An Adaptive Test of Independence with Analytic Kernel Embeddings

Wittawat Jitkrittum
Gatsby Unit, University College London
wittawat@gatsby.ucl.ac.uk

Probabilistic Graphical Model Workshop 2017 Institute of Statistical Mathematics, Tokyo

24 Feb 2017

Reference

Coauthors:

Arthur Gretton
Gatsby Unit, UCL

Zoltán Szabó
École Polytechnique

Preprint:

An Adaptive Test of Independence with Analytic Kernel Embeddings Wittawat Jitkrittum, Zoltán Szabó, Arthur Gretton https://arxiv.org/abs/1610.04782

■ Python code: https://github.com/wittawatj/fsic-test

What Is Independence Testing?

■ Let $X \in \mathbb{R}^{d_{x}}, Y \in \mathbb{R}^{d_{y}}$ be random vectors following $P_{x y}$. - Given a joint sample $\left\{\left(\mathrm{x}_{i}, \mathrm{y}_{i}\right)\right\}_{i=1}^{n}$

- $P_{x y}=P_{x} P_{y}$ equivalent to $X \perp Y$.
$■$ Compute a test statistic $\hat{\lambda}_{n}$. Reject H_{0} if $\hat{\lambda}_{n} \geq T_{\alpha}$ (threshold). - $T_{\alpha}=(1-\alpha)$-quantile of the null distribution.

What Is Independence Testing?

■ Let $X \in \mathbb{R}^{d_{x}}, Y \in \mathbb{R}^{d_{y}}$ be random vectors following $P_{x y}$.
■ Given a joint sample $\left\{\left(\mathbf{x}_{i}, \mathbf{y}_{i}\right)\right\}_{i=1}^{n} \sim P_{x y}$ (unknown), test

$$
\begin{aligned}
H_{0}: P_{x y} & =P_{x} P_{y}, \\
\text { vs. } H_{1}: P_{x y} & \neq P_{x} P_{y} .
\end{aligned}
$$

- $P_{x y}=P_{x} P_{y}$ equivalent to $X \perp Y$.
- Compute a test statistic $\hat{\lambda}_{n}$. Reject H_{0} if $\hat{\lambda}_{n} \geq T_{\alpha}$ (threshold). - $T_{\alpha}=(1-\alpha)$-quantile of the null distribution.

What Is Independence Testing?

■ Let $X \in \mathbb{R}^{d_{x}}, Y \in \mathbb{R}^{d_{y}}$ be random vectors following $P_{x y}$.
■ Given a joint sample $\left\{\left(\mathbf{x}_{i}, \mathbf{y}_{i}\right)\right\}_{i=1}^{n} \sim P_{x y}$ (unknown), test

$$
\begin{aligned}
H_{0}: P_{x y} & =P_{x} P_{y}, \\
\text { vs. } H_{1}: P_{x y} & \neq P_{x} P_{y} .
\end{aligned}
$$

- $P_{x y}=P_{x} P_{y}$ equivalent to $X \perp Y$.
- Compute a test statistic $\hat{\lambda}_{n}$. Reject H_{0} if $\hat{\lambda}_{n} \geq T_{\alpha}$ (threshold).
- $T_{\alpha}=(1-\alpha)$-quantile of the null distribution.

What Is Independence Testing?

■ Let $X \in \mathbb{R}^{d_{x}}, Y \in \mathbb{R}^{d_{y}}$ be random vectors following $P_{x y}$.
■ Given a joint sample $\left\{\left(\mathbf{x}_{i}, \mathbf{y}_{i}\right)\right\}_{i=1}^{n} \sim P_{x y}$ (unknown), test

$$
\begin{aligned}
H_{0}: P_{x y} & =P_{x} P_{y} \\
\text { vs. } H_{1}: P_{x y} & \neq P_{x} P_{y} .
\end{aligned}
$$

- $P_{x y}=P_{x} P_{y}$ equivalent to $X \perp Y$.
- Compute a test statistic $\hat{\lambda}_{n}$. Reject H_{0} if $\hat{\lambda}_{n} \geq T_{\alpha}$ (threshold).
- $T_{\alpha}=(1-\alpha)$-quantile of the null distribution.

Goals

Want a test which is ...
1 Non-parametric i.e., no parametric assumption on $P_{x y}$.
2 Linear-time i.e., computational complexity is $\mathcal{O}(n)$. Fast.
3 Adaptive i.e., has a well-defined criterion for parameter tuning.
Non-parametric
$O(n)$
Adaptive
Pearson correlation
HSIC [Gretton et al., 2005]
HSIC with RFFs* [Zhang et al., 2016]
FSIC (proposed)
*: RFFs $=$ Random Fourier Features

- Focus on cases where n (sample size) is large.

Goals

Want a test which is ...

1 Non-parametric i.e., no parametric assumption on $P_{x y}$.
2 Linear-time i.e., computational complexity is $\mathcal{O}(n)$. Fast.
3 Adaptive i.e., has a well-defined criterion for parameter tuning.
Non-parametric
$O(n)$
Adaptive
Pearson correlation
HSIC [Gretton et al., 2005]
HSIC with RFFs* [Zhang et al., 2016]
FSIC (proposed)

* : RFFs = Randon Fourier Features
- Focus on cases where n (sample size) is large.

Goals

Want a test which is ...

1 Non-parametric i.e., no parametric assumption on $P_{x y}$.
2 Linear-time i.e., computational complexity is $\mathcal{O}(n)$. Fast.
3 Adaptive i.e., has a well-defined criterion for parameter tuning.

Goals

Want a test which is ...
1 Non-parametric i.e., no parametric assumption on $P_{x y}$.
2 Linear-time i.e., computational complexity is $\mathcal{O}(n)$. Fast.
3 Adaptive i.e., has a well-defined criterion for parameter tuning.

	Non-parametric	$\mathcal{O}(n)$	Adaptive
Pearson correlation	x	\checkmark	\checkmark
HSIC [Gretton et al., 2005]	\checkmark	x	x
HSIC with RFFs* [Zhang et al., 2016]	\checkmark	\checkmark	x
FSIC (proposed)	\checkmark	\checkmark	\checkmark

*: RFFs = Random Fourier Features

- Focus on cases where n (sample size) is large.

Goals

Want a test which is ...
1 Non-parametric i.e., no parametric assumption on $P_{x y}$.
2 Linear-time i.e., computational complexity is $\mathcal{O}(n)$. Fast.
3 Adaptive i.e., has a well-defined criterion for parameter tuning.

	Non-parametric	$\mathcal{O}(n)$	Adaptive
Pearson correlation	x	\checkmark	\checkmark
HSIC [Gretton et al., 2005]	\checkmark	x	x
HSIC with RFFs* [Zhang et al., 2016]	\checkmark	\checkmark	x
FSIC (proposed)	\checkmark	\checkmark	\checkmark

*: RFFs = Random Fourier Features

- Focus on cases where n (sample size) is large.

Witness Function [Gretton et al., 2012]

- A function showing the differences of two distributions P and Q.
- Gaussian kernel: $k(\mathrm{x}, \mathrm{v})=\exp \left(-\frac{\|\mathrm{x}-\mathrm{v}\|^{2}}{2 \sigma^{2}}\right)$
- Empirical mean embedding of $P: \hat{\mu}_{P}(\mathbf{v})=\frac{1}{n} \sum_{i=1}^{n} k\left(\mathbf{x}_{i}, \mathbf{v}\right)$
- Maximum Mean Discrepancy (MMD): \| $\hat{u} \|_{\text {Rkhs }}$.
$\cdot \operatorname{MMD}(P, Q)=0$ if and only if $P=Q$.

Witness Function [Gretton et al., 2012]

- A function showing the differences of two distributions P and Q.
- Gaussian kernel: $k(\mathrm{x}, \mathrm{v})=\exp \left(-\frac{\mid \mathrm{x}-\mathrm{v}}{2 \sigma^{2}}\right)$

■ Empirical mean embedding of $P: \hat{\mu}_{P}(\mathbf{v})=\frac{1}{n} \sum_{i=1}^{n} k\left(\mathbf{x}_{i}, \mathrm{v}\right)$
■ Maximum Mean Discrepancy (MMD): \| $\hat{u} \|_{\text {RKHS }}$.
$\cdot \operatorname{MMD}(P, Q)=0$ if and only if $P=Q$.

Witness Function [Gretton et al., 2012]

- A function showing the differences of two distributions P and Q.
- Gaussian kernel: $k(\mathbf{x}, \mathbf{v})=\exp \left(-\frac{\|\mathbf{x}-\mathbf{v}\|^{2}}{2 \sigma^{2}}\right)$
- Empirical mean embedding of $P: \hat{\mu}_{P}(\mathbf{V})=\frac{1}{n} \sum_{i=1}^{n} k\left(\mathbf{x}_{i}, \mathbf{V}\right)$
- Maximum Mean Discrepancy (MMD): \| $\hat{u} \|_{\text {RKHS }}$.
$\operatorname{MMD}(P, Q)=0$ if and only if $P=Q$.

Witness Function [Gretton et al., 2012]

- A function showing the differences of two distributions P and Q.
- Gaussian kernel: $k(\mathbf{x}, \mathbf{v})=\exp \left(-\frac{\|\mathrm{x}-\mathrm{v}\|^{2}}{2 \sigma^{2}}\right)$

■ Empirical mean embedding of $P: \hat{\mu}_{P}(\mathbf{v})=\frac{1}{n} \sum_{i=1}^{n} k\left(\mathbf{x}_{i}, \mathbf{v}\right)$
$\operatorname{MMD}(P, Q)=0$ if and only if $P=Q$.

Witness Function [Gretton et al., 2012]

- A function showing the differences of two distributions P and Q.
- Gaussian kernel: $k(\mathbf{x}, \mathbf{v})=\exp \left(-\frac{\|\mathbf{x}-\mathrm{v}\|^{2}}{2 \sigma^{2}}\right)$

■ Empirical mean embedding of $P: \hat{\mu}_{P}(\mathbf{v})=\frac{1}{n} \sum_{i=1}^{n} k\left(\mathbf{x}_{i}, \mathbf{v}\right)$

Witness Function [Gretton et al., 2012]

- A function showing the differences of two distributions P and Q.
- Gaussian kernel: $k(\mathbf{x}, \mathbf{v})=\exp \left(-\frac{\|\mathbf{x}-\mathbf{v}\|^{2}}{2 \sigma^{2}}\right)$

■ Empirical mean embedding of $P: \hat{\mu}_{P}(\mathbf{v})=\frac{1}{n} \sum_{i=1}^{n} k\left(\mathbf{x}_{i}, \mathbf{v}\right)$

- Maximum Mean Discrepancy (MMD): \| $\hat{u} \|_{\text {RKHS }}$.
- $\operatorname{MMD}(P, Q)=0$ if and only if $P=Q$.

Independence Test with HSIC [Gretton et al., 2005]

■ Hilbert-Schmidt Independence Criterion.

$$
\operatorname{HSIC}(X, Y)=\operatorname{MMD}\left(P_{x y}, P_{x} P_{y}\right)=\|u\|_{\text {RKHS }}
$$

(need two kernels: k for X, and l for Y).

- Empirical witness:

$$
\hat{u}(\mathbf{v}, \mathbf{w})=\hat{\mu}_{x y}(\mathbf{v}, \mathbf{w})-\hat{\mu}_{x}(\mathbf{v}) \hat{\mu}_{y}(\mathbf{w})
$$

where $\hat{\mu}_{x y}(\mathrm{v}, \mathrm{w})=\frac{1}{n} \sum_{i=1}^{n} k\left(\mathbf{x}_{i}, \mathrm{v}\right) l\left(\mathbf{y}_{i}, \mathrm{w}\right)$.

- $\operatorname{HSIC}(X, Y)=0$ if and only if X and Y are independent.
- Test statistic $=\|\hat{u}\|_{\text {RKHS }}$ ("flatness" of \hat{u}). Complexity:

Independence Test with HSIC [Gretton et al., 2005]

■ Hilbert-Schmidt Independence Criterion.

$$
\operatorname{HSIC}(X, Y)=\operatorname{MMD}\left(P_{x y}, P_{x} P_{y}\right)=\|u\|_{\text {RKHS }}
$$

(need two kernels: k for X, and l for Y).
■ Empirical witness:

$$
\hat{u}(\mathbf{v}, \mathbf{w})=\hat{\mu}_{x y}(\mathbf{v}, \mathbf{w})-\hat{\mu}_{x}(\mathbf{v}) \hat{\mu}_{y}(\mathbf{w})
$$

where $\hat{\mu}_{x y}(\mathrm{v}, \mathrm{w})=\frac{1}{n} \sum_{i=1}^{n} k\left(\mathbf{x}_{i}, \mathbf{v}\right) l\left(\mathbf{y}_{i}, \mathbf{w}\right)$.

Independence Test with HSIC [Gretton et al., 2005]

■ Hilbert-Schmidt Independence Criterion.

$$
\operatorname{HSIC}(X, Y)=\operatorname{MMD}\left(P_{x y}, P_{x} P_{y}\right)=\|u\|_{\text {RKHS }}
$$

(need two kernels: k for X, and l for Y).
■ Empirical witness:

$$
\hat{u}(\mathbf{v}, \mathbf{w})=\hat{\mu}_{x y}(\mathbf{v}, \mathbf{w})-\hat{\mu}_{x}(\mathbf{v}) \hat{\mu}_{y}(\mathbf{w})
$$

where $\hat{\mu}_{x y}(\mathbf{v}, \mathrm{w})=\frac{1}{n} \sum_{i=1}^{n} k\left(\mathbf{x}_{i}, \mathbf{v}\right) l\left(\mathbf{y}_{i}, \mathrm{w}\right)$.

$\hat{\mu}_{x y}(\mathbf{v}, \mathbf{w})$

$\hat{\mu}_{x}(\mathbf{v}) \hat{\mu}_{y}(\mathbf{w})$

- Test statistic $=\|\hat{u}\|_{\text {RKHS }}$ ("flatness" of \hat{u}). Complexity:

Independence Test with HSIC [Gretton et al., 2005]

■ Hilbert-Schmidt Independence Criterion.

$$
\operatorname{HSIC}(X, Y)=\operatorname{MMD}\left(P_{x y}, P_{x} P_{y}\right)=\|u\|_{\text {RKHS }}
$$

(need two kernels: k for X, and l for Y).
■ Empirical witness:

$$
\hat{u}(\mathbf{v}, \mathbf{w})=\hat{\mu}_{x y}(\mathbf{v}, \mathbf{w})-\hat{\mu}_{x}(\mathbf{v}) \hat{\mu}_{y}(\mathbf{w})
$$

where $\hat{\mu}_{x y}(\mathbf{v}, \mathrm{w})=\frac{1}{n} \sum_{i=1}^{n} k\left(\mathbf{x}_{i}, \mathbf{v}\right) l\left(\mathbf{y}_{i}, \mathrm{w}\right)$.

$\hat{\mu}_{x y}(\mathbf{v}, \mathbf{w})$

$\hat{\mu}_{x}(\mathbf{v}) \hat{\mu}_{y}(\mathbf{w})$

Witness $\hat{u}(\mathbf{v}, \mathbf{w})$

■ Test statistic $=\|\hat{u}\|_{\text {RKHS }}$ ("flatness" of \hat{u}). Complexity:

Independence Test with HSIC [Gretton et al., 2005]

■ Hilbert-Schmidt Independence Criterion.

$$
\operatorname{HSIC}(X, Y)=\operatorname{MMD}\left(P_{x y}, P_{x} P_{y}\right)=\|u\|_{\text {RKHS }}
$$

(need two kernels: k for X, and l for Y).
■ Empirical witness:

$$
\hat{u}(\mathbf{v}, \mathbf{w})=\hat{\mu}_{x y}(\mathbf{v}, \mathbf{w})-\hat{\mu}_{x}(\mathbf{v}) \hat{\mu}_{y}(\mathbf{w})
$$

where $\hat{\mu}_{x y}(\mathbf{v}, \mathbf{w})=\frac{1}{n} \sum_{i=1}^{n} k\left(\mathbf{x}_{i}, \mathbf{v}\right) l\left(\mathbf{y}_{i}, \mathbf{w}\right)$.

$$
\hat{\mu}_{x y}(\mathbf{v}, \mathbf{w})
$$

$\hat{\mu}_{x}(\mathrm{v}) \hat{\mu}_{y}(\mathrm{w})$

Witness $\hat{u}(\mathbf{v}, \mathbf{w})$
$\square \operatorname{HSIC}(X, Y)=0$ if and only if X and Y are independent.

Independence Test with HSIC [Gretton et al., 2005]

■ Hilbert-Schmidt Independence Criterion.

$$
\operatorname{HSIC}(X, Y)=\operatorname{MMD}\left(P_{x y}, P_{x} P_{y}\right)=\|u\|_{\mathrm{RKHS}}
$$

(need two kernels: k for X, and l for Y).
■ Empirical witness:

$$
\hat{u}(\mathbf{v}, \mathbf{w})=\hat{\mu}_{x y}(\mathbf{v}, \mathbf{w})-\hat{\mu}_{x}(\mathbf{v}) \hat{\mu}_{y}(\mathbf{w})
$$

where $\hat{\mu}_{x y}(\mathrm{v}, \mathrm{w})=\frac{1}{n} \sum_{i=1}^{n} k\left(\mathbf{x}_{i}, \mathbf{v}\right) l\left(\mathbf{y}_{i}, \mathrm{w}\right)$.

$$
\hat{\mu}_{x y}(\mathbf{v}, \mathbf{w})
$$

$\hat{\mu}_{x}(\mathrm{v}) \hat{\mu}_{y}(\mathrm{w})$

Witness $\hat{u}(\mathbf{v}, \mathrm{w})$

■ $\operatorname{HSIC}(X, Y)=0$ if and only if X and Y are independent.
■ Test statistic $=\|\hat{u}\|_{\text {RKHS }}$ ("flatness" of \hat{u}). Complexity: $\mathcal{O}\left(n^{2}\right)$.

Independence Test with HSIC [Gretton et al., 2005]

■ Hilbert-Schmidt Independence Criterion.

$$
\operatorname{HSIC}(X, Y)=\operatorname{MMD}\left(P_{x y}, P_{x} P_{y}\right)=\|u\|_{\mathrm{RKHS}}
$$

(need two kernels: k for X, and l for Y).
■ Empirical witness:

$$
\hat{u}(\mathbf{v}, \mathbf{w})=\hat{\mu}_{x y}(\mathbf{v}, \mathbf{w})-\hat{\mu}_{x}(\mathbf{v}) \hat{\mu}_{y}(\mathbf{w})
$$

where $\hat{\mu}_{x y}(\mathrm{v}, \mathrm{w})=\frac{1}{n} \sum_{i=1}^{n} k\left(\mathbf{x}_{i}, \mathrm{v}\right) l\left(\mathbf{y}_{i}, \mathrm{w}\right)$.

$$
\hat{\mu}_{x y}(\mathbf{v}, \mathbf{w})
$$

$\hat{\mu}_{x}(\mathbf{v}) \hat{\mu}_{y}(\mathbf{w})$

Witness $\hat{u}(\mathbf{v}, \mathbf{w})$

■ $\operatorname{HSIC}(X, Y)=0$ if and only if X and Y are independent.

- Test statistic $=\|\hat{u}\|_{\text {RKHS }}$ ("flatness" of \hat{u}). Complexity: $\mathcal{O}\left(n^{2}\right)$.

Key: Can we measure the flatness by other way that costs only $\mathcal{O}(n)$?

Proposal: The Finite Set Independence Criterion (FSIC)

Idea: Evaluate $\hat{u}^{2}(\mathrm{v}, \mathrm{w})$ at only finitely many test locations.

- A set of random J locations: $\left\{\left(\mathrm{v}_{1}, \mathrm{w}_{1}\right), \ldots,\left(\mathrm{v}_{J}, \mathrm{w}_{J}\right)\right\}$

■ Complexity: $\mathcal{O}\left(\left(d_{x}+d_{y}\right) J n\right)$. Linear time.
■ But, what about an unlucky set of locations??

- Can $\operatorname{FSIC}^{2}(X, Y)=0$ even if X and Y are dependent??

Proposal: The Finite Set Independence Criterion (FSIC)

Idea: Evaluate $\hat{u}^{2}(\mathrm{v}, \mathrm{w})$ at only finitely many test locations.

- A set of random J locations: $\left\{\left(\mathrm{v}_{1}, \mathrm{w}_{1}\right), \ldots,\left(\mathrm{v}_{J}, \mathrm{w}_{J}\right)\right\}$
- $\widehat{\operatorname{FSIC}^{2}}(X, Y)=\frac{1}{J} \sum_{i=1}^{J} \hat{u}^{2}\left(\mathbf{v}_{i}, \mathbf{w}_{i}\right)$

- Complexity: $\mathcal{O}\left(\left(d_{x}+d_{y}\right) \mathrm{Jn}\right)$. Linear time.

■ But, what about an unlucky set of locations??
Can $\operatorname{FSIC}^{2}(X, Y)=0$ even if X and Y are dependent??

Proposal: The Finite Set Independence Criterion (FSIC)

Idea: Evaluate $\hat{u}^{2}(\mathrm{v}, \mathrm{w})$ at only finitely many test locations.

- A set of random J locations: $\left\{\left(\mathrm{v}_{1}, \mathrm{w}_{1}\right), \ldots,\left(\mathrm{v}_{J}, \mathrm{w}_{J}\right)\right\}$
- $\widehat{\operatorname{FSIC}^{2}}(X, Y)=\frac{1}{J} \sum_{i=1}^{J} \hat{u}^{2}\left(\mathbf{v}_{i}, \mathbf{w}_{i}\right)$

- Complexity: $\mathcal{O}\left(\left(d_{x}+d_{y}\right) J n\right)$. Linear time.
- But, what about an unlucky set of locations?? Can $\operatorname{FSIC}^{2}(X, Y)=0$ even if X and Y are dependent??

Proposal: The Finite Set Independence Criterion (FSIC)

Idea: Evaluate $\hat{u}^{2}(\mathrm{v}, \mathrm{w})$ at only finitely many test locations.

- A set of random J locations: $\left\{\left(\mathrm{v}_{1}, \mathrm{w}_{1}\right), \ldots,\left(\mathrm{v}_{J}, \mathrm{w}_{J}\right)\right\}$
- $\widehat{\operatorname{FSIC}^{2}}(X, Y)=\frac{1}{J} \sum_{i=1}^{J} \hat{u}^{2}\left(\mathbf{v}_{i}, \mathbf{w}_{i}\right)$

- Complexity: $\mathcal{O}\left(\left(d_{x}+d_{y}\right) J n\right)$. Linear time.

■ But, what about an unlucky set of locations??

- Can $\operatorname{FSIC}^{2}(X, Y)=0$ even if X and Y are dependent??

Proposal: The Finite Set Independence Criterion (FSIC)

Idea: Evaluate $\hat{u}^{2}(\mathrm{v}, \mathrm{w})$ at only finitely many test locations.

- A set of random J locations: $\left\{\left(\mathrm{v}_{1}, \mathrm{w}_{1}\right), \ldots,\left(\mathrm{v}_{J}, \mathrm{w}_{J}\right)\right\}$
- $\widehat{\operatorname{FSIC}^{2}}(X, Y)=\frac{1}{J} \sum_{i=1}^{J} \hat{u}^{2}\left(\mathbf{v}_{i}, \mathbf{w}_{i}\right)$

- Complexity: $\mathcal{O}\left(\left(d_{x}+d_{y}\right) J n\right)$. Linear time.

■ But, what about an unlucky set of locations??

- Can $\operatorname{FSIC}^{2}(X, Y)=0$ even if X and Y are dependent??

Proposal: The Finite Set Independence Criterion (FSIC)

Idea: Evaluate $\hat{u}^{2}(\mathrm{v}, \mathrm{w})$ at only finitely many test locations.

- A set of random J locations: $\left\{\left(\mathrm{v}_{1}, \mathrm{w}_{1}\right), \ldots,\left(\mathrm{v}_{J}, \mathrm{w}_{J}\right)\right\}$
- $\widehat{\operatorname{FSIC}^{2}}(X, Y)=\frac{1}{J} \sum_{i=1}^{J} \hat{u}^{2}\left(\mathbf{v}_{i}, \mathbf{w}_{i}\right)$

- Complexity: $\mathcal{O}\left(\left(d_{x}+d_{y}\right) J n\right)$. Linear time.

■ But, what about an unlucky set of locations??

- Can $\operatorname{FSIC}^{2}(X, Y)=0$ even if X and Y are dependent??

■ No. Population $\operatorname{FSIC}(X, Y)=0$ iff $X \perp Y$, almost surely.

Requirements on the Kernels

Definition 1 (Analytic kernels).

$k: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$ is said to be analytic if for all $\mathrm{x} \in \mathcal{X}, \mathbf{v} \rightarrow k(\mathbf{x}, \mathbf{v})$ is a real analytic function on \mathcal{X}.

- Analytic: Taylor series about x_{0} converges for all $\mathrm{x}_{0} \in \mathcal{X}$.

■ $\Longrightarrow k$ is infinitely differentiable.

Definition 2 (Characteristic kernels).

- Let P, Q be two distributions, and g be a kernel.

■ Let $\mu_{P}(\mathbf{v}):=\mathbb{E}_{\mathbf{q} \sim P}[g(\mathbf{z}, \mathbf{v})]$ and $\mu_{\cap}(\mathbf{v}):=\mathbb{E}_{\mathbf{z} \sim \cap}\lceil g(\mathbf{z}, \mathrm{v})]$
g is said to be characteristic if $P \neq Q$ implies $\mu_{P} \neq \mu_{Q}$.

Requirements on the Kernels

Definition 1 (Analytic kernels).
$k: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$ is said to be analytic if for all $\mathrm{x} \in \mathcal{X}, \mathbf{v} \rightarrow k(\mathbf{x}, \mathbf{v})$ is a real analytic function on \mathcal{X}.

- Analytic: Taylor series about x_{0} converges for all $\mathrm{x}_{0} \in \mathcal{X}$.
- $\Longrightarrow k$ is infinitely differentiable.

Definition 2 (Characteristic kernels).

- Let P, Q be two distributions, and g be a kernel.

■ Let $\mu_{P}(\mathbf{v}):=\mathbb{E}_{\mathbf{z} \sim P}[g(\mathbf{z}, \mathbf{v})]$ and $\mu_{Q}(\mathbf{v}):=\mathbb{E}_{\mathbf{z} \sim Q}[g(\mathbf{z}, \mathbf{v})]$.
g is said to be characteristic if $P \neq Q$ implies $\mu_{P} \neq \mu_{Q}$.

FSIC Is a Dependence Measure

Proposition 1.

Assume
1 The product kernel $g\left((\mathrm{x}, \mathrm{y}),\left(\mathrm{x}^{\prime}, \mathrm{y}^{\prime}\right)\right):=k\left(\mathrm{x}, \mathrm{x}^{\prime}\right) l\left(\mathrm{y}, \mathrm{y}^{\prime}\right)$ is characteristic and analytic (i.e., k, l are Gaussian kernels).
2 Test locations $\left\{\left(\mathbf{v}_{i}, \mathbf{w}_{i}\right)\right\}_{i=1}^{J} \sim \eta$ where η has a density.
Then, η-almost surely, $\operatorname{FSIC}(X, Y)=0$ iff X and Y are independent.

FSIC Is a Dependence Measure

Proposition 1.

Assume

1 The product kernel $g\left((\mathrm{x}, \mathrm{y}),\left(\mathrm{x}^{\prime}, \mathrm{y}^{\prime}\right)\right):=k\left(\mathrm{x}, \mathrm{x}^{\prime}\right) l\left(\mathrm{y}, \mathrm{y}^{\prime}\right)$ is characteristic and analytic (i.e., k, l are Gaussian kernels).
2 Test locations $\left\{\left(\mathbf{v}_{i}, \mathbf{w}_{i}\right)\right\}_{i=1}^{J} \sim \eta$ where η has a density.
Then, η-almost surely, $\operatorname{FSIC}(X, Y)=0$ iff X and Y are independent.

Let's plot

[^0]
FSIC Is a Dependence Measure

Proposition 1.

Assume

1 The product kernel $g\left((\mathrm{x}, \mathrm{y}),\left(\mathrm{x}^{\prime}, \mathrm{y}^{\prime}\right)\right):=k\left(\mathrm{x}, \mathrm{x}^{\prime}\right) l\left(\mathrm{y}, \mathrm{y}^{\prime}\right)$ is characteristic and analytic (i.e., k, l are Gaussian kernels).
2 Test locations $\left\{\left(\mathbf{v}_{i}, \mathbf{w}_{i}\right)\right\}_{i=1}^{J} \sim \eta$ where η has a density.
Then, η-almost surely, $\operatorname{FSIC}(X, Y)=0$ iff X and Y are independent.

FSIC Is a Dependence Measure

Proposition 1.

Assume

1 The product kernel $g\left((\mathrm{x}, \mathrm{y}),\left(\mathrm{x}^{\prime}, \mathrm{y}^{\prime}\right)\right):=k\left(\mathrm{x}, \mathrm{x}^{\prime}\right) l\left(\mathrm{y}, \mathrm{y}^{\prime}\right)$ is characteristic and analytic (i.e., k, l are Gaussian kernels).
2 Test locations $\left\{\left(\mathbf{v}_{i}, \mathbf{w}_{i}\right)\right\}_{i=1}^{J} \sim \eta$ where η has a density.
Then, η-almost surely, $\operatorname{FSIC}(X, Y)=0$ iff X and Y are independent.

Under H_{0},

FSIC Is a Dependence Measure

Proposition 1.

Assume

1 The product kernel $g\left((\mathrm{x}, \mathrm{y}),\left(\mathrm{x}^{\prime}, \mathrm{y}^{\prime}\right)\right):=k\left(\mathrm{x}, \mathrm{x}^{\prime}\right) l\left(\mathrm{y}, \mathrm{y}^{\prime}\right)$ is characteristic and analytic (i.e., k, l are Gaussian kernels).
2 Test locations $\left\{\left(\mathbf{v}_{i}, \mathbf{w}_{i}\right)\right\}_{i=1}^{J} \sim \eta$ where η has a density.
Then, η-almost surely, $\operatorname{FSIC}(X, Y)=0$ iff X and Y are independent.

- Under H_{1}, u is not a zero function $\left(P \mapsto \mathbb{E}_{\mathbf{z} \sim P}[g(\mathbf{z}, \cdot)]\right.$ is injective $)$.
- u is analytic. So, $R_{u}=\{(\mathbf{v}, \mathbf{w}) \mid u(\mathbf{v}, \mathbf{w})=0\}$ has 0 Lebesgue measure.
$■$ So, $\left\{\left(\mathbf{v}_{i}, \mathbf{w}_{i}\right)\right\}_{i=1}^{J} \sim \eta$ will not be in R_{u} (with probability 1).

Alternative View of the Witness $u(\mathrm{v}, \mathrm{w})$

The witness $u(\mathbf{v}, \mathbf{w})$ can be rewritten as

$$
\begin{aligned}
& u(\mathbf{v}, \mathbf{w}):=\mu_{x y}(\mathbf{v}, \mathbf{w})-\mu_{x}(\mathbf{v}) \mu_{y}(\mathbf{w}) \\
& =\mathbb{E}_{\mathbf{x y}}[k(\mathbf{x}, \mathbf{v}) l(\mathbf{y}, \mathbf{w})]-\mathbb{E}_{\mathbf{x}}[k(\mathbf{x}, \mathbf{v})] \mathbb{E}_{\mathbf{y}}[l(\mathbf{y}, \mathbf{w})] \\
& =\operatorname{cov}_{\mathbf{x y}}[k(\mathbf{x}, \mathbf{v}), l(\mathbf{y}, \mathbf{w})] .
\end{aligned}
$$

1 Transforming $\mathrm{x} \mapsto k(\mathrm{x}, \mathrm{v})$ and $\mathrm{y} \mapsto l(\mathrm{y}, \mathrm{w})$ (from $\mathbb{R}^{d_{y}}$ to $\left.\mathbb{R}\right)$.
2 Then, take the covariance.
The kernel transformations turn the linear covariance into a dependence measure.

Alternative View of the Witness $u(\mathrm{v}, \mathrm{w})$

The witness $u(\mathbf{v}, \mathbf{w})$ can be rewritten as

$$
\begin{aligned}
& u(\mathbf{v}, \mathbf{w}):=\mu_{x y}(\mathbf{v}, \mathbf{w})-\mu_{x}(\mathbf{v}) \mu_{y}(\mathbf{w}) \\
& =\mathbb{E}_{\mathbf{x y}}[k(\mathbf{x}, \mathbf{v}) l(\mathbf{y}, \mathbf{w})]-\mathbb{E}_{\mathbf{x}}[k(\mathbf{x}, \mathbf{v})] \mathbb{E}_{\mathbf{y}}[l(\mathbf{y}, \mathbf{w})], \\
& =\operatorname{cov}_{\mathbf{x y}}[k(\mathbf{x}, \mathbf{v}), l(\mathbf{y}, \mathbf{w})] .
\end{aligned}
$$

1 Transforming $\mathbf{x} \mapsto k(\mathbf{x}, \mathbf{v})$ and $\mathbf{y} \mapsto l(\mathbf{y}, \mathbf{w})$ (from $\mathbb{R}^{d_{y}}$ to $\left.\mathbb{R}\right)$.
2 Then, take the covariance.
The kernel transformations turn the linear covariance into a dependence measure.

Alternative Form of $\hat{u}(\mathbf{v}, \mathrm{w})$

- Recall $\widehat{\text { FSIC }^{2}}=\frac{1}{J} \sum_{i=1}^{J} \hat{u}\left(\mathbf{v}_{i}, \mathbf{w}_{i}\right)^{2}$
- Let $\widehat{\mu_{x} \mu_{y}}(\mathbf{v}, \mathbf{w})$ be an unbiased estimator of $\mu_{x}(\mathbf{v}) \mu_{y}(\mathbf{w})$.
$\square \widehat{\mu_{x} \mu_{y}}(\mathbf{v}, \mathbf{w}):=\frac{1}{n(n-1)} \sum_{i=1}^{n} \sum_{j \neq i} k\left(\mathbf{x}_{i}, \mathbf{v}\right) l\left(\mathbf{y}_{j}, \mathbf{w}\right)$.
■ An unbiased estimator of $u(\mathrm{v}, \mathrm{w})$ is

$$
\begin{aligned}
\hat{u}(\mathbf{v}, \mathbf{w}) & =\hat{\mu}_{x y}(\mathbf{v}, \mathbf{w})-\widehat{\mu_{x} \mu_{y}}(\mathbf{v}, \mathbf{w}) \\
& =\frac{2}{n(n-1)} \sum_{i<j} h_{(\mathbf{v}, \mathbf{w})}\left(\left(\mathbf{x}_{i}, \mathbf{y}_{i}\right),\left(\mathbf{x}_{j}, \mathbf{y}_{j}\right)\right),
\end{aligned}
$$

where

$$
h_{(\mathrm{v}, \mathrm{w})}\left((\mathrm{x}, \mathrm{y}),\left(\mathrm{x}^{\prime}, \mathrm{y}^{\prime}\right)\right):=\frac{1}{2}\left(k(\mathrm{x}, \mathrm{v})-k\left(\mathrm{x}^{\prime}, \mathrm{v}\right)\right)\left(l(\mathrm{y}, \mathrm{w})-l\left(\mathrm{y}^{\prime}, \mathrm{w}\right)\right) .
$$

■ For a fixed $(\mathrm{v}, \mathbf{w}), \hat{u}(\mathbf{v}, \mathbf{w})$ is a one-sample $2^{n d}$-order U-statistic.

Alternative Form of $\hat{u}(\mathbf{v}, \mathrm{w})$

■ Recall $\widehat{\text { FSIC }^{2}}=\frac{1}{J} \sum_{i=1}^{J} \hat{u}\left(\mathbf{v}_{i}, \mathbf{w}_{i}\right)^{2}$

- Let $\widehat{\mu_{x} \mu_{y}}(\mathbf{v}, \mathbf{w})$ be an unbiased estimator of $\mu_{x}(\mathbf{v}) \mu_{y}(\mathbf{w})$.
- $\widehat{\mu_{x} \mu_{y}}(\mathbf{v}, \mathbf{w}):=\frac{1}{n(n-1)} \sum_{i=1}^{n} \sum_{j \neq i} k\left(\mathbf{x}_{i}, \mathbf{v}\right) l\left(\mathbf{y}_{j}, \mathbf{w}\right)$.

- An unbiased estimator of $u(\mathrm{v}, \mathrm{w})$ is

where

■ For a fixed $(\mathrm{v}, \mathrm{w}), \hat{u}(\mathrm{v}, \mathbf{w})$ is a one-sample $2^{n d}$-order U-statistic.

Alternative Form of $\hat{u}(\mathbf{v}, \mathbf{w})$

- Recall $\widehat{\text { FSIC }^{2}}=\frac{1}{J} \sum_{i=1}^{J} \hat{u}\left(\mathbf{v}_{i}, \mathbf{w}_{i}\right)^{2}$
- Let $\widehat{\mu_{x} \mu_{y}}(\mathbf{v}, \mathbf{w})$ be an unbiased estimator of $\mu_{x}(\mathbf{v}) \mu_{y}(\mathbf{w})$.
- $\widehat{\mu_{x} \mu_{y}}(\mathbf{v}, \mathbf{w}):=\frac{1}{n(n-1)} \sum_{i=1}^{n} \sum_{j \neq i} k\left(\mathbf{x}_{i}, \mathbf{v}\right) l\left(\mathbf{y}_{j}, \mathbf{w}\right)$.
- An unbiased estimator of $u(\mathbf{v}, \mathbf{w})$ is

$$
\begin{aligned}
\hat{u}(\mathbf{v}, \mathbf{w}) & =\hat{\mu}_{x y}(\mathbf{v}, \mathbf{w})-\widehat{\mu_{x} \mu_{y}}(\mathbf{v}, \mathbf{w}) \\
& =\frac{2}{n(n-1)} \sum_{i<j} h_{(\mathbf{v}, \mathbf{w})}\left(\left(\mathbf{x}_{i}, \mathbf{y}_{i}\right),\left(\mathbf{x}_{j}, \mathbf{y}_{j}\right)\right)
\end{aligned}
$$

where

$$
h_{(\mathrm{v}, \mathrm{w})}\left((\mathrm{x}, \mathrm{y}),\left(\mathrm{x}^{\prime}, \mathrm{y}^{\prime}\right)\right):=\frac{1}{2}\left(k(\mathrm{x}, \mathrm{v})-k\left(\mathrm{x}^{\prime}, \mathrm{v}\right)\right)\left(l(\mathrm{y}, \mathrm{w})-l\left(\mathrm{y}^{\prime}, \mathrm{w}\right)\right) .
$$

- For a fixed $(\mathbf{v}, \mathbf{w}), \hat{u}(\mathbf{v}, \mathbf{w})$ is a one-sample $2^{\text {nd }}$-order U-statistic.

Asymptotic Distribution of $\hat{\mathbf{u}}$

$$
\widehat{\operatorname{FSIC}^{2}}(X, Y)=\frac{1}{J} \sum_{i=1}^{J} \hat{u}^{2}\left(\mathbf{v}_{i}, \mathbf{w}_{i}\right)=\frac{1}{J} \hat{\mathbf{u}}^{\top} \hat{\mathbf{u}},
$$

where $\hat{\mathbf{u}}=\left(\hat{u}\left(\mathbf{v}_{1}, \mathbf{w}_{1}\right), \ldots, \hat{u}\left(\mathbf{v}_{J}, \mathbf{w}_{J}\right)\right)^{\top}$.

Proposition 2 (Asymptotic distribution of \hat{u}).

For any fixed locations $\left\{\left(\mathrm{v}_{i}, \mathrm{w}_{i}\right)\right\}_{i=1}^{J}$, we have $\sqrt{n}(\hat{\mathrm{u}}-\mathrm{u}) \xrightarrow{d} \mathcal{N}(0, \Sigma)$.
■ $\Sigma_{i j}=\mathbb{E}_{\mathbf{x y}}\left[\tilde{k}\left(\mathbf{x}, \mathbf{v}_{i}\right) \tilde{l}\left(\mathbf{y}, \mathbf{w}_{i}\right) \tilde{k}\left(\mathbf{x}, \mathbf{v}_{j}\right) \tilde{l}\left(\mathbf{y}, \mathbf{w}_{j}\right)\right]-u\left(\mathbf{v}_{i}, \mathbf{w}_{i}\right) u\left(\mathbf{v}_{j}, \mathbf{w}_{j}\right)$,

- $\tilde{k}(\mathrm{x}, \mathrm{v}):=k(\mathrm{x}, \mathrm{v})-\mathbb{E}_{\mathrm{x}^{\prime}} k\left(\mathrm{x}^{\prime}, \mathrm{v}\right)$,
$\square \tilde{l}(\mathrm{y}, \mathrm{w}):=l(\mathrm{y}, \mathrm{w})-\mathbb{E}_{\mathrm{y}^{\prime}} l\left(\mathrm{y}^{\prime}, \mathrm{w}\right)$.

Under H_{0},

$n \widehat{\mathrm{FSIC}^{2}}=\frac{n}{J} \hat{\mathrm{u}}^{\top} \hat{\mathrm{u}} \sim$ weighted sum of dependent χ^{2} variables.

- Difficult to get $(1-\alpha)$-quantile for the threshold.

Asymptotic Distribution of $\hat{\mathbf{u}}$

$$
\widehat{\operatorname{FSIC}^{2}}(X, Y)=\frac{1}{J} \sum_{i=1}^{J} \hat{u}^{2}\left(\mathbf{v}_{i}, \mathbf{w}_{i}\right)=\frac{1}{J} \hat{\mathbf{u}}^{\top} \hat{\mathbf{u}},
$$

where $\hat{\mathbf{u}}=\left(\hat{u}\left(\mathbf{v}_{1}, \mathbf{w}_{1}\right), \ldots, \hat{u}\left(\mathbf{v}_{J}, \mathbf{w}_{J}\right)\right)^{\top}$.
Proposition 2 (Asymptotic distribution of $\hat{\mathbf{u}}$).
For any fixed locations $\left\{\left(\mathbf{v}_{i}, \mathbf{w}_{i}\right)\right\}_{i=1}^{J}$, we have $\sqrt{n}(\hat{\mathbf{u}}-\mathbf{u}) \xrightarrow{d} \mathcal{N}(\mathbf{0}, \Sigma)$.

Under H_{0},

$\widehat{n \mathrm{FSIC}^{2}}=\frac{n}{j} \hat{\mathrm{u}}^{\top} \hat{\mathrm{u}} \sim$ weighted sum of dependent χ^{2} variables.

- Difficult to get $(1-\alpha)$-quantile for the threshold.

Asymptotic Distribution of $\hat{\mathbf{u}}$

$$
\widehat{\operatorname{FSIC}^{2}}(X, Y)=\frac{1}{J} \sum_{i=1}^{J} \hat{u}^{2}\left(\mathbf{v}_{i}, \mathbf{w}_{i}\right)=\frac{1}{J} \hat{\mathbf{u}}^{\top} \hat{\mathbf{u}},
$$

where $\hat{\mathbf{u}}=\left(\hat{u}\left(\mathbf{v}_{1}, \mathbf{w}_{1}\right), \ldots, \hat{u}\left(\mathbf{v}_{J}, \mathbf{w}_{J}\right)\right)^{\top}$.

Proposition 2 (Asymptotic distribution of \hat{u}).

For any fixed locations $\left\{\left(\mathbf{v}_{i}, \mathbf{w}_{i}\right)\right\}_{i=1}^{J}$, we have $\sqrt{n}(\hat{\mathbf{u}}-\mathbf{u}) \xrightarrow{d} \mathcal{N}(\mathbf{0}, \Sigma)$.
■ $\Sigma_{i j}=\mathbb{E}_{\mathbf{x y}}\left[\tilde{k}\left(\mathbf{x}, \mathbf{v}_{i}\right) \tilde{l}\left(\mathbf{y}, \mathbf{w}_{i}\right) \tilde{k}\left(\mathbf{x}, \mathbf{v}_{j}\right) \tilde{l}\left(\mathbf{y}, \mathbf{w}_{j}\right)\right]-u\left(\mathbf{v}_{i}, \mathbf{w}_{i}\right) u\left(\mathbf{v}_{j}, \mathbf{w}_{j}\right)$,

- $\tilde{k}(\mathbf{x}, \mathbf{v}):=k(\mathbf{x}, \mathbf{v})-\mathbb{E}_{\mathbf{x}^{\prime}} k\left(\mathbf{x}^{\prime}, \mathbf{v}\right)$,
- $\tilde{l}(\mathbf{y}, \mathbf{w}):=l(\mathbf{y}, \mathbf{w})-\mathbb{E}_{\mathbf{y}^{\prime}} l\left(\mathbf{y}^{\prime}, \mathbf{w}\right)$.

Under H_{0},

$n \widehat{\text { FSIC }^{2}}=\frac{n}{J} \hat{\mathbf{u}}^{\top} \hat{\mathbf{u}} \sim$ weighted sum of dependent χ^{2} variables.
Difficult to get $(1-\alpha)$-quantile for the threshold.

Asymptotic Distribution of $\hat{\mathbf{u}}$

$$
\widehat{\operatorname{FSIC}^{2}}(X, Y)=\frac{1}{J} \sum_{i=1}^{J} \hat{u}^{2}\left(\mathbf{v}_{i}, \mathbf{w}_{i}\right)=\frac{1}{J} \hat{\mathbf{u}}^{\top} \hat{\mathbf{u}},
$$

where $\hat{\mathbf{u}}=\left(\hat{u}\left(\mathbf{v}_{1}, \mathbf{w}_{1}\right), \ldots, \hat{u}\left(\mathbf{v}_{J}, \mathbf{w}_{J}\right)\right)^{\top}$.

Proposition 2 (Asymptotic distribution of \hat{u}).

For any fixed locations $\left\{\left(\mathbf{v}_{i}, \mathbf{w}_{i}\right)\right\}_{i=1}^{J}$, we have $\sqrt{n}(\hat{\mathbf{u}}-\mathbf{u}) \xrightarrow{d} \mathcal{N}(\mathbf{0}, \Sigma)$.
■ $\Sigma_{i j}=\mathbb{E}_{\mathbf{x y}}\left[\tilde{k}\left(\mathbf{x}, \mathbf{v}_{i}\right) \tilde{l}\left(\mathbf{y}, \mathbf{w}_{i}\right) \tilde{k}\left(\mathbf{x}, \mathbf{v}_{j}\right) \tilde{l}\left(\mathbf{y}, \mathbf{w}_{j}\right)\right]-u\left(\mathbf{v}_{i}, \mathbf{w}_{i}\right) u\left(\mathbf{v}_{j}, \mathbf{w}_{j}\right)$,

- $\tilde{k}(\mathrm{x}, \mathrm{v}):=k(\mathrm{x}, \mathrm{v})-\mathbb{E}_{\mathbf{x}^{\prime}} k\left(\mathrm{x}^{\prime}, \mathbf{v}\right)$,

■ $\tilde{l}(\mathbf{y}, \mathbf{w}):=l(\mathbf{y}, \mathbf{w})-\mathbb{E}_{\mathbf{y}^{\prime}} l\left(\mathbf{y}^{\prime}, \mathbf{w}\right)$.
Under H_{0},
$n \widehat{\mathrm{FSIC}^{2}}=\frac{n}{J} \hat{\mathbf{u}}^{\top} \hat{\mathbf{u}} \sim$ weighted sum of dependent χ^{2} variables.

- Difficult to get $(1-\alpha)$-quantile for the threshold.

Asymptotic Distribution of $\hat{\mathbf{u}}$

$$
\widehat{\operatorname{FSIC}^{2}}(X, Y)=\frac{1}{J} \sum_{i=1}^{J} \hat{u}^{2}\left(\mathbf{v}_{i}, \mathbf{w}_{i}\right)=\frac{1}{J} \hat{\mathbf{u}}^{\top} \hat{\mathbf{u}},
$$

where $\hat{\mathbf{u}}=\left(\hat{u}\left(\mathbf{v}_{1}, \mathbf{w}_{1}\right), \ldots, \hat{u}\left(\mathbf{v}_{J}, \mathbf{w}_{J}\right)\right)^{\top}$.

Proposition 2 (Asymptotic distribution of \hat{u}).

For any fixed locations $\left\{\left(\mathbf{v}_{i}, \mathbf{w}_{i}\right)\right\}_{i=1}^{J}$, we have $\sqrt{n}(\hat{\mathbf{u}}-\mathbf{u}) \xrightarrow{d} \mathcal{N}(\mathbf{0}, \Sigma)$.
■ $\Sigma_{i j}=\mathbb{E}_{\mathbf{x y}}\left[\tilde{k}\left(\mathbf{x}, \mathbf{v}_{i}\right) \tilde{l}\left(\mathbf{y}, \mathbf{w}_{i}\right) \tilde{k}\left(\mathbf{x}, \mathbf{v}_{j}\right) \tilde{l}\left(\mathbf{y}, \mathbf{w}_{j}\right)\right]-u\left(\mathbf{v}_{i}, \mathbf{w}_{i}\right) u\left(\mathbf{v}_{j}, \mathbf{w}_{j}\right)$,

- $\tilde{k}(\mathrm{x}, \mathrm{v}):=k(\mathrm{x}, \mathrm{v})-\mathbb{E}_{\mathbf{x}^{\prime}} k\left(\mathrm{x}^{\prime}, \mathbf{v}\right)$,

■ $\tilde{l}(\mathbf{y}, \mathbf{w}):=l(\mathbf{y}, \mathbf{w})-\mathbb{E}_{\mathbf{y}^{\prime}} l\left(\mathbf{y}^{\prime}, \mathbf{w}\right)$.
Under H_{0},
$n \widehat{\mathrm{FSIC}^{2}}=\frac{n}{J} \hat{\mathbf{u}}^{\top} \hat{\mathbf{u}} \sim$ weighted sum of dependent χ^{2} variables.

- Difficult to get $(1-\alpha)$-quantile for the threshold.

Normalized FSIC (NFSIC)

with a regularization parameter $\gamma_{n} \geq 0$.

- Key: NFSIC $=$ FSIC normalized by the covariance.

Theorem 1 (NFSIC test is consistent).

Assume
1 The product kernel is characteristic and analytic.
$2 \lim _{n \rightarrow \infty} \gamma_{n}=0$.
Then, for any h, l and $\left\{\left(\mathrm{v}_{i}, \mathrm{w}_{i}\right)\right\}_{i=1}^{J} \sim \eta$,
1 Under $H_{0}, \hat{\lambda}_{n} \xrightarrow{d} \chi^{2}(J)$ as $n \rightarrow \infty$.
2 Under $H_{1}, \lim _{n \rightarrow \infty} \mathbb{P}\left(\hat{\lambda}_{n} \geq T_{\alpha}\right)=1$, η-almost surely.

Normalized FSIC (NFSIC)

$$
\widehat{\operatorname{NFSIC}^{2}}(X, Y)=\hat{\lambda}_{n}:=n \hat{\mathbf{u}}^{\top}\left(\hat{\Sigma}+\gamma_{n} \mathbf{I}\right)^{-1} \hat{\mathbf{u}},
$$

with a regularization parameter $\gamma_{n} \geq 0$.
■ Key: NFSIC = FSIC normalized by the covariance.

Theorem 1 (NFSIC test is consistent).

Assume
1 The product kernel is characteristic and analytic.
$2 \lim _{n \rightarrow \infty} \gamma_{n}=0$.
Then, for any k, l and $\left\{\left(\mathbf{v}_{i}, \mathbf{w}_{i}\right)\right\}_{i=1}^{J} \sim \eta$,
1 Under $H_{0}, \hat{\lambda}_{n} \xrightarrow{d} \chi^{2}(J)$ as $n \rightarrow \infty$.
2 Under $H_{1}, \lim _{n \rightarrow \infty} \mathbb{P}\left(\hat{\lambda}_{n} \geq T_{\alpha}\right)=1$, η-almost surely.

Normalized FSIC (NFSIC)

$$
\widehat{\operatorname{NFSIC}^{2}}(X, Y)=\hat{\lambda}_{n}:=n \hat{\mathbf{u}}^{\top}\left(\hat{\Sigma}+\gamma_{n} \mathbf{I}\right)^{-1} \hat{\mathbf{u}},
$$

with a regularization parameter $\gamma_{n} \geq 0$.
■ Key: NFSIC = FSIC normalized by the covariance.

Theorem 1 (NFSIC test is consistent).

Assume
1 The product kernel is characteristic and analytic.
$2 \lim _{n \rightarrow \infty} \gamma_{n}=0$.
Then, for any k, l and $\left\{\left(\mathrm{v}_{i}, \mathbf{w}_{i}\right)\right\}_{i=1}^{J} \sim \eta$,
\square
2 Under $H_{1}, \lim _{n \rightarrow \infty} \mathbb{P}\left(\hat{\lambda}_{n} \geq T_{\alpha}\right)=1$, η-almost surely.

Normalized FSIC (NFSIC)

with a regularization parameter $\gamma_{n} \geq 0$.
■ Key: NFSIC = FSIC normalized by the covariance.

Theorem 1 (NFSIC test is consistent).

Assume
1 The product kernel is characteristic and analytic.
$2 \lim _{n \rightarrow \infty} \gamma_{n}=0$.
Then, for any k, l and $\left\{\left(\mathbf{v}_{i}, \mathbf{w}_{i}\right)\right\}_{i=1}^{J} \sim \eta$,
1 Under $H_{0}, \hat{\lambda}_{n} \xrightarrow{d} \chi^{2}(J)$ as $n \rightarrow \infty$.
2 Under $H_{1}, \lim _{n \rightarrow \infty} \mathbb{P}\left(\hat{\lambda}_{n} \geq T_{\alpha}\right)=1$, η-almost surely.

Normalized FSIC (NFSIC)

with a regularization parameter $\gamma_{n} \geq 0$.
■ Key: NFSIC = FSIC normalized by the covariance.

Theorem 1 (NFSIC test is consistent).

Assume
1 The product kernel is characteristic and analytic.
$2 \lim _{n \rightarrow \infty} \gamma_{n}=0$.
Then, for any k, l and $\left\{\left(\mathbf{v}_{i}, \mathbf{w}_{i}\right)\right\}_{i=1}^{J} \sim \eta$,
1 Under $H_{0}, \hat{\lambda}_{n} \xrightarrow{d} \chi^{2}(J)$ as $n \rightarrow \infty$.
2 Under $H_{1}, \lim _{n \rightarrow \infty} \mathbb{P}\left(\hat{\lambda}_{n} \geq T_{\alpha}\right)=1$, η-almost surely.

Normalized FSIC (NFSIC)

$$
\widehat{\operatorname{NFSIC}^{2}}(X, Y)=\hat{\lambda}_{n}:=n \hat{\mathbf{u}}^{\top}\left(\hat{\Sigma}+\gamma_{n} \mathbf{I}\right)^{-1} \hat{\mathbf{u}},
$$

with a regularization parameter $\gamma_{n} \geq 0$.

- Key: NFSIC = FSIC normalized by the covariance.

Theorem 1 (NFSIC test is consistent).

Assume
1 The product kernel is characteristic and analytic.
$2 \lim _{n \rightarrow \infty} \gamma_{n}=0$.
Then, for any k, l and $\left\{\left(\mathbf{v}_{i}, \mathbf{w}_{i}\right)\right\}_{i=1}^{J} \sim \eta$,
1 Under $H_{0}, \hat{\lambda}_{n} \xrightarrow{d} \chi^{2}(J)$ as $n \rightarrow \infty$.
2 Under $H_{1}, \lim _{n \rightarrow \infty} \mathbb{P}\left(\hat{\lambda}_{n} \geq T_{\alpha}\right)=1$, η-almost surely.
Asymptotically, false positive rate is at α under H_{0}, and always reject under H_{1}.

An Estimator of $\widehat{\mathrm{NFSIC}}^{2}$

$$
\hat{\lambda}_{n}:=n \hat{\mathbf{u}}^{\top}\left(\hat{\Sigma}+\gamma_{n} \mathbf{I}\right)^{-1} \hat{\mathbf{u}},
$$

- Test locations $\left\{\left(\mathbf{v}_{i}, \mathbf{w}_{i}\right)\right\}_{i=1}^{J} \sim \eta$.

■ $\mathbf{K}=\left[k\left(\mathbf{v}_{i}, \mathbf{x}_{j}\right)\right] \in \mathbb{R}^{J \times n}$
$\boldsymbol{\sim} \mathbf{L}=\left[l\left(\mathbf{w}_{i}, \mathrm{y}_{j}\right)\right] \in \mathbb{R}^{J \times n}$. (No $n \times n$ Gram matrix.)

Estimators

$\overline{\mathrm{T}}=\frac{(\mathrm{K} \circ \mathbf{L}) \mathbf{1}_{n}}{n-1}-\frac{\left(\mathrm{K} 1_{n}\right) \circ\left(\mathrm{L} 1_{n}\right)}{n(n-1)}$.
$2 \hat{\Sigma}=\frac{\Gamma \Gamma^{\top}}{n}$ where $\Gamma:=\left(\mathbf{K}-n^{-1} \mathbf{K} \mathbf{1}_{n} \mathbf{1}_{n}^{\top}\right) \circ\left(\mathbf{L}-n^{-1} \mathbf{L} \mathbf{1}_{n} \mathbf{1}_{n}^{\top}\right)-\hat{\mathbf{u}} \mathbf{1}_{n}^{\top}$.

- $\hat{\lambda}_{n}$ can be computed in $\mathcal{O}^{\prime}\left(J^{3}+J^{2} n+\left(d_{x}+d_{y}\right) J n\right)$ time.

Main Point: Linear in n. Cubic in J (small).

An Estimator of $\widehat{\mathrm{NFSIC}}^{2}$

$$
\hat{\lambda}_{n}:=n \hat{\mathbf{u}}^{\top}\left(\hat{\Sigma}+\gamma_{n} \mathbf{I}\right)^{-1} \hat{\mathbf{u}},
$$

- Test locations $\left\{\left(\mathbf{v}_{i}, \mathbf{w}_{i}\right)\right\}_{i=1}^{J} \sim \eta$.
- $\mathbf{K}=\left[k\left(\mathbf{v}_{i}, \mathbf{x}_{j}\right)\right] \in \mathbb{R}^{J \times n}$
- $\mathbf{L}=\left[l\left(\mathbf{w}_{i}, \mathbf{y}_{j}\right)\right] \in \mathbb{R}^{J \times n}$. (No $n \times n$ Gram matrix.)

Estimators

$1 \hat{\mathbf{u}}=\frac{(\mathbf{K} \circ \mathbf{L}) \mathbf{1}_{n}}{n-1}-\frac{\left(\mathbf{K} \mathbf{1}_{n}\right) \circ\left(\mathbf{L} \mathbf{1}_{n}\right)}{n(n-1)}$
, $\hat{\Gamma}=\frac{\Gamma \Gamma^{\top}}{n}$ where $\Gamma:=\left(\mathbf{K}-n^{-1} \mathrm{~K} 1_{n} 1_{n}^{\top}\right) \circ\left(\mathrm{L}-n^{-1} \mathrm{~L} 1_{n} 1_{n}^{\top}\right)-\hat{\mathrm{u}} 1_{n}^{\top}$.
■ $\hat{\lambda}_{n}$ can be computed in $\mathcal{O}\left(J^{3}+J^{2} n+\left(d_{x}+d_{y}\right) J n\right)$ time.
Main Point: Linear in n. Cubic in \bar{J} (small).

An Estimator of $\widehat{\mathrm{NFSIC}}^{2}$

$$
\hat{\lambda}_{n}:=n \hat{\mathbf{u}}^{\top}\left(\hat{\Sigma}+\gamma_{n} \mathbf{I}\right)^{-1} \hat{\mathbf{u}},
$$

- Test locations $\left\{\left(\mathbf{v}_{i}, \mathbf{w}_{i}\right)\right\}_{i=1}^{J} \sim \eta$.
- $\mathbf{K}=\left[k\left(\mathbf{v}_{i}, \mathbf{x}_{j}\right)\right] \in \mathbb{R}^{J \times n}$

■ $\mathbf{L}=\left[l\left(\mathbf{w}_{i}, \mathbf{y}_{j}\right)\right] \in \mathbb{R}^{J \times n}$. (No $n \times n$ Gram matrix.)

Estimators

$1 \hat{\mathbf{u}}=\frac{(\mathbf{K} \circ \mathbf{L}) \mathbf{1}_{n}}{n-1}-\frac{\left(\mathbf{K} \mathbf{1}_{n}\right) \circ\left(\mathbf{L} \mathbf{1}_{n}\right)}{n(n-1)}$.
$2 \hat{\Sigma}=\frac{\Gamma \Gamma^{\top}}{n}$ where $\Gamma:=\left(\mathbf{K}-n^{-1} \mathbf{K} 1_{n} \mathbf{1}_{n}^{\top}\right) \circ\left(\mathbf{L}-n^{-1} \mathbf{L} \mathbf{1}_{n} \mathbf{1}_{n}^{\top}\right)-\hat{u} \mathbf{1}_{n}^{\top}$.

- $\hat{\lambda}_{n}$ can be computed in $\mathcal{O}\left(J^{3}+J^{2} n+\left(d_{x}+d_{y}\right) J n\right)$ time.

Main Point: Linear in n. Cubic in J (small).

An Estimator of $\widehat{\mathrm{NFSIC}}^{2}$

$$
\hat{\lambda}_{n}:=n \hat{\mathbf{u}}^{\top}\left(\hat{\Sigma}+\gamma_{n} \mathbf{I}\right)^{-1} \hat{\mathbf{u}},
$$

- Test locations $\left\{\left(\mathbf{v}_{i}, \mathbf{w}_{i}\right)\right\}_{i=1}^{J} \sim \eta$.
- $\mathbf{K}=\left[k\left(\mathbf{v}_{i}, \mathbf{x}_{j}\right)\right] \in \mathbb{R}^{J \times n}$

■ $\mathbf{L}=\left[l\left(\mathbf{w}_{i}, \mathbf{y}_{j}\right)\right] \in \mathbb{R}^{J \times n}$. (No $n \times n$ Gram matrix.)

Estimators

$1 \hat{\mathbf{u}}=\frac{(\mathbf{K} \circ \mathbf{L}) \mathbf{1}_{n}}{n-1}-\frac{\left(\mathbf{K} \mathbf{1}_{n}\right) \circ\left(\mathbf{L} \mathbf{1}_{n}\right)}{n(n-1)}$.
$2 \hat{\Sigma}=\frac{\Gamma \Gamma^{\top}}{n}$ where $\Gamma:=\left(\mathbf{K}-n^{-1} \mathbf{K} \mathbf{1}_{n} \mathbf{1}_{n}^{\top}\right) \circ\left(\mathbf{L}-n^{-1} \mathbf{L} \mathbf{1}_{n} \mathbf{1}_{n}^{\top}\right)-\hat{\mathbf{u}} \mathbf{1}_{n}^{\top}$.

- $\hat{\lambda}_{n}$ can be computed in $\mathcal{O}\left(J^{3}+J^{2} n+\left(d_{x}+d_{y}\right) J n\right)$ time.

Main Point: Linear in n. Cubic in J (small).

An Estimator of $\widehat{\mathrm{NFSIC}}^{2}$

$$
\hat{\lambda}_{n}:=n \hat{\mathbf{u}}^{\top}\left(\hat{\Sigma}+\gamma_{n} \mathbf{I}\right)^{-1} \hat{\mathbf{u}},
$$

- Test locations $\left\{\left(\mathbf{v}_{i}, \mathbf{w}_{i}\right)\right\}_{i=1}^{J} \sim \eta$.
- $\mathbf{K}=\left[k\left(\mathbf{v}_{i}, \mathbf{x}_{j}\right)\right] \in \mathbb{R}^{J \times n}$
- $\mathbf{L}=\left[l\left(\mathbf{w}_{i}, \mathbf{y}_{j}\right)\right] \in \mathbb{R}^{J \times n}$. (No $n \times n$ Gram matrix.)

Estimators

$1 \hat{\mathbf{u}}=\frac{(\mathbf{K} \circ \mathbf{L}) \mathbf{1}_{n}}{n-1}-\frac{\left(\mathbf{K} \mathbf{1}_{n}\right) \circ\left(\mathbf{L} \mathbf{1}_{n}\right)}{n(n-1)}$.
$2 \hat{\Sigma}=\frac{\Gamma \Gamma^{\top}}{n}$ where $\Gamma:=\left(\mathbf{K}-n^{-1} \mathbf{K} \mathbf{1}_{n} \mathbf{1}_{n}^{\top}\right) \circ\left(\mathbf{L}-n^{-1} \mathbf{L} \mathbf{1}_{n} \mathbf{1}_{n}^{\top}\right)-\hat{\mathbf{u}} \mathbf{1}_{n}^{\top}$.

- $\hat{\lambda}_{n}$ can be computed in $\mathcal{O}\left(J^{3}+J^{2} n+\left(d_{x}+d_{y}\right) J n\right)$ time.

Main Point: Linear in n. Cubic in J (small).

Optimizing Test Locations $\left\{\left(\mathbf{v}_{i}, \mathbf{w}_{i}\right)\right\}_{i=1}^{J}$

- Test $\widehat{\text { NFSIC }}^{2}$ is consistent for any random locations $\left\{\left(\mathbf{v}_{i}, \mathbf{w}_{i}\right)\right\}_{i=1}^{J}$.

Optimizing Test Locations $\left\{\left(\mathbf{v}_{i}, \mathbf{w}_{i}\right)\right\}_{i=1}^{J}$

- Test $\widehat{\text { NFSIC }}^{2}$ is consistent for any random locations $\left\{\left(\mathbf{v}_{i}, \mathbf{w}_{i}\right)\right\}_{i=1}^{J}$.
- In practice, tuning them will increase the test power.

Optimizing Test Locations $\left\{\left(\mathbf{v}_{i}, \mathbf{w}_{i}\right)\right\}_{i=1}^{J}$

- Test $\widehat{\mathrm{NFSIC}}^{2}$ is consistent for any random locations $\left\{\left(\mathbf{v}_{i}, \mathbf{w}_{i}\right)\right\}_{i=1}^{J}$.
- In practice, tuning them will increase the test power.

Under $H_{0}: X \perp Y$, we have $\hat{\lambda}_{n} \sim \chi^{2}(J)$ as $n \rightarrow \infty$.

Optimizing Test Locations $\left\{\left(\mathbf{v}_{i}, \mathbf{w}_{i}\right)\right\}_{i=1}^{J}$

- Test $\widehat{\mathrm{NFSIC}}^{2}$ is consistent for any random locations $\left\{\left(\mathbf{v}_{i}, \mathbf{w}_{i}\right)\right\}_{i=1}^{J}$.
- In practice, tuning them will increase the test power.

Under $H_{0}: X \perp Y$, we have $\hat{\lambda}_{n} \sim \chi^{2}(J)$ as $n \rightarrow \infty$.

Optimizing Test Locations $\left\{\left(\mathbf{v}_{i}, \mathbf{w}_{i}\right)\right\}_{i=1}^{J}$

- Test $\widehat{\mathrm{NFSIC}}^{2}$ is consistent for any random locations $\left\{\left(\mathbf{v}_{i}, \mathbf{w}_{i}\right)\right\}_{i=1}^{J}$.
- In practice, tuning them will increase the test power.

Under $H_{1}, \hat{\lambda}_{n}$ will be large. Follows some distribution $\mathbb{P}_{H_{1}}\left(\hat{\lambda}_{n}\right)$

Optimizing Test Locations $\left\{\left(\mathbf{v}_{i}, \mathbf{w}_{i}\right)\right\}_{i=1}^{J}$

- Test $\widehat{\mathrm{NFSIC}}^{2}$ is consistent for any random locations $\left\{\left(\mathbf{v}_{i}, \mathbf{w}_{i}\right)\right\}_{i=1}^{J}$.
- In practice, tuning them will increase the test power.

Test power $=\mathbb{P}\left(\right.$ reject $H_{0} \mid H_{1}$ true $)=\mathbb{P}\left(\hat{\lambda}_{n} \geq T_{\alpha}\right)$

Optimizing Test Locations $\left\{\left(\mathbf{v}_{i}, \mathbf{w}_{i}\right)\right\}_{i=1}^{J}$

- Test $\widehat{\mathrm{NFSIC}^{2}}$ is consistent for any random locations $\left\{\left(\mathbf{v}_{i}, \mathbf{w}_{i}\right)\right\}_{i=1}^{J}$.

■ In practice, tuning them will increase the test power.

Test power $=\mathbb{P}\left(\right.$ reject $H_{0} \mid H_{1}$ true $)=\mathbb{P}\left(\hat{\lambda}_{n} \geq T_{\alpha}\right)$

Idea: Pick locations and Gaussian widths to maximize (lower bound of) test power.

Optimizing Test Locations $\left\{\left(\mathbf{v}_{i}, \mathbf{w}_{i}\right)\right\}_{i=1}^{J}$

- Test $\widehat{\mathrm{NFSIC}^{2}}$ is consistent for any random locations $\left\{\left(\mathbf{v}_{i}, \mathbf{w}_{i}\right)\right\}_{i=1}^{J}$.

■ In practice, tuning them will increase the test power.

Test power $=\mathbb{P}\left(\right.$ reject $H_{0} \mid H_{1}$ true $)=\mathbb{P}\left(\hat{\lambda}_{n} \geq T_{\alpha}\right)$

Idea: Pick locations and Gaussian widths to maximize (lower bound of) test power.

Optimization Objective $=$ Power Lower Bound

- Recall $\hat{\lambda}_{n}:=n \hat{\mathbf{u}}^{\top}\left(\hat{\Sigma}+\gamma_{n} \mathrm{I}\right)^{-1} \hat{\mathbf{u}}$.

Theorem 2 (A lower bound on the test power).

- Let $\operatorname{NFSIC}^{2}(X, Y):=\lambda_{n}:=n \mathbf{u}^{\top} \Sigma^{-1} \mathbf{u}$.

With some conditions, for any k, l, and $\left\{\left(\mathbf{v}_{i}, w_{i}\right)\right\}_{i=1}^{J}$, the test power satisfies $\mathbb{P}\left(\hat{\lambda}_{n} \geq T_{\alpha}\right) \geq L\left(\lambda_{n}\right)$ where

$$
\begin{aligned}
L\left(\lambda_{n}\right) & =1-62 e^{-\xi_{1} \gamma_{n}^{2}\left(\lambda_{n}-T_{\alpha}\right)^{2} / n}-2 e^{-[0.5 n]\left(\lambda_{n}-T_{\alpha}\right)^{2} /\left[\xi_{2} n^{2}\right]} \\
& -2 e^{-\left[\left(\lambda_{n}-T_{\alpha}\right) \gamma_{n}(n-1) / 3-\xi_{3} n-c_{3} \gamma_{n}^{2} n(n-1)\right]^{2} /\left[\xi_{4} n^{2}(n-1)\right]},
\end{aligned}
$$

where $\xi_{1}, \ldots, \xi_{4}, c_{3}>0$ are constants. For large $n, L\left(\lambda_{n}\right)$ is increasing in λ_{n}.

Do: Locations and Gaussian widths $=\arg \max L\left(\lambda_{n}\right)=\arg \max \lambda_{n}$

Optimization Objective $=$ Power Lower Bound

- Recall $\hat{\lambda}_{n}:=n \hat{\mathbf{u}}^{\top}\left(\hat{\Sigma}+\gamma_{n} \mathbf{I}\right)^{-1} \hat{\mathbf{u}}$.

Theorem 2 (A lower bound on the test power).

- Let $\operatorname{NFSIC}^{2}(X, Y):=\lambda_{n}:=n \mathbf{u}^{\top} \Sigma^{-1} \mathbf{u}$.

in λ_{n}.

Do: Locations and Gaussian widths $=\arg \max L\left(\lambda_{n}\right)=\arg \max \lambda_{n}$

Optimization Objective $=$ Power Lower Bound

- Recall $\hat{\lambda}_{n}:=n \hat{\mathbf{u}}^{\top}\left(\hat{\Sigma}+\gamma_{n} \mathbf{I}\right)^{-1} \hat{\mathbf{u}}$.

Theorem 2 (A lower bound on the test power).

- Let $\operatorname{NFSIC}^{2}(X, Y):=\lambda_{n}:=n \mathbf{u}^{\top} \Sigma^{-1} \mathbf{u}$.

With some conditions, for any k, l, and $\left\{\left(\mathbf{v}_{i}, \mathbf{w}_{i}\right)\right\}_{i=1}^{J}$, the test power satisfies $\mathbb{P}\left(\hat{\lambda}_{n} \geq T_{\alpha}\right) \geq L\left(\lambda_{n}\right)$ where

$$
\begin{aligned}
L\left(\lambda_{n}\right) & =1-62 e^{-\xi_{1} \gamma_{n}^{2}\left(\lambda_{n}-T_{\alpha}\right)^{2} / n}-2 e^{-\lfloor 0.5 n\rfloor\left(\lambda_{n}-T_{\alpha}\right)^{2} /\left[\xi_{2} n^{2}\right]} \\
& -2 e^{-\left[\left(\lambda_{n}-T_{\alpha}\right) \gamma_{n}(n-1) / 3-\xi_{3} n-c_{3} \gamma_{n}^{2} n(n-1)\right]^{2} /\left[\xi_{4} n^{2}(n-1)\right]}
\end{aligned}
$$

where $\xi_{1}, \ldots, \xi_{4}, c_{3}>0$ are constants. For large $n, L\left(\lambda_{n}\right)$ is increasing in λ_{n}.

Optimization Objective $=$ Power Lower Bound

- Recall $\hat{\lambda}_{n}:=n \hat{\mathbf{u}}^{\top}\left(\hat{\Sigma}+\gamma_{n} \mathrm{I}\right)^{-1} \hat{\mathbf{u}}$.

Theorem 2 (A lower bound on the test power).

- Let $\operatorname{NFSIC}^{2}(X, Y):=\lambda_{n}:=n \mathbf{u}^{\top} \Sigma^{-1} \mathbf{u}$.

With some conditions, for any k, l, and $\left\{\left(\mathbf{v}_{i}, \mathbf{w}_{i}\right)\right\}_{i=1}^{J}$, the test power satisfies $\mathbb{P}\left(\hat{\lambda}_{n} \geq T_{\alpha}\right) \geq L\left(\lambda_{n}\right)$ where

$$
\begin{aligned}
L\left(\lambda_{n}\right) & =1-62 e^{-\xi_{1} \gamma_{n}^{2}\left(\lambda_{n}-T_{\alpha}\right)^{2} / n}-2 e^{-\lfloor 0.5 n\rfloor\left(\lambda_{n}-T_{\alpha}\right)^{2} /\left[\xi_{2} n^{2}\right]} \\
& -2 e^{-\left[\left(\lambda_{n}-T_{\alpha}\right) \gamma_{n}(n-1) / 3-\xi_{3} n-c_{3} \gamma_{n}^{2} n(n-1)\right]^{2} /\left[\xi_{4} n^{2}(n-1)\right]}
\end{aligned}
$$

where $\xi_{1}, \ldots, \xi_{4}, c_{3}>0$ are constants. For large $n, L\left(\lambda_{n}\right)$ is increasing in λ_{n}.

Do: Locations and Gaussian widths $=\arg \max L\left(\lambda_{n}\right)=\arg \max \lambda_{n}$

Optimization Procedure

- $\operatorname{NFSIC}^{2}(X, Y):=\lambda_{n}:=n \mathbf{u}^{\top} \Sigma^{-1} \mathbf{u}$ is unknown.
- Split the data into 2 disjoint sets: training (tr) and test (te) sets.

Procedure:

1 Eistimate λ_{n} with $\hat{\lambda}_{n}^{(t r)}$ (i.e., computed on the training set).
2 Optimize all $\left\{\left(\mathrm{v}_{i}, \mathrm{w}_{i}\right)\right\}_{i=1}^{J}$ and Gaussian widths with gradient ascent.
3 Independence test with $\hat{\lambda}_{n}^{\text {(te) }}$. Reject H_{0} if $\hat{\lambda}_{n}^{(\text {te })} \geq T_{\alpha}$.

- Splitting avoids overfitting.

Optimization Procedure

- $\operatorname{NFSIC}^{2}(X, Y):=\lambda_{n}:=n \mathbf{u}^{\top} \Sigma^{-1} \mathbf{u}$ is unknown.
- Split the data into 2 disjoint sets: training (tr) and test (te) sets.

```
Procedure:
    1 Estimate }\mp@subsup{\lambda}{n}{}\mathrm{ with }\mp@subsup{\hat{\lambda}}{n}{(tr)}\mathrm{ (i.e., computed on the training set).
    2. Optimize all {(\mp@subsup{\mathbf{v}}{i}{},\mp@subsup{\mathbf{w}}{i}{})\mp@subsup{}}{i=1}{J}\mathrm{ and Gaussian widths with gradient ascent.}
    3 Independence test with }\mp@subsup{\hat{\lambda}}{n}{(te)}\mathrm{ . Reject }\mp@subsup{H}{0}{}\mathrm{ if }\mp@subsup{\hat{\lambda}}{n}{(te)}\geq\mp@subsup{T}{\alpha}{}\mathrm{ .
```

- Splitting avoids overfitting.

Optimization Procedure

■ $\operatorname{NFSIC}^{2}(X, Y):=\lambda_{n}:=n \mathbf{u}^{\top} \Sigma^{-1} \mathbf{u}$ is unknown.

- Split the data into 2 disjoint sets: training (tr) and test (te) sets.

Procedure:

1 Estimate λ_{n} with $\hat{\lambda}_{n}^{(t r)}$ (i.e., computed on the training set).
2 Optimize all $\left\{\left(\mathbf{v}_{i}, \mathbf{w}_{i}\right)\right\}_{i=1}^{J}$ and Gaussian widths with gradient ascent. 3 Independence test with $\hat{\lambda}_{n}^{(\text {te })}$. Reject H_{0} if $\hat{\lambda}_{n}^{(\text {te })} \geq T_{\alpha}$.

- Splitting avoids overfitting.

Optimization Procedure

- $\operatorname{NFSIC}^{2}(X, Y):=\lambda_{n}:=n \mathbf{u}^{\top} \Sigma^{-1} \mathbf{u}$ is unknown.
- Split the data into 2 disjoint sets: training (tr) and test (te) sets.

Procedure:

1 Estimate λ_{n} with $\hat{\lambda}_{n}^{(t r)}$ (i.e., computed on the training set).
2 Optimize all $\left\{\left(\mathbf{v}_{i}, \mathbf{w}_{i}\right)\right\}_{i=1}^{J}$ and Gaussian widths with gradient ascent.
3 Independence test with $\hat{\lambda}_{n}^{(\text {te })}$. Reject H_{0} if $\hat{\lambda}_{n}^{(\text {te })} \geq T_{\alpha}$.

- Splitting avoids overfitting.

But, what does this do to $\mathbb{P}\left(\hat{\lambda}_{n} \geq T_{\alpha}\right)$ when H_{0} holds?

Optimization Procedure

- $\operatorname{NFSIC}^{2}(X, Y):=\lambda_{n}:=n \mathbf{u}^{\top} \Sigma^{-1} \mathbf{u}$ is unknown.
- Split the data into 2 disjoint sets: training (tr) and test (te) sets.

Procedure:

1 Estimate λ_{n} with $\hat{\lambda}_{n}^{(t r)}$ (i.e., computed on the training set).
2 Optimize all $\left\{\left(\mathbf{v}_{i}, \mathbf{w}_{i}\right)\right\}_{i=1}^{J}$ and Gaussian widths with gradient ascent.
3 Independence test with $\hat{\lambda}_{n}^{(\mathrm{te})}$. Reject H_{0} if $\hat{\lambda}_{n}^{(\mathrm{te})} \geq T_{\alpha}$.

- Splitting avoids overfitting.

But, what does this do to $\mathbb{P}\left(\hat{\lambda}_{n} \geq T_{\alpha}\right)$ when H_{0} holds?

- Still asymptotically at α.
- $\lambda_{n}=0$ iff X, Y independent.
- So, under H_{0}, we do $\arg \max 0=$ arbitrary locations.
- Asymptotic null distribution is $\chi^{2}(J)$ for any locations.

Demo: 2D Rotation

Demo: 2D Rotation

$$
\hat{\mu}_{x}(\mathbf{v}) \hat{\mu}_{y}(\mathbf{w})
$$

Demo: Sin Problem $(\omega=1)$

$\hat{\mu}_{x y}(\mathbf{v}, \mathbf{w})$

Demo: Sin Problem $(\omega=1)$

$\hat{\mu}_{x y}(\mathbf{v}, \mathbf{w})$

$$
\hat{\mu}_{x}(\mathbf{v}) \hat{\mu}_{y}(\mathbf{w})
$$

$$
\hat{\mu}_{x y}(\mathbf{v}, \mathbf{w})-\hat{\mu}_{x}(\mathbf{v}) \hat{\mu}_{y}(\mathbf{w})
$$

$\hat{\Sigma}(\mathbf{v}, \mathbf{w})$

Simulation Settings

- $n=$ full sample size
- All methods use Gaussian kernels for both X and Y.

Compare 6 methods

Method	Description	Tuning	Test size	Complex.
NFSIC-opt	Proposed	Gradient descent	$n / 2$	$\mathcal{O}(n)$
NFSIC-med	No tuning.	Random locations	n	$\mathcal{O}(n)$
QHSIC	Full HSIC	Median heu.	n	$\mathcal{O}\left(n^{2}\right)$
NyHSIC	NyStrom HSIC	Median heu.	n	$\mathcal{O}(n)$
FHSIC	HSIC + RFFs*	Median heu.	n	$\mathcal{O}(n)$
RDC	RFFs + CCA.	Median heu.	n	$\mathcal{O}(n \log n)$

Random Fourier features

- Given a problem, report rejection rate of H_{0}.
- 10 features for all (except QHSIC). $J=10$ in NFSIC.

Simulation Settings

- $n=$ full sample size
- All methods use Gaussian kernels for both X and Y.

Compare 6 methods

Method	Description	Tuning	Test size	Complex.
NFSIC-opt	Proposed	Gradient descent	$n / 2$	$\mathcal{O}(n)$
NFSIC-med	No tuning.	Random locations	n	$\mathcal{O}(n)$
QHSIC	Full HSIC	Median heu.	n	$\mathcal{O}\left(n^{2}\right)$
NyHSIC	NyStrom HSIC	Median heu.	n	$\mathcal{O}(n)$
FHSIC	HSIC + RFFs*	Median heu.	n	$\mathcal{O}(n)$
RDC	RFFs + CCA.	Median heu.	n	$\mathcal{O}(n \log n)$

Random Fourier features

- Given a problem, report rejection rate of H_{0}.
- 10 features for all (except QHSIC). $J=10$ in NFSIC.

Simulation Settings

- $n=$ full sample size
- All methods use Gaussian kernels for both X and Y.

Compare 6 methods

Method	Description	Tuning	Test size	Complex.
NFSIC-opt	Proposed	Gradient descent	$n / 2$	$\mathcal{O}(n)$
NFSIC-med	No tuning.	Random locations	n	$\mathcal{O}(n)$
QHSIC	Full HSIC	Median heu.	n	$\mathcal{O}\left(n^{2}\right)$
NyHSIC	NyStrom HSIC	Median heu.	n	$\mathcal{O}(n)$
FHSIC	HSIC + RFFs*	Median heu.	n	$\mathcal{O}(n)$
RDC	RFFs + CCA.	Median heu.	n	$\mathcal{O}(n \log n)$

Random Fourier features

- Given a problem, report rejection rate of H_{0}.
- 10 features for all (except QHSIC). $J=10$ in NFSIC.

Simulation Settings

- $n=$ full sample size
- All methods use Gaussian kernels for both X and Y.

Compare 6 methods

Method	Description	Tuning	Test size	Complex.
NFSIC-opt	Proposed	Gradient descent	$n / 2$	$\mathcal{O}(n)$
NFSIC-med	No tuning.	Random locations	n	$\mathcal{O}(n)$
QHSIC	Full HSIC	Median heu.	n	$\mathcal{O}\left(n^{2}\right)$
NyHSIC	NyStrom HSIC	Median heu.	n	$\mathcal{O}(n)$
FHSIC	HSIC + RFFs*	Median heu.	n	$\mathcal{O}(n)$
RDC	RFFs + CCA.	Median heu.	n	$\mathcal{O}(n \log n)$

Random Fourier features

- Given a problem, report rejection rate of H_{0}.
- 10 features for all (except QHSIC). $J=10$ in NFSIC.

Simulation Settings

- $n=$ full sample size
- All methods use Gaussian kernels for both X and Y.

Compare 6 methods

Method	Description	Tuning	Test size	Complex.
NFSIC-opt	Proposed	Gradient descent	$n / 2$	$\mathcal{O}(n)$
NFSIC-med	No tuning.	Random locations	n	$\mathcal{O}(n)$
QHSIC	Full HSIC	Median heu.	n	$\mathcal{O}\left(n^{2}\right)$
NyHSIC	NyStrom HSIC	Median heu.	n	$\mathcal{O}(n)$
FHSIC	HSIC + RFFs*	Median heu.	n	$\mathcal{O}(n)$
RDC	RFFs + CCA	Median heu.	n	$\mathcal{O}(n \log n)$

Random Fourier features

- Given a problem, report rejection rate of H_{0}.
- 10 features for all (except QHSIC). $J=10$ in NFSIC.

Simulation Settings

- $n=$ full sample size
- All methods use Gaussian kernels for both X and Y.

Compare 6 methods

Method	Description	Tuning	Test size	Complex.
NFSIC-opt	Proposed	Gradient descent	$n / 2$	$\mathcal{O}(n)$
NFSIC-med	No tuning.	Random locations	n	$\mathcal{O}(n)$
QHSIC	Full HSIC	Median heu.	n	$\mathcal{O}\left(n^{2}\right)$
NyHSIC	NyStrom HSIC	Median heu.	n	$\mathcal{O}(n)$
FHSIC	HSIC + RFFs*	Median heu.	n	$\mathcal{O}(n)$
RDC	RFFs + CCA	Median heu.	n	$\mathcal{O}(n \log n)$

*: Random Fourier features

- Given a problem, report rejection rate of H_{0}.

■ 10 features for all (except QHSIC). $J=10$ in NFSIC.

Toy Problem 1: Independent Gaussians

- $X \sim \mathcal{N}\left(\mathbf{0}, \mathbf{I}_{d_{x}}\right)$ and $Y \sim \mathcal{N}\left(\mathbf{0}, \mathbf{I}_{d y}\right)$.
- Independent X, Y. So, H_{0} holds.

■ Set $\alpha:=0.05, d_{x}=d_{y}=250$.

Toy Problem 1: Independent Gaussians

- $X \sim \mathcal{N}\left(0, \mathbf{I}_{d_{x}}\right)$ and $Y \sim \mathcal{N}\left(\mathbf{0}, \mathbf{I}_{d y}\right)$.

■ Independent X, Y. So, H_{0} holds.
■ Set $\alpha:=0.05, d_{x}=d_{y}=250$.

- Correct type-I errors (false positive rate).

Toy Problem 1: Independent Gaussians

- $X \sim \mathcal{N}\left(0, \mathbf{I}_{d_{x}}\right)$ and $Y \sim \mathcal{N}\left(\mathbf{0}, \mathbf{I}_{d y}\right)$.

■ Independent X, Y. So, H_{0} holds.
■ Set $\alpha:=0.05, d_{x}=d_{y}=250$.

- Correct type-I errors (false positive rate).

Toy Problem 2: Sinusoid

- $p_{x y}(x, y) \propto 1+\sin (\omega x) \sin (\omega y)$ where $x, y \in(-\pi, \pi)$.
- Local changes between $p_{x y}$ and $p_{x} p_{y}$.
- Set $n=4000$.

Toy Problem 2: Sinusoid

■ $p_{x y}(x, y) \propto 1+\sin (\omega x) \sin (\omega y)$ where $x, y \in(-\pi, \pi)$.

- Local changes between $p_{x y}$ and $p_{x} p_{y}$.

■ Set $n=4000$.

Toy Problem 2: Sinusoid

$\square p_{x y}(x, y) \propto 1+\sin (\omega x) \sin (\omega y)$ where $x, y \in(-\pi, \pi)$.

- Local changes between $p_{x y}$ and $p_{x} p_{y}$.

■ Set $n=4000$.

Toy Problem 2: Sinusoid

■ $p_{x y}(x, y) \propto 1+\sin (\omega x) \sin (\omega y)$ where $x, y \in(-\pi, \pi)$.

- Local changes between $p_{x y}$ and $p_{x} p_{y}$.

■ Set $n=4000$.

Toy Problem 2: Sinusoid

■ $p_{x y}(x, y) \propto 1+\sin (\omega x) \sin (\omega y)$ where $x, y \in(-\pi, \pi)$.

- Local changes between $p_{x y}$ and $p_{x} p_{y}$.

■ Set $n=4000$.

Toy Problem 2: Sinusoid

■ $p_{x y}(x, y) \propto 1+\sin (\omega x) \sin (\omega y)$ where $x, y \in(-\pi, \pi)$.
$■$ Local changes between $p_{x y}$ and $p_{x} p_{y}$.
■ Set $n=4000$.

Toy Problem 2: Sinusoid

$\square p_{x y}(x, y) \propto 1+\sin (\omega x) \sin (\omega y)$ where $x, y \in(-\pi, \pi)$.
$■$ Local changes between $p_{x y}$ and $p_{x} p_{y}$.
■ Set $n=4000$.

Toy Problem 2: Sinusoid

$\square p_{x y}(x, y) \propto 1+\sin (\omega x) \sin (\omega y)$ where $x, y \in(-\pi, \pi)$.
■ Local changes between $p_{x y}$ and $p_{x} p_{y}$.

- Set $n=4000$.

Main Point: NFSIC can handle well the local changes in the joint space.

Toy Problem 3: Gaussian Sign

- $y=|Z| \prod_{i=1}^{d_{x}} \operatorname{sign}\left(x_{i}\right)$, where $\mathbf{x} \sim \mathcal{N}\left(0, \mathbf{I}_{d_{y}}\right)$ and $Z \sim \mathcal{N}(0,1)$ (noise).

■ Full interaction among $x_{1}, \ldots, x_{d_{x}}$.

- Need to consider all x_{1}, \ldots, x_{d} to detect the dependency.

Main Point: NFSIC can handle feature interaction.

Toy Problem 3: Gaussian Sign

- $y=|Z| \prod_{i=1}^{d_{x}} \operatorname{sign}\left(x_{i}\right)$, where $\mathbf{x} \sim \mathcal{N}\left(0, \mathbf{I}_{d_{y}}\right)$ and $Z \sim \mathcal{N}(0,1)$ (noise).

■ Full interaction among $x_{1}, \ldots, x_{d_{x}}$.

- Need to consider all x_{1}, \ldots, x_{d} to detect the dependency.

- NFSIC-opt
-... NFSIC-med
\bullet QHSIC
$*$ NyHSIC
\longleftrightarrow FHSIC \longleftrightarrow RDC

Main Point: NFSIC can handle feature interaction.

HSIC vs. FSIC

Recall the witness

$$
\hat{u}(\mathbf{v}, \mathbf{w})=\hat{\mu}_{x y}(\mathbf{v}, \mathbf{w})-\hat{\mu}_{x}(\mathbf{v}) \hat{\mu}_{y}(\mathbf{w})
$$

HSIC [Gretton et al., 2005]
$=\|\hat{u}\|_{\text {RKHS }}$

Good when difference between $p_{x y}$ and $p_{x} p_{y}$ is spatially diffuse.

- \hat{u} is almost flat.

FSIC [proposed]
$=\frac{1}{J} \sum_{i=1}^{J} \hat{u}^{2}\left(\mathbf{v}_{i}, \mathbf{w}_{i}\right)$

Good when difference between $p_{x y}$ and $p_{x} p_{y}$ is local.

- \hat{u} is mostly zero, has many peaks (feature interaction).

Real Problem 1: Million Song Data

Song (X) vs. year of release (Y).
■ Western commercial tracks from 1922 to 2011
[Bertin-Mahieux et al., 2011].

- $X \in \mathbb{R}^{90}$ contains audio features.
- $Y \in \mathbb{R}$ is the year of release.

Real Problem 1: Million Song Data

Song (X) vs. year of release (Y).
■ Western commercial tracks from 1922 to 2011
[Bertin-Mahieux et al., 2011].
■ $X \in \mathbb{R}^{90}$ contains audio features.

- $Y \in \mathbb{R}$ is the year of release.

■ Break (X, Y) pairs to simulate H_{0}.

- H_{1} is true.

Real Problem 2: Videos and Captions

Youtube video (X) vs. caption (Y).
■ VideoStory46K [Habibian et al., 2014]

- $X \in \mathbb{R}^{2000}$: Fisher vector encoding of motion boundary histograms descriptors [Wang and Schmid, 2013].
- $Y \in \mathbb{R}^{1878}$: bag of words. TF.

Real Problem 2: Videos and Captions

Youtube video (X) vs. caption (Y).
■ VideoStory46K [Habibian et al., 2014]

- $X \in \mathbb{R}^{2000}$: Fisher vector encoding of motion boundary histograms descriptors [Wang and Schmid, 2013].
- $Y \in \mathbb{R}^{1878}$: bag of words. TF.

Penalize Redundant Test Locations

■ Consider the Sin problem. Use $J=2$ locations.

- Optimization objective: $\hat{\lambda}_{n}$.
- Write $\mathbf{t}=(\mathbf{v}, \mathbf{w})$. Fix t_{1} at \star. Plot $\mathrm{t}_{2} \rightarrow \hat{\lambda}_{n}\left(\mathrm{t}_{1}, \mathrm{t}_{2}\right)$.

- The optimized $\mathbf{t}_{1}, \mathbf{t}_{2}$ will not be in the same neighbourhood.

Test Power vs. J

- Test power does not always increase with J (number of test locations).
- $n=800$.

- Accurate estimation of $\hat{\Sigma} \in \mathbb{R}^{J \times J}$ in $\hat{\lambda}_{n}=n \hat{\mathbf{u}}^{\top}\left(\hat{\Sigma}+\gamma_{n} \mathbf{I}\right)^{-1} \hat{\mathbf{u}}$ becomes more difficult.
- Large J defeats the purpose of a linear-time test.

Conclusions

■ Proposed The Finite Set Independence Criterion (FSIC).

- Independece test based on FSIC is

1 non-parametric,
2 linear-time,
3 adaptive (parameteris automatically tuned).

Future works

- Any way to interpret the learned. $\left\{\left(\mathrm{v}_{i}, w_{i}\right)\right\}_{i=1}^{J}$?
- Relative efficiency of FSIC vs. block HSIC, RFF-HSIC.
https://github com/wittawatj/fsic-test

Conclusions

- Proposed The Finite Set Independence Criterion (FSIC).
- Independece test based on FSIC is

1 non-parametric,
2 linear-time,
3 adaptive (parameteris automatically tuned).
Future works

- Any way to interpret the learned $\left\{\left(\mathbf{v}_{i}, \mathbf{w}_{i}\right)\right\}_{i=1}^{J}$?

■ Relative efficiency of FSIC vs. block HSIC, RFF-HSIC.
https://github.com/wittawatj/fsic-test

Questions?

Thank you

References I

国 Bertin-Mahieux, T., Ellis, D. P., Whitman, B., and Lamere, P. (2011). The million song dataset.
In International Conference on Music Information Retrieval (ISMIR).
(in Gretton, A., Borgwardt, K. M., Rasch, M. J., Schölkopf, B., and Smola, A. (2012).

A Kernel Two-Sample Test.
Journal of Machine Learning Research, 13:723-773.
© Gretton, A., Bousquet, O., Smola, A., and Schölkopf, B. (2005). Measuring Statistical Dependence with Hilbert-Schmidt Norms.
In Algorithmic Learning Theory (ALT), pages 63-77.

References II

F Habibian, A., Mensink, T., and Snoek, C. G. (2014).
Videostory: A new multimedia embedding for few-example recognition and translation of events.
In ACM International Conference on Multimedia, pages 17-26.
围 Wang, H. and Schmid, C. (2013).
Action recognition with improved trajectories.
In IEEE International Conference on Computer Vision (ICCV), pages 3551-3558.
Zhang, Q., Filippi, S., Gretton, A., and Sejdinovic, D. (2016). Large-Scale Kernel Methods for Independence Testing.

[^0]: 0.024
 0.021
 0.018
 0.015
 0.012
 0.009
 0.006
 0.003
 0.000 as

