = \operatorname{arbitrary} \operatorname{locations}$.
- Asymptotic null distribution is $\chi^2(J)$ for any locations.

Demo: 2D Rotation

 $\hat{\mu}_{xy}(\mathbf{v},\mathbf{w})$

Demo: 2D Rotation

 $\hat{\mu}_{xy}(\mathbf{v},\mathbf{w})$

 $\hat{\mu}_x(\mathbf{v})\hat{\mu}_y(\mathbf{w})$

 $\hat{\mu}_{xy}(\mathbf{v},\mathbf{w}) - \hat{\mu}_x(\mathbf{v})\hat{\mu}_y(\mathbf{w})$

Demo: Sin Problem ($\omega = 1$)

 $\hat{\mu}_{xy}(\mathbf{v},\mathbf{w})$

Demo: Sin Problem ($\omega = 1$)

 $\hat{\mu}_{xy}(\mathbf{v},\mathbf{w})$

 $\hat{\mu}_x(\mathbf{v})\hat{\mu}_y(\mathbf{w})$

 $\hat{\mu}_{xy}(\mathbf{v},\mathbf{w}) - \hat{\mu}_{x}(\mathbf{v})\hat{\mu}_{y}(\mathbf{w})$

- n =full sample size
- All methods use Gaussian kernels for both X and Y.

Compare 6 methods

Method	Description	Tuning	Test size	Complex.
NFSIC-opt	Proposed	Gradient descent	n/2	$\mathcal{O}(n)$
NFSIC-med	No tuning.	Random locations	n	$\mathcal{O}(n)$
QHSIC	Full HSIC	Median heu.	n	$\mathcal{O}(n^2)$
NyHSIC	NyStrom HSIC	Median heu.	n	$\mathcal{O}(n)$
FHSIC	$HSIC + RFFs^*$	Median heu.	n	$\mathcal{O}(n)$
RDC	RFFs + CCA	Median heu.	n	$\mathcal{O}(n\log n)$

- Given a problem, report rejection rate of H_0 .
- 10 features for all (except QHSIC). J = 10 in NFSIC.

- n =full sample size
- All methods use Gaussian kernels for both X and Y.

Compare 6 methods

Method	Description	Tuning	Test size	Complex.
NFSIC-opt	Proposed	Gradient descent	n/2	$\mathcal{O}(n)$
NFSIC-med	No tuning.	Random locations	n	$\mathcal{O}(n)$
QHSIC	Full HSIC	Median heu.	n	$\mathcal{O}(n^2)$
NyHSIC	NyStrom HSIC	Median heu.	n	$\mathcal{O}(n)$
FHSIC	$HSIC + RFFs^*$	Median heu.	n	$\mathcal{O}(n)$
RDC	RFFs + CCA	Median heu.	n	$\mathcal{O}(n\log n)$

- Given a problem, report rejection rate of H_0 .
- 10 features for all (except QHSIC). J = 10 in NFSIC.

- n =full sample size
- All methods use Gaussian kernels for both X and Y.

Compare 6 methods

Method	Description	Tuning	Test size	Complex.
NFSIC-opt NFSIC-med	Proposed No tuning.	Gradient descent Random locations	n/2 n	$\mathcal{O}(n) \ \mathcal{O}(n)$
QHSIC	Full HSIC	Median heu.	n	$\mathcal{O}(n^2)$
NyHSIC	NyStrom HSIC	Median heu.	n	$\mathcal{O}(n)$
FHSIC	$HSIC + RFFs^*$	Median heu.	n	$\mathcal{O}(n)$
RDC	RFFs + CCA	Median heu.	n	$\mathcal{O}(n\log n)$

- Given a problem, report rejection rate of H_0 .
- 10 features for all (except QHSIC). J = 10 in NFSIC.

- n =full sample size
- All methods use Gaussian kernels for both X and Y.

Compare 6 methods

Method	Description	Tuning	Test size	Complex.
NFSIC-opt	Proposed	Gradient descent	n/2	$\mathcal{O}(n)$
NFSIC-med	No tuning.	Random locations	n	$\mathcal{O}(n)$
QHSIC	Full HSIC	Median heu.	n	$\mathcal{O}(n^2)$
NyHSIC	NyStrom HSIC	Median heu.	n	$\mathcal{O}(n)$
FHSIC	$HSIC + RFFs^*$	Median heu.	n	$\mathcal{O}(n)$
RDC	RFFs + CCA	Median heu.	n	$\mathcal{O}(n\log n)$

- Given a problem, report rejection rate of H_0 .
- 10 features for all (except QHSIC). J = 10 in NFSIC.

- n =full sample size
- All methods use Gaussian kernels for both X and Y.

Compare 6 methods

Method	Description	Tuning	Test size	Complex.
NFSIC-opt	Proposed	Gradient descent	n/2	$\mathcal{O}(n)$
NFSIC-med	No tuning.	Random locations	n	$\mathcal{O}(n)$
QHSIC	Full HSIC	Median heu.	n	$\mathcal{O}(n^2)$
NyHSIC	NyStrom HSIC	Median heu.	n	$\mathcal{O}(n)$
FHSIC	$HSIC + RFFs^*$	Median heu.	n	$\mathcal{O}(n)$
RDC	RFFs + CCA	Median heu.	n	$\mathcal{O}(n\log n)$

- Given a problem, report rejection rate of H_0 .
- 10 features for all (except QHSIC). J = 10 in NFSIC.

- n =full sample size
- All methods use Gaussian kernels for both X and Y.

Compare 6 methods

Method	Description	Tuning	Test size	Complex.
NFSIC-opt	Proposed	Gradient descent	n/2	$\mathcal{O}(n)$
NFSIC-med	No tuning.	Random locations	n	$\mathcal{O}(n)$
QHSIC	Full HSIC	Median heu.	n	$\mathcal{O}(n^2)$
NyHSIC	NyStrom HSIC	Median heu.	n	$\mathcal{O}(n)$
FHSIC	$HSIC + RFFs^*$	Median heu.	n	$\mathcal{O}(n)$
RDC	RFFs + CCA	Median heu.	n	$\mathcal{O}(n\log n)$

- Given a problem, report rejection rate of H_0 .
- 10 features for all (except QHSIC). J = 10 in NFSIC.

Toy Problem 1: Independent Gaussians

- $\blacksquare \ X \sim \mathcal{N}(\mathbf{0},\mathbf{I}_{d_x}) \ \text{and} \ \ Y \sim \mathcal{N}(\mathbf{0},\mathbf{I}_{dy}).$
- Independent X, Y. So, H_0 holds.
- Set $\alpha := 0.05, d_x = d_y = 250.$

Toy Problem 1: Independent Gaussians

- $X \sim \mathcal{N}(\mathbf{0}, \mathbf{I}_{d_x})$ and $Y \sim \mathcal{N}(\mathbf{0}, \mathbf{I}_{dy})$.
- Independent X, Y. So, H_0 holds.
- Set $\alpha := 0.05, d_x = d_y = 250.$

Correct type-I errors (false positive rate).

Toy Problem 1: Independent Gaussians

$$lacksquare$$
 $X \sim \mathcal{N}(\mathbf{0}, \mathbf{I}_{d_x})$ and $Y \sim \mathcal{N}(\mathbf{0}, \mathbf{I}_{dy})$

Independent X, Y. So, H_0 holds.

• Set $\alpha := 0.05$, $d_x = d_y = 250$.

Correct type-I errors (false positive rate).

- $p_{xy}(x, y) \propto 1 + \sin(\omega x) \sin(\omega y)$ where $x, y \in (-\pi, \pi)$.
- Local changes between p_{xy} and $p_x p_y$.
- Set n = 4000.

- $p_{xy}(x, y) \propto 1 + \sin(\omega x) \sin(\omega y)$ where $x, y \in (-\pi, \pi)$.
- Local changes between p_{xy} and $p_x p_y$.
- Set n = 4000.

- $\quad \blacksquare \ p_{xy}(x,y) \propto 1 + \sin(\omega x) \sin(\omega y) \text{ where } x,y \in (-\pi,\pi).$
- Local changes between p_{xy} and $p_x p_y$.
- Set n = 4000.

- $\quad \blacksquare \ p_{xy}(x,y) \propto 1 + \sin(\omega x) \sin(\omega y) \text{ where } x,y \in (-\pi,\pi).$
- Local changes between p_{xy} and $p_x p_y$.
- Set n = 4000.

- $\quad \blacksquare \ p_{xy}(x,y) \propto 1 + \sin(\omega x) \sin(\omega y) \text{ where } x,y \in (-\pi,\pi).$
- Local changes between p_{xy} and $p_x p_y$.
- Set n = 4000.

- $p_{xy}(x, y) \propto 1 + \sin(\omega x) \sin(\omega y)$ where $x, y \in (-\pi, \pi)$.
- Local changes between p_{xy} and $p_x p_y$.
- Set n = 4000.

- $\quad \blacksquare \ p_{xy}(x,y) \propto 1 + \sin(\omega x) \sin(\omega y) \text{ where } x,y \in (-\pi,\pi).$
- Local changes between p_{xy} and $p_x p_y$.
- Set n = 4000.

- $\quad \blacksquare \ p_{xy}(x,y) \propto 1 + \sin(\omega x) \sin(\omega y) \text{ where } x,y \in (-\pi,\pi).$
- Local changes between p_{xy} and $p_x p_y$.
- Set n = 4000.

Main Point: NFSIC can handle well the local changes in the joint space.

Toy Problem 3: Gaussian Sign

- $y = |Z| \prod_{i=1}^{d_x} \operatorname{sign}(x_i)$, where $\mathbf{x} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}_{d_y})$ and $Z \sim \mathcal{N}(\mathbf{0}, 1)$ (noise).
- Full interaction among x_1, \ldots, x_{d_x} .
- Need to consider all x_1, \ldots, x_d to detect the dependency.

Main Point: NFSIC can handle feature interaction.

Toy Problem 3: Gaussian Sign

- $y = |Z| \prod_{i=1}^{d_x} \operatorname{sign}(x_i)$, where $\mathbf{x} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}_{d_y})$ and $Z \sim \mathcal{N}(\mathbf{0}, 1)$ (noise).
- Full interaction among x_1, \ldots, x_{d_x} .
- Need to consider all x_1, \ldots, x_d to detect the dependency.

Main Point: NFSIC can handle feature interaction.

Recall the witness

$$\hat{u}(\mathbf{v},\mathbf{w})=\hat{\mu}_{xy}(\mathbf{v},\mathbf{w})-\hat{\mu}_{x}(\mathbf{v})\hat{\mu}_{y}(\mathbf{w}).$$

Good when difference between p_{xy} and $p_x p_y$ is spatially diffuse.

• \hat{u} is almost flat.

FSIC [proposed] = $\frac{1}{J} \sum_{i=1}^{J} \hat{u}^2(\mathbf{v}_i, \mathbf{w}_i)$ ______(\mathbf{v}, \mathbf{w}_i)

Good when difference between p_{xy} and $p_x p_y$ is local.

 û is mostly zero, has many peaks (feature interaction).

Real Problem 1: Million Song Data

Song (X) vs. year of release (Y).

 Western commercial tracks from 1922 to 2011 [Bertin-Mahieux et al., 2011].

- $X \in \mathbb{R}^{90}$ contains audio features.
- $Y \in \mathbb{R}$ is the year of release.

Real Problem 1: Million Song Data

Song (X) vs. year of release (Y).

• Western commercial tracks from 1922 to 2011

[Bertin-Mahieux et al., 2011].

- $X \in \mathbb{R}^{90}$ contains audio features.
- $Y \in \mathbb{R}$ is the year of release.

Real Problem 2: Videos and Captions

Youtube video (X) vs. caption (Y).

- VideoStory46K [Habibian et al., 2014]
- X ∈ ℝ²⁰⁰⁰: Fisher vector encoding of motion boundary histograms descriptors [Wang and Schmid, 2013].
- $Y \in \mathbb{R}^{1878}$: bag of words. TF.

Real Problem 2: Videos and Captions

Youtube video (X) vs. caption (Y).

- VideoStory46K [Habibian et al., 2014]
- X ∈ ℝ²⁰⁰⁰: Fisher vector encoding of motion boundary histograms descriptors [Wang and Schmid, 2013].
- $Y \in \mathbb{R}^{1878}$: bag of words. TF.

Penalize Redundant Test Locations

- Consider the Sin problem. Use J = 2 locations.
- Optimization objective: $\hat{\lambda}_n$.
- Write $\mathbf{t} = (\mathbf{v}, \mathbf{w})$. Fix \mathbf{t}_1 at \bigstar . Plot $\mathbf{t}_2 \rightarrow \hat{\lambda}_n(\mathbf{t}_1, \mathbf{t}_2)$.

• The optimized t_1, t_2 will not be in the same neighbourhood.

Test Power vs. J

Test power does not always increase with J (number of test locations).
n = 800.

- Accurate estimation of $\hat{\Sigma} \in \mathbb{R}^{J \times J}$ in $\hat{\lambda}_n = n \hat{\mathbf{u}}^\top \left(\hat{\Sigma} + \gamma_n \mathbf{I} \right)^{-1} \hat{\mathbf{u}}$ becomes more difficult.
- Large *J* defeats the purpose of a linear-time test.

Conclusions

- Proposed The Finite Set Independence Criterion (FSIC).
- Independece test based on FSIC is
 - 1 non-parametric,
 - 2 linear-time,
 - 3 adaptive (parameteris automatically tuned).

Future works

- Any way to interpret the learned $\{(\mathbf{v}_i, \mathbf{w}_i)\}_{i=1}^J$?
- Relative efficiency of FSIC vs. block HSIC, RFF-HSIC.

https://github.com/wittawatj/fsic-test

Conclusions

- Proposed The Finite Set Independence Criterion (FSIC).
- Independece test based on FSIC is
 - 1 non-parametric,
 - 2 linear-time,
 - 3 adaptive (parameteris automatically tuned).

Future works

- Any way to interpret the learned $\{(\mathbf{v}_i, \mathbf{w}_i)\}_{i=1}^J$?
- Relative efficiency of FSIC vs. block HSIC, RFF-HSIC.

https://github.com/wittawatj/fsic-test

Thank you

References I

Bertin-Mahieux, T., Ellis, D. P., Whitman, B., and Lamere, P. (2011). The million song dataset.

In International Conference on Music Information Retrieval (ISMIR).

 Gretton, A., Borgwardt, K. M., Rasch, M. J., Schölkopf, B., and Smola, A. (2012).
 A Kernel Two-Sample Test.

Journal of Machine Learning Research, 13:723-773.

Gretton, A., Bousquet, O., Smola, A., and Schölkopf, B. (2005). Measuring Statistical Dependence with Hilbert-Schmidt Norms. In Algorithmic Learning Theory (ALT), pages 63-77.

References II

Habibian, A., Mensink, T., and Snoek, C. G. (2014). Videostory: A new multimedia embedding for few-example recognition and translation of events.

In ACM International Conference on Multimedia, pages 17–26.

- Wang, H. and Schmid, C. (2013).
 Action recognition with improved trajectories.
 In *IEEE International Conference on Computer Vision (ICCV)*, pages 3551-3558.
- Zhang, Q., Filippi, S., Gretton, A., and Sejdinovic, D. (2016). Large-Scale Kernel Methods for Independence Testing.