A Linear-Time Kernel Goodness-of-Fit Test

Kenji Fukumizu³ Arthur Gretton¹

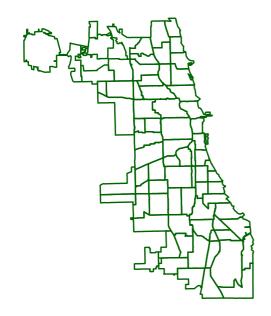
Wittawat Jitkrittum^{1,*} Wenkai Xu¹ Zoltán Szabó²

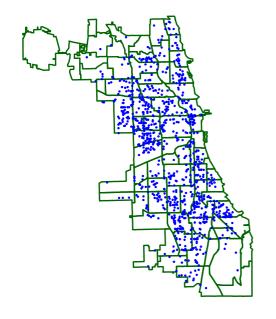
NIPS 2017

wittawatj@gmail.com

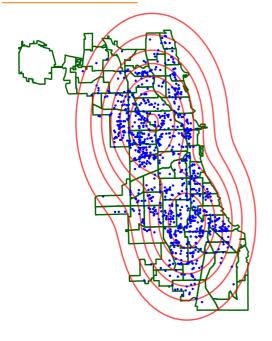
¹Gatsby Unit, University College London *(Now at Max Planck Institute for Intelligent Systems) ²CMAP, École Polytechnique ³The Institute of Statistical Mathematics, Tokyo

Workshop on Functional Inference and Machine Intelligence, Tokyo 20 February 2018

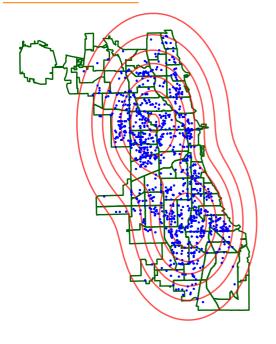




Data = robbery events in Chicago in 2016.

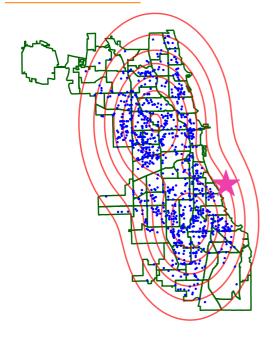


Is this a good model?



Goals:

- Test if a (complicated) model fits the data.
- 2 If it does not, show a location where it fails.



Goals:

- Test if a (complicated) model fits the data.
- 2 If it does not, show a location where it fails.

Goodness-of-fit Testing

Given:

- $\ \, \text{I} \ \, \text{Sample} \,\, \{\mathbf{x}_i\}_{i=1}^n \overset{i.i.d.}{\sim} \,\, q \,\, (\text{unknown}) \,\, \text{on} \,\, \mathbb{R}^d,$
- 2 Unnormalized density p (known model).

```
H_0 \colon p = q
H_1 \colon p \neq q
```

Want a test ...

- 1 Nonparametric.
- 2 Linear-time. Runtime is $\mathcal{O}(n)$. Fast.
- 3 Interpretable. Model criticism by finding

Goodness-of-fit Testing

Given:

- \square Sample $\{\mathbf{x}_i\}_{i=1}^n \overset{i.i.d.}{\sim} q$ (unknown) on \mathbb{R}^d ,
- 2 Unnormalized density p (known model).

$$H_0\colon p=q \ H_1\colon p
eq q$$
 $(unknown)$ $(model)$ (x_1,x_2,\ldots,x_n)

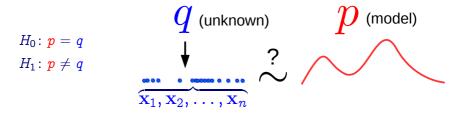
Want a test ...

- 1 Nonparametric
- 2 Linear-time. Runtime is $\mathcal{O}(n)$. Fast.
- 3 Interpretable. Model criticism by finding

Goodness-of-fit Testing

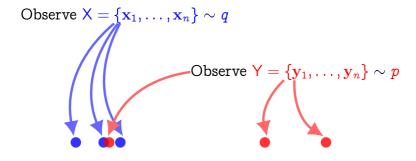
Given:

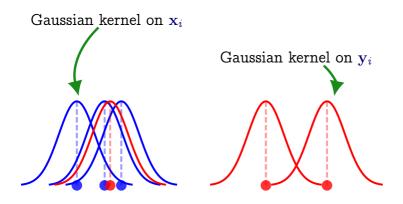
- 1 Sample $\{\mathbf{x}_i\}_{i=1}^n \overset{i.i.d.}{\sim} q$ (unknown) on \mathbb{R}^d ,
- 2 Unnormalized density p (known model).

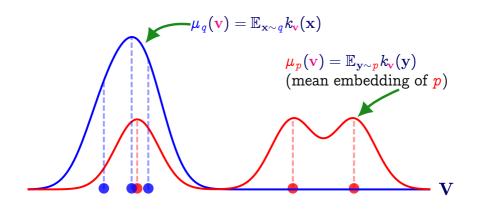


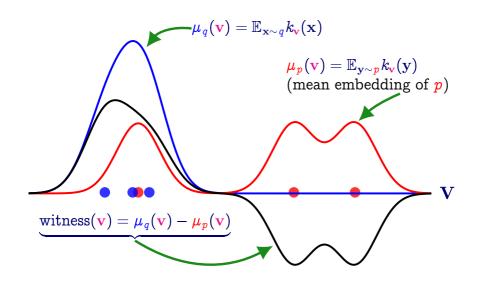
Want a test ...

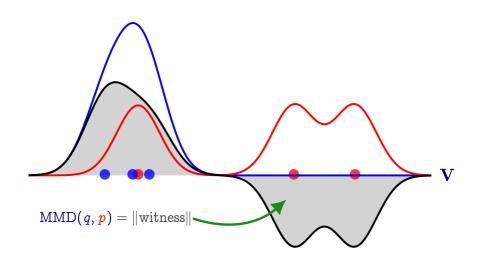
- 1 Nonparametric.
- 2 Linear-time. Runtime is $\mathcal{O}(n)$. Fast.
- 3 Interpretable. Model criticism by finding

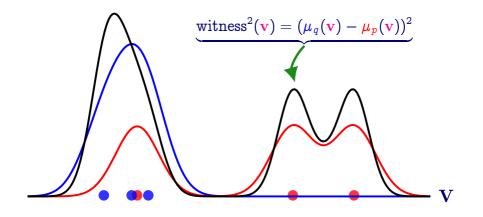


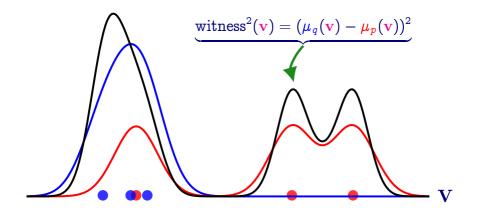








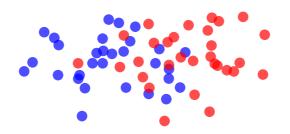




lacktriangle witness²(f v) can be used to find a good test location $f v^*=$ \bigstar .

$$\operatorname{witness}(\mathbf{v}) = \mathbb{E}_{\mathbf{x} \sim g}[\quad k_{\mathbf{v}}(\mathbf{x}) \quad] - \mathbb{E}_{\mathbf{v} \sim p}[\quad k_{\mathbf{v}}(\mathbf{y}) \quad]$$

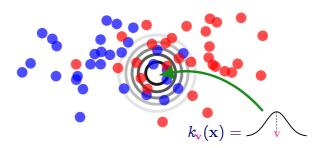
$$\begin{aligned} \text{witness}(\textcolor{red}{\mathbf{v}}) &= \mathbb{E}_{\mathbf{x} \sim q}[\quad k_{\mathbf{v}}(\mathbf{x}) \quad] - \mathbb{E}_{\textcolor{red}{\mathbf{y}} \sim p}[\quad k_{\textcolor{red}{\mathbf{v}}}(\textcolor{red}{\mathbf{y}}) \] \\ \text{score}(\textcolor{red}{\mathbf{v}}) &= \frac{\text{witness}^2(\textcolor{red}{\mathbf{v}})}{\text{noise}(\textcolor{red}{\mathbf{v}})} = \frac{\text{witness}^2(\textcolor{red}{\mathbf{v}})}{\sqrt{\mathbb{V}_{\mathbf{x} \sim q}[k_{\textcolor{red}{\mathbf{v}}}(\mathbf{x})] + \mathbb{V}_{\textcolor{red}{\mathbf{y}} \sim p}[k_{\textcolor{red}{\mathbf{v}}}(\textcolor{red}{\mathbf{y}})]}}. \end{aligned}$$



$$\begin{aligned} \text{witness}(\textcolor{red}{\mathbf{v}}) &= \mathbb{E}_{\mathbf{x} \sim q}[\quad k_{\mathbf{v}}(\mathbf{x}) \quad] - \mathbb{E}_{\textcolor{red}{\mathbf{y}} \sim p}[\quad k_{\textcolor{red}{\mathbf{v}}}(\textcolor{red}{\mathbf{y}}) \] \\ \text{score}(\textcolor{red}{\mathbf{v}}) &= \frac{\text{witness}^2(\textcolor{red}{\mathbf{v}})}{\text{noise}(\textcolor{red}{\mathbf{v}})} = \frac{\text{witness}^2(\textcolor{red}{\mathbf{v}})}{\sqrt{\mathbb{V}_{\mathbf{x} \sim q}[k_{\textcolor{red}{\mathbf{v}}}(\mathbf{x})] + \mathbb{V}_{\textcolor{red}{\mathbf{y}} \sim p}[k_{\textcolor{red}{\mathbf{v}}}(\textcolor{red}{\mathbf{y}})]}}. \end{aligned}$$

■ Find a location \mathbf{v} at which q and p differ most (ME test) [Jitkrittum et al., 2016].

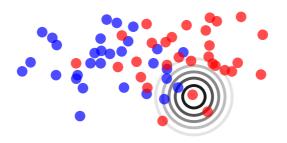
score: 0.008



$$egin{aligned} ext{witness}(\mathbf{v}) &= \mathbb{E}_{\mathbf{x} \sim q}[\quad k_{\mathbf{v}}(\mathbf{x}) \quad] - \mathbb{E}_{\mathbf{y} \sim p}[\quad k_{\mathbf{v}}(\mathbf{y}) \] \\ ext{score}(\mathbf{v}) &= rac{ ext{witness}^2(\mathbf{v})}{ ext{noise}(\mathbf{v})} = rac{ ext{witness}^2(\mathbf{v})}{\sqrt{\mathbb{V}_{\mathbf{x} \sim q}[k_{\mathbf{v}}(\mathbf{x})] + \mathbb{V}_{\mathbf{y} \sim p}[k_{\mathbf{v}}(\mathbf{y})]}}. \end{aligned}$$

■ Find a location \mathbf{v} at which q and p differ most (ME test) [Jitkrittum et al., 2016].

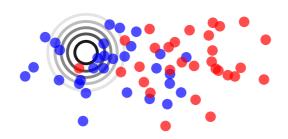
score: 1.6



$$\begin{aligned} \text{witness}(\mathbf{v}) &= \mathbb{E}_{\mathbf{x} \sim q}[\quad k_{\mathbf{v}}(\mathbf{x}) \quad] - \mathbb{E}_{\mathbf{y} \sim p}[\quad k_{\mathbf{v}}(\mathbf{y}) \quad] \\ \text{score}(\mathbf{v}) &= \frac{\text{witness}^2(\mathbf{v})}{\text{noise}(\mathbf{v})} = \frac{\text{witness}^2(\mathbf{v})}{\sqrt{\mathbb{V}_{\mathbf{x} \sim q}[k_{\mathbf{v}}(\mathbf{x})] + \mathbb{V}_{\mathbf{y} \sim p}[k_{\mathbf{v}}(\mathbf{y})]}}. \end{aligned}$$

■ Find a location \mathbf{v} at which q and p differ most (ME test) [Jitkrittum et al., 2016].

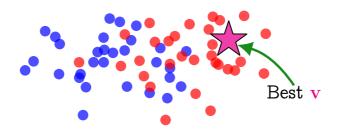
score: 13



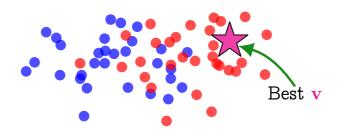
$$\begin{aligned} \text{witness}(\textcolor{red}{\mathbf{v}}) &= \mathbb{E}_{\mathbf{x} \sim q}[\quad k_{\mathbf{v}}(\mathbf{x}) \quad] - \mathbb{E}_{\textcolor{red}{\mathbf{y}} \sim p}[\quad k_{\mathbf{v}}(\textcolor{red}{\mathbf{y}}) \] \\ \text{score}(\textcolor{red}{\mathbf{v}}) &= \frac{\text{witness}^2(\textcolor{red}{\mathbf{v}})}{\text{noise}(\textcolor{red}{\mathbf{v}})} = \frac{\text{witness}^2(\textcolor{red}{\mathbf{v}})}{\sqrt{\mathbb{V}_{\mathbf{x} \sim q}[k_{\mathbf{v}}(\mathbf{x})] + \mathbb{V}_{\textcolor{red}{\mathbf{y}} \sim p}[k_{\mathbf{v}}(\textcolor{red}{\mathbf{y}})]}}. \end{aligned}$$

■ Find a location \mathbf{v} at which q and p differ most (ME test) [Jitkrittum et al., 2016].

score: 25



$$\begin{aligned} \text{witness}(\textcolor{red}{\mathbf{v}}) &= \mathbb{E}_{\mathbf{x} \sim q}[\quad k_{\mathbf{v}}(\mathbf{x}) \quad] - \mathbb{E}_{\mathbf{y} \sim p}[\quad k_{\mathbf{v}}(\textcolor{red}{\mathbf{y}}) \] \\ \text{score}(\textcolor{red}{\mathbf{v}}) &= \frac{\text{witness}^2(\textcolor{red}{\mathbf{v}})}{\text{noise}(\textcolor{red}{\mathbf{v}})} = \frac{\text{witness}^2(\textcolor{red}{\mathbf{v}})}{\sqrt{\mathbb{V}_{\mathbf{x} \sim q}[k_{\mathbf{v}}(\mathbf{x})] + \mathbb{V}_{\mathbf{y} \sim p}[k_{\mathbf{v}}(\textcolor{red}{\mathbf{y}})]}}. \end{aligned}$$



$$egin{aligned} ext{witness}(\mathbf{v}) &= \mathbb{E}_{\mathbf{x} \sim q}[& k_{\mathbf{v}}(\mathbf{x}) &] - \mathbb{E}_{\mathbf{y} \sim p}[& k_{\mathbf{v}}(\mathbf{y}) &] \\ ext{score}(\mathbf{v}) &= rac{ ext{witness}^2(\mathbf{v})}{ ext{noise}(\mathbf{v})} = rac{ ext{No sample from } p.}{ ext{Difficult to generate.}} \end{aligned}$$

$$(\text{Stein}) \; \text{witness}(\mathbf{v}) = \mathbb{E}_{\mathbf{x} \sim q}[\quad T_p k_{\mathbf{v}}(\mathbf{x}) \quad] - \mathbb{E}_{\mathbf{y} \sim p}[\quad T_p k_{\mathbf{v}}(\mathbf{y}) \quad]$$

$$(\mathrm{Stein}) \; \mathrm{witness}(\mathbf{v}) = \mathbb{E}_{\mathbf{x} \sim q}[\, T_p \, \boxed{\hspace{1cm}} - \mathbb{E}_{\mathbf{y} \sim p}[\, T_p \, \boxed{\hspace{1cm}}$$

$$(\mathrm{Stein}) \ \mathrm{witness}(\textcolor{red}{\mathbf{v}}) = \mathbb{E}_{\mathbf{x} \sim q}[\textcolor{red}{\bullet}] - \mathbb{E}_{\textcolor{red}{\mathbf{y}} \sim p}[\textcolor{red}{\bullet}]$$

Problem: No sample from p. Cannot estimate $\mathbb{E}_{\mathbf{y} \sim p}[k_{\mathbf{v}}(\mathbf{y})]$.

$$(\mathrm{Stein}) \ \mathrm{witness}(\mathbf{v}) = \mathbb{E}_{\mathbf{x} \sim q}[\qquad \qquad] - \mathbb{E}_{\mathbf{v} \sim q}[$$

Problem: No sample from p. Cannot estimate $\mathbb{E}_{\mathbf{y} \sim p}[k_{\mathbf{v}}(\mathbf{y})]$.

$$(\mathsf{Stein}) \; \mathsf{witness}(\textcolor{red}{\mathbf{v}}) = \mathbb{E}_{\mathbf{x} \sim q}[\textcolor{red}{\bullet} \textcolor{red}{\bullet} \textcolor{black}{\bullet}]$$

Problem: No sample from p. Cannot estimate $\mathbb{E}_{\mathbf{y} \sim p}[k_{\mathbf{v}}(\mathbf{y})]$.

$$(ext{Stein}) ext{ witness}(\mathbf{v}) = \mathbb{E}_{\mathbf{x} \sim q}[T_p k_{\mathbf{v}}(\mathbf{x})]$$

Problem: No sample from p. Cannot estimate $\mathbb{E}_{\mathbf{y} \sim p}[k_{\mathbf{v}}(\mathbf{y})]$.

$$(ext{Stein}) ext{ witness}(\mathbf{v}) = \mathbb{E}_{\mathbf{x} \sim q}[T_p k_{\mathbf{v}}(\mathbf{x})]$$

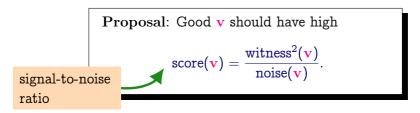
Idea: Define T_p such that $\mathbb{E}_{\mathbf{y} \sim p}(T_p k_{\mathbf{v}})(\mathbf{y}) = 0$, for any \mathbf{v} .

Proposal: Good v should have high

$$score(\mathbf{v}) = \frac{witness^2(\mathbf{v})}{noise(\mathbf{v})}.$$

Problem: No sample from p. Cannot estimate $\mathbb{E}_{\mathbf{y} \sim p}[k_{\mathbf{v}}(\mathbf{y})]$.

$$(ext{Stein}) ext{ witness}(\mathbf{v}) = \mathbb{E}_{\mathbf{x} \sim q}[T_p k_{\mathbf{v}}(\mathbf{x})]$$

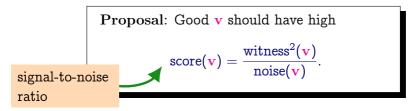


The Stein Witness Function [Liu et al., 2016, Chwialkowski et al., 2016]

Problem: No sample from p. Cannot estimate $\mathbb{E}_{\mathbf{y} \sim p}[k_{\mathbf{v}}(\mathbf{y})]$.

$$(ext{Stein}) ext{ witness}(\mathbf{v}) = \mathbb{E}_{\mathbf{x} \sim q}[T_p k_{\mathbf{v}}(\mathbf{x})]$$

Idea: Define T_p such that $\mathbb{E}_{\mathbf{y} \sim p}(T_p k_{\mathbf{v}})(\mathbf{y}) = 0$, for any \mathbf{v} .



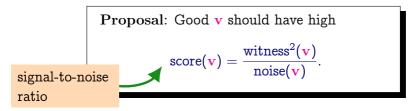
■ score(v) can be estimated in linear-time.

The Stein Witness Function [Liu et al., 2016, Chwialkowski et al., 2016]

Problem: No sample from p. Cannot estimate $\mathbb{E}_{\mathbf{y} \sim p}[k_{\mathbf{v}}(\mathbf{y})]$.

$$(ext{Stein}) ext{ witness}(\mathbf{v}) = \mathbb{E}_{\mathbf{x} \sim q}[T_p k_{\mathbf{v}}(\mathbf{x})]$$

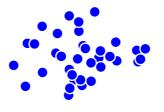
Idea: Define T_p such that $\mathbb{E}_{\mathbf{y} \sim p}(T_p k_{\mathbf{v}})(\mathbf{y}) = 0$, for any \mathbf{v} .



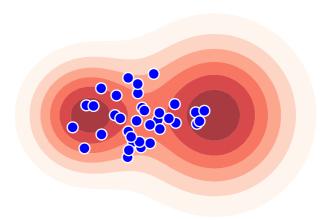
■ score(v) can be estimated in linear-time.

Goodness-of-fit test:

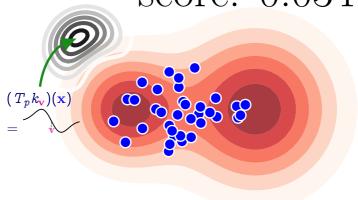
- 1 Find $\mathbf{v}^* = \arg \max_{\mathbf{v}} \operatorname{score}(\mathbf{v})$.
- 2 Reject H_0 if witness²(\mathbf{v}^*) > threshold.



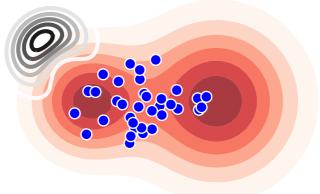
$$score(\mathbf{v}) = \frac{witness^2(\mathbf{v})}{noise(\mathbf{v})}.$$



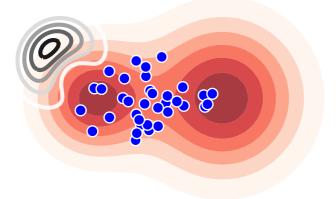
$$score(\mathbf{v}) = \frac{witness^2(\mathbf{v})}{noise(\mathbf{v})}.$$



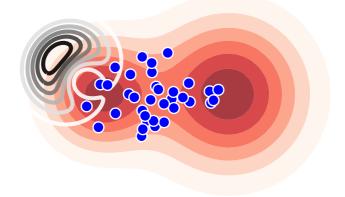
$$score(\mathbf{v}) = \frac{witness^2(\mathbf{v})}{noise(\mathbf{v})}.$$



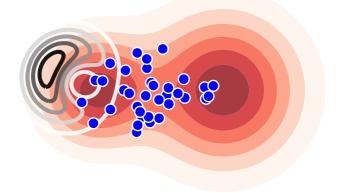
$$score(\mathbf{v}) = \frac{witness^2(\mathbf{v})}{noise(\mathbf{v})}.$$



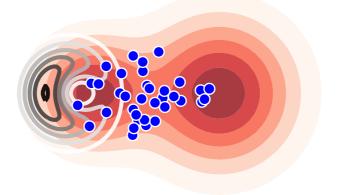
$$score(\mathbf{v}) = \frac{witness^2(\mathbf{v})}{noise(\mathbf{v})}.$$



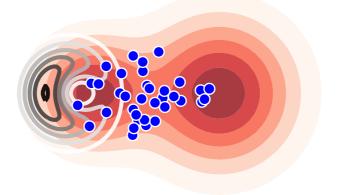
$$score(\mathbf{v}) = \frac{witness^2(\mathbf{v})}{noise(\mathbf{v})}.$$



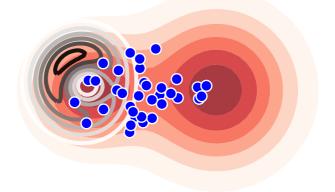
$$score(\mathbf{v}) = \frac{witness^2(\mathbf{v})}{noise(\mathbf{v})}.$$



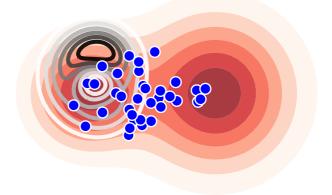
$$score(\mathbf{v}) = \frac{witness^2(\mathbf{v})}{noise(\mathbf{v})}.$$



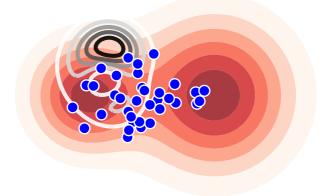
$$score(\mathbf{v}) = \frac{witness^2(\mathbf{v})}{noise(\mathbf{v})}.$$



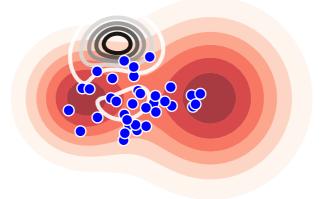
$$score(\mathbf{v}) = \frac{witness^2(\mathbf{v})}{noise(\mathbf{v})}.$$



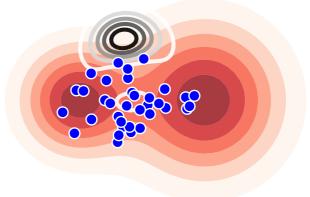
$$score(\mathbf{v}) = \frac{witness^2(\mathbf{v})}{noise(\mathbf{v})}.$$



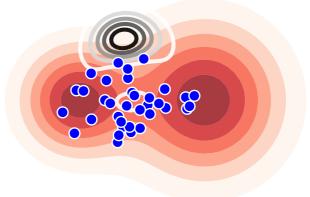
$$score(\mathbf{v}) = \frac{witness^2(\mathbf{v})}{noise(\mathbf{v})}.$$



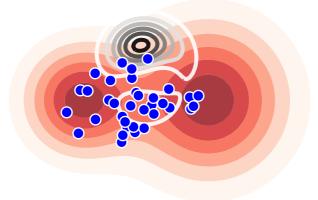
$$score(\mathbf{v}) = \frac{witness^2(\mathbf{v})}{noise(\mathbf{v})}.$$



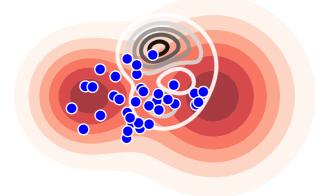
$$score(\mathbf{v}) = \frac{witness^2(\mathbf{v})}{noise(\mathbf{v})}.$$



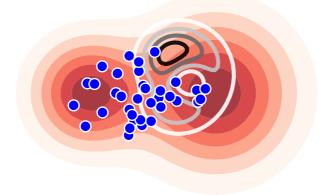
$$score(\mathbf{v}) = \frac{witness^2(\mathbf{v})}{noise(\mathbf{v})}.$$



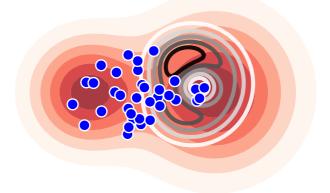
$$score(\mathbf{v}) = \frac{witness^2(\mathbf{v})}{noise(\mathbf{v})}.$$



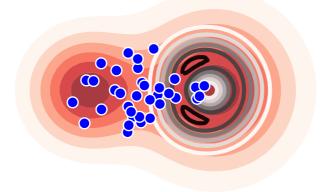
$$score(\mathbf{v}) = \frac{witness^2(\mathbf{v})}{noise(\mathbf{v})}.$$



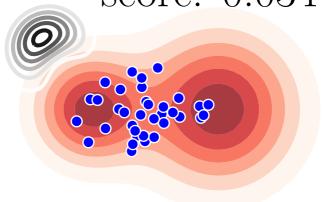
$$score(\mathbf{v}) = \frac{witness^2(\mathbf{v})}{noise(\mathbf{v})}.$$



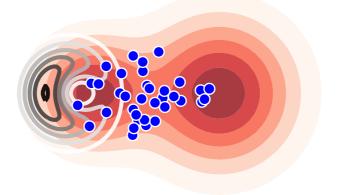
$$score(\mathbf{v}) = \frac{witness^2(\mathbf{v})}{noise(\mathbf{v})}.$$



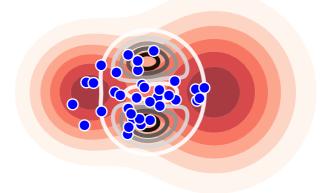
$$score(\mathbf{v}) = \frac{witness^2(\mathbf{v})}{noise(\mathbf{v})}.$$



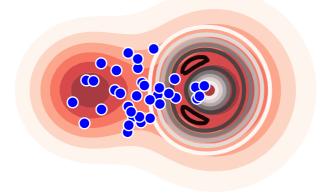
$$score(\mathbf{v}) = \frac{witness^2(\mathbf{v})}{noise(\mathbf{v})}.$$



$$score(\mathbf{v}) = \frac{witness^2(\mathbf{v})}{noise(\mathbf{v})}.$$



$$score(\mathbf{v}) = \frac{witness^2(\mathbf{v})}{noise(\mathbf{v})}.$$



$$score(\mathbf{v}) = \frac{witness^2(\mathbf{v})}{noise(\mathbf{v})}.$$

Theory

- 1 What is $T_p k_v$?
- 2 Test statistic
- 3 Distributions of the test statistic, test threshold.
- What does $\mathbf{v}^* = \arg \max_{\mathbf{v}} \operatorname{score}(\mathbf{v})$ do theoretically?

 $\text{Recall witness}(\mathbf{v}) = \mathbb{E}_{\mathbf{x} \sim q}(T_p k_{\mathbf{v}})(\mathbf{x}) - \mathbb{E}_{\mathbf{y} \sim p}(T_p k_{\mathbf{v}})(\mathbf{y})$

Recall witness(
$$\mathbf{v}$$
) = $\mathbb{E}_{\mathbf{x} \sim q}(T_p k_{\mathbf{v}})(\mathbf{x}) - \mathbb{E}_{\mathbf{y} \sim p}(T_p k_{\mathbf{v}})(\mathbf{y})$

$$(T_p k_{\mathbf{v}})(\mathbf{y}) = rac{1}{p(\mathbf{y})} rac{d}{d\mathbf{y}} [k_{\mathbf{v}}(\mathbf{y}) rac{p}{p}(\mathbf{y})].$$

Then,
$$\mathbb{E}_{\mathbf{y} \sim p}(T_p k_{\mathbf{v}})(\mathbf{y}) = 0.$$

[Liu et al., 2016, Chwialkowski et al., 2016]

Recall witness(
$$\mathbf{v}$$
) = $\mathbb{E}_{\mathbf{x} \sim q}(T_p k_{\mathbf{v}})(\mathbf{x}) - \mathbb{E}_{\mathbf{y} \sim p}(T_p k_{\mathbf{v}})(\mathbf{y})$

$$(T_p k_{\mathbf{v}})(\mathbf{y}) = \frac{1}{p(\mathbf{y})} \frac{d}{d\mathbf{y}} [k_{\mathbf{v}}(\mathbf{y}) p(\mathbf{y})].$$
 Normalizer cancels

Then, $\mathbb{E}_{\mathbf{y} \sim p}(T_p k_{\mathbf{v}})(\mathbf{y}) = 0.$

[Liu et al., 2016, Chwialkowski et al., 2016]

Recall witness(
$$\mathbf{v}$$
) = $\mathbb{E}_{\mathbf{x} \sim q}(T_p k_{\mathbf{v}})(\mathbf{x}) - \mathbb{E}_{\mathbf{y} \sim p}(T_p k_{\mathbf{v}})(\mathbf{y})$

$$(T_p k_{\mathbf{v}})(\mathbf{y}) = \frac{1}{p(\mathbf{y})} \frac{d}{d\mathbf{y}} [k_{\mathbf{v}}(\mathbf{y}) p(\mathbf{y})].$$
 Normalizer cancels

Then,
$$\mathbb{E}_{\mathbf{y} \sim p}(T_p k_{\mathbf{v}})(\mathbf{y}) = 0.$$

[Liu et al., 2016, Chwialkowski et al., 2016]

$$\mathbb{E}_{\mathbf{y} \sim p} \left[\left(T_p k_{\mathbf{v}} \right) (\mathbf{y}) \right]$$

Recall witness(
$$\mathbf{v}$$
) = $\mathbb{E}_{\mathbf{x} \sim q}(T_p k_{\mathbf{v}})(\mathbf{x}) - \mathbb{E}_{\mathbf{y} \sim p}(T_p k_{\mathbf{v}})(\mathbf{y})$

$$(T_p k_{\mathbf{v}})(\mathbf{y}) = \frac{1}{p(\mathbf{y})} \frac{d}{d\mathbf{y}} [k_{\mathbf{v}}(\mathbf{y}) p(\mathbf{y})].$$
 Normalizer cancels

Then, $\mathbb{E}_{\mathbf{y} \sim p}(T_p k_{\mathbf{v}})(\mathbf{y}) = 0.$

[Liu et al., 2016, Chwialkowski et al., 2016]

$$\mathbb{E}_{\mathbf{y} \sim p} \left[(T_p k_{\mathbf{v}})(\mathbf{y})
ight] = \int_{-\infty}^{\infty} \left[(T_p k_{\mathbf{v}})(\mathbf{y})
ight] p(\mathbf{y}) \mathrm{d}\mathbf{y}$$

Recall witness(
$$\mathbf{v}$$
) = $\mathbb{E}_{\mathbf{x} \sim q}(T_p k_{\mathbf{v}})(\mathbf{x}) - \mathbb{E}_{\mathbf{y} \sim p}(T_p k_{\mathbf{v}})(\mathbf{y})$

$$(T_p k_{\mathbf{v}})(\mathbf{y}) = \frac{1}{p(\mathbf{y})} \frac{d}{d\mathbf{y}} [k_{\mathbf{v}}(\mathbf{y}) p(\mathbf{y})].$$
 Normalizer cancels

Then,
$$\mathbb{E}_{\mathbf{y} \sim p}(T_p k_{\mathbf{v}})(\mathbf{y}) = 0.$$

[Liu et al., 2016, Chwialkowski et al., 2016]

$$\mathbb{E}_{\mathbf{y} \sim p}\left[(T_p k_{\mathbf{v}})(\mathbf{y})
ight] = \int_{-\infty}^{\infty} \left[rac{1}{p(\mathbf{y})} rac{d}{d\mathbf{y}} [k_{\mathbf{v}}(\mathbf{y}) p(\mathbf{y})]
ight] p(\mathbf{y}) \, \mathrm{d}\mathbf{y}$$

Recall witness(
$$\mathbf{v}$$
) = $\mathbb{E}_{\mathbf{x} \sim q}(T_p k_{\mathbf{v}})(\mathbf{x}) - \mathbb{E}_{\mathbf{y} \sim p}(T_p k_{\mathbf{v}})(\mathbf{y})$

$$(T_p k_{\mathbf{v}})(\mathbf{y}) = \frac{1}{p(\mathbf{y})} \frac{d}{d\mathbf{y}} [k_{\mathbf{v}}(\mathbf{y}) p(\mathbf{y})].$$
 Normalizer cancels

Then,
$$\mathbb{E}_{\mathbf{y} \sim p}(T_p k_{\mathbf{v}})(\mathbf{y}) = 0.$$

[Liu et al., 2016, Chwialkowski et al., 2016]

$$\mathbb{E}_{\mathbf{y} \sim p}\left[(T_p k_{\mathbf{v}})(\mathbf{y})
ight] = \int_{-\infty}^{\infty} \left[rac{1}{p(\mathbf{y})} rac{d}{d\mathbf{y}} [k_{\mathbf{v}}(\mathbf{y}) p(\mathbf{y})]
ight] p(\mathbf{y}) \, \mathrm{d}\mathbf{y}$$

Recall witness(
$$\mathbf{v}$$
) = $\mathbb{E}_{\mathbf{x} \sim q}(T_p k_{\mathbf{v}})(\mathbf{x}) - \mathbb{E}_{\mathbf{y} \sim p}(T_p k_{\mathbf{v}})(\mathbf{y})$

$$(T_p k_{\mathbf{v}})(\mathbf{y}) = \frac{1}{p(\mathbf{y})} \frac{d}{d\mathbf{y}} [k_{\mathbf{v}}(\mathbf{y}) p(\mathbf{y})].$$
 Normalizer cancels

Then,
$$\mathbb{E}_{\mathbf{y} \sim p}(T_p k_{\mathbf{v}})(\mathbf{y}) = 0.$$

[Liu et al., 2016, Chwialkowski et al., 2016]

$$egin{aligned} \mathbb{E}_{\mathbf{y} \sim p}\left[(T_p k_{\mathbf{v}})(\mathbf{y})
ight] &= \int_{-\infty}^{\infty} \left[rac{1}{p(\mathbf{y})} rac{d}{d\mathbf{y}} [k_{\mathbf{v}}(\mathbf{y}) p(\mathbf{y})]
ight] p(\mathbf{y}) \, \mathrm{d}\mathbf{y} \ &= \int_{-\infty}^{\infty} rac{d}{d\mathbf{y}} [k_{\mathbf{v}}(\mathbf{y}) p(\mathbf{y})] \, \mathrm{d}\mathbf{y} \end{aligned}$$

Recall witness(
$$\mathbf{v}$$
) = $\mathbb{E}_{\mathbf{x} \sim q}(T_p k_{\mathbf{v}})(\mathbf{x}) - \mathbb{E}_{\mathbf{y} \sim p}(T_p k_{\mathbf{v}})(\mathbf{y})$

$$(T_p k_{\mathbf{v}})(\mathbf{y}) = \frac{1}{p(\mathbf{y})} \frac{d}{d\mathbf{y}} [k_{\mathbf{v}}(\mathbf{y}) p(\mathbf{y})].$$
 Normalizer cancels

Then,
$$\mathbb{E}_{\mathbf{y} \sim p}(T_p k_{\mathbf{v}})(\mathbf{y}) = 0.$$

[Liu et al., 2016, Chwialkowski et al., 2016]

$$egin{aligned} \mathbb{E}_{\mathbf{y} \sim p} \left[(T_p k_{\mathbf{v}})(\mathbf{y})
ight] &= \int_{-\infty}^{\infty} \left[rac{1}{p(\mathbf{y})} rac{d}{d\mathbf{y}} [k_{\mathbf{v}}(\mathbf{y}) p(\mathbf{y})]
ight] p(\mathbf{y}) \mathrm{d}\mathbf{y} \ &= \int_{-\infty}^{\infty} rac{d}{d\mathbf{y}} [k_{\mathbf{v}}(\mathbf{y}) p(\mathbf{y})] \, \mathrm{d}\mathbf{y} \ &= [k_{\mathbf{v}}(\mathbf{y}) p(\mathbf{y})]_{\mathbf{y} = -\infty}^{\mathbf{y} = \infty} \end{aligned}$$

(1) What is $T_p k_v$?

Recall witness(
$$\mathbf{v}$$
) = $\mathbb{E}_{\mathbf{x} \sim q}(T_p k_{\mathbf{v}})(\mathbf{x}) - \mathbb{E}_{\mathbf{y} \sim p}(T_p k_{\mathbf{v}})(\mathbf{y})$

$$(T_p k_{\mathbf{v}})(\mathbf{y}) = \frac{1}{p(\mathbf{y})} \frac{d}{d\mathbf{y}} [k_{\mathbf{v}}(\mathbf{y}) p(\mathbf{y})].$$
 Normalizer cancels

Then,
$$\mathbb{E}_{\mathbf{y} \sim p}(T_p k_{\mathbf{v}})(\mathbf{y}) = 0.$$

[Liu et al., 2016, Chwialkowski et al., 2016]

Proof:

$$\mathbb{E}_{\mathbf{y} \sim p} \left[(T_p k_{\mathbf{v}})(\mathbf{y}) \right] = \int_{-\infty}^{\infty} \left[\frac{1}{p(\mathbf{y})} \frac{d}{d\mathbf{y}} [k_{\mathbf{v}}(\mathbf{y}) p(\mathbf{y})] \right] p(\mathbf{y}) d\mathbf{y}$$

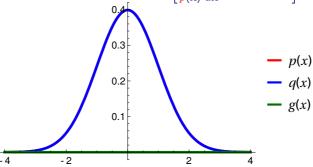
$$= \int_{-\infty}^{\infty} \frac{d}{d\mathbf{y}} [k_{\mathbf{v}}(\mathbf{y}) p(\mathbf{y})] d\mathbf{y}$$

$$= [k_{\mathbf{v}}(\mathbf{y}) p(\mathbf{y})]_{\mathbf{y} = -\infty}^{\mathbf{y} = \infty}$$

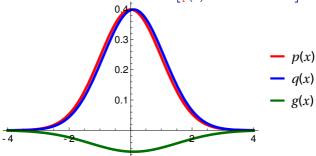
$$= 0$$

 $(ext{assume lim}_{|\mathbf{y}| o \infty} \ k_{\mathbf{v}}(\mathbf{y}) p(\mathbf{y}))$

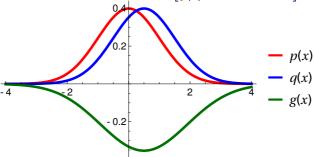
■ Recall Stein witness: $\mathbf{g}(\mathbf{v}) := \mathbb{E}_{\mathbf{x} \sim q} \left[\frac{1}{p(\mathbf{x})} \frac{d}{d\mathbf{x}} [k_{\mathbf{v}}(\mathbf{x}) p(\mathbf{x})] \right].$



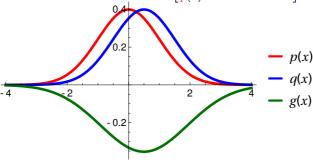
■ Recall Stein witness: $\mathbf{g}(\mathbf{v}) := \mathbb{E}_{\mathbf{x} \sim q} \left[\frac{1}{p(\mathbf{x})} \frac{d}{d\mathbf{x}} [k_{\mathbf{v}}(\mathbf{x}) p(\mathbf{x})] \right].$



■ Recall Stein witness: $\mathbf{g}(\mathbf{v}) := \mathbb{E}_{\mathbf{x} \sim q} \left[\frac{1}{p(\mathbf{x})} \frac{d}{d\mathbf{x}} [k_{\mathbf{v}}(\mathbf{x}) p(\mathbf{x})] \right].$



■ Recall Stein witness: $g(\mathbf{v}) := \mathbb{E}_{\mathbf{x} \sim q} \left[\frac{1}{p(\mathbf{x})} \frac{d}{d\mathbf{x}} [k_{\mathbf{v}}(\mathbf{x}) p(\mathbf{x})] \right].$



- FSSD statistic: Evaluate g^2 at J test locations $V = \{\mathbf{v}_1, \dots, \mathbf{v}_J\}$.
- Population FSSD

$$ext{FSSD}^2 = rac{1}{dJ} \sum_{j=1}^J \|\mathbf{g}(\mathbf{v}_j)\|_2^2.$$

■ Unbiased estimator $\widehat{\text{FSSD}^2}$ computable in $\mathcal{O}(d^2Jn)$ time. (d = input dimension)

(2) FSSD is a Discrepancy Measure

■ $FSSD^2 = \frac{1}{dJ} \sum_{j=1}^{J} ||g(\mathbf{v}_j)||_2^2$.

Theorem 1 (FSSD is a discrepancy measure).

Main conditions:

- 1 (Nice kernel) Kernel k is C_0 -universal, and real analytic e.g., Gaussian kernel.
- 2 (Vanishing boundary) $\lim_{\|\mathbf{x}\| \to \infty} p(\mathbf{x}) k_{\mathbf{v}}(\mathbf{x}) = \mathbf{0}$.
- 3 (Avoid "blind spots") Locations $v_1, \ldots, v_J \sim \eta$ which has a density.

Then, for any $J \geq 1$, η -almost surely,

$$FSSD^2 = 0 \iff p = q$$
.

Summary: Evaluating the witness at random locations is sufficient to detect the discrepancy between p, q.

$$ext{Recall } \mathbf{g}(\mathbf{v}) := \mathbb{E}_{\mathbf{x} \sim q} \left[rac{1}{p(\mathbf{x})} rac{d}{d\mathbf{x}} [k_{\mathbf{v}}(\mathbf{x}) p(\mathbf{x})]
ight].$$

$$g(\boldsymbol{v}) = rac{oldsymbol{v} \exp\left(-rac{v^2}{2+2\sigma_q^2}
ight)\left(\sigma_q^2-1
ight)}{\left(1+\sigma_q^2
ight)^{3/2}}$$

- If v = 0, then $FSSD^2 = g^2(v) = 0$ regardless of σ_q^2 .
- If $g \neq 0$, and k is real analytic, $R = \{v \mid g(v) = 0\}$ (blind spots) has 0 Lebesgue measure.
- So, if $v \sim$ a distribution with a density, then $v \notin R$.

$$ext{Recall } \mathbf{g}(\mathbf{v}) := \mathbb{E}_{\mathbf{x} \sim q} \left[rac{1}{p(\mathbf{x})} rac{d}{d\mathbf{x}} [k_{\mathbf{v}}(\mathbf{x}) p(\mathbf{x})]
ight].$$

$$g(v) = \frac{v \exp\left(-\frac{v^2}{2+2\sigma_q^2}\right) \left(\sigma_q^2 - 1\right)}{\left(1 + \sigma_q^2\right)^{3/2}}$$

$$0.25$$

$$0.00$$

$$-0.25$$

$$-5.0$$

$$-2.5$$

$$0.00$$

$$0.00$$

- If v = 0, then $FSSD^2 = g^2(v) = 0$ regardless of σ_q^2 .
- If $g \neq 0$, and k is real analytic, $R = \{v \mid g(v) = 0\}$ (blind spots) has 0 Lebesgue measure.
- So, if $v \sim$ a distribution with a density, then $v \notin R$.

$$ext{Recall } \mathbf{g}(\mathbf{v}) := \mathbb{E}_{\mathbf{x} \sim q} \left[rac{1}{p(\mathbf{x})} rac{d}{d\mathbf{x}} [k_{\mathbf{v}}(\mathbf{x}) p(\mathbf{x})]
ight].$$

$$g(v) = \frac{v \exp\left(-\frac{v^2}{2+2\sigma_q^2}\right) \left(\sigma_q^2 - 1\right)}{\left(1 + \sigma_q^2\right)^{3/2}}$$

$$0.25$$

$$0.00$$

$$-0.25$$

$$-5.0$$

$$-2.5$$

$$0.00$$

$$0.00$$

- If v = 0, then $FSSD^2 = g^2(v) = 0$ regardless of σ_q^2 .
- If $g \neq 0$, and k is real analytic, $R = \{v \mid g(v) = 0\}$ (blind spots) has 0 Lebesgue measure.
- So, if $v \sim$ a distribution with a density, then $v \notin R$.

$$ext{Recall } \mathbf{g}(\mathbf{v}) := \mathbb{E}_{\mathbf{x} \sim q} \left[rac{1}{p(\mathbf{x})} rac{d}{d\mathbf{x}} [k_{\mathbf{v}}(\mathbf{x}) p(\mathbf{x})]
ight].$$

$$g(\mathbf{v}) = \frac{\mathbf{v} \exp\left(-\frac{\mathbf{v}^2}{2+2\sigma_q^2}\right) \left(\sigma_q^2 - 1\right)}{\left(1 + \sigma_q^2\right)^{3/2}}$$

$$0.25$$

$$0.00$$

$$-0.25$$

- If v = 0, then $FSSD^2 = g^2(v) = 0$ regardless of σ_q^2 .
- If $g \neq 0$, and k is real analytic, $R = \{v \mid g(v) = 0\}$ (blind spots) has 0 Lebesgue measure.
- So, if $v \sim$ a distribution with a density, then $v \notin R$.

$$ext{Recall } \mathbf{g}(\mathbf{v}) := \mathbb{E}_{\mathbf{x} \sim q} \left[rac{1}{p(\mathbf{x})} rac{d}{d\mathbf{x}} [k_{\mathbf{v}}(\mathbf{x}) p(\mathbf{x})]
ight].$$

$$g(\mathbf{v}) = \frac{\mathbf{v} \exp\left(-\frac{\mathbf{v}^2}{2+2\sigma_q^2}\right) \left(\sigma_q^2 - 1\right)}{\left(1 + \sigma_q^2\right)^{3/2}}$$

$$0.25$$

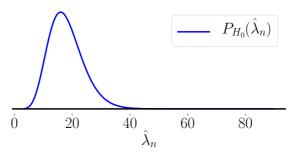
$$0.00$$

$$-0.25$$

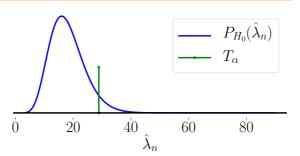
$$-5.0 \quad -2.5 \quad 0.0 \quad 2.5 \quad 5.0$$

- If v = 0, then $FSSD^2 = g^2(v) = 0$ regardless of σ_q^2 .
- If $g \neq 0$, and k is real analytic, $R = \{v \mid g(v) = 0\}$ (blind spots) has 0 Lebesgue measure.
- So, if $v \sim$ a distribution with a density, then $v \notin R$.

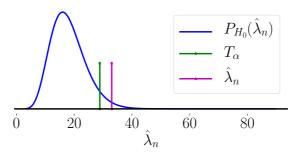
(3) Asymptotic Distributions of $\hat{\lambda}_n := n \text{FSSD}^2$



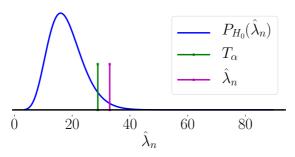
(3) Asymptotic Distributions of $\hat{\lambda}_n := n \text{FSSD}^2$



(3) Asymptotic Distributions of $\hat{\lambda}_n := n \text{FSSD}^2$



(3) Asymptotic Distributions of $\hat{\lambda}_n := n \widehat{\text{FSSD}}^2$



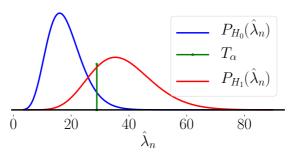
■ Under $H_0: p = q$, asymptotically

$$\hat{\lambda}_n := n \widehat{ ext{FSSD}^2} \overset{d}{ o} \sum_{i=1}^{dJ} (Z_i^2 - 1) \omega_i,$$

 $\blacksquare \ \{\omega_i\}_{i=1}^{dJ}$ are non-negative, computable quantities.

$$Z_1,\ldots,Z_{dJ}\stackrel{i.i.d.}{\sim}\mathcal{N}(0,1)$$

(3) Asymptotic Distributions of $\hat{\lambda}_n := n \widetilde{\text{FSSD}}^2$



■ Under $H_0: p = q$, asymptotically

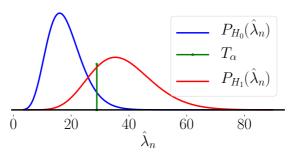
$$\hat{\lambda}_n := n \widehat{ ext{FSSD}^2} \overset{d}{ o} \sum_{i=1}^{dJ} (Z_i^2 - 1) \omega_i,$$

■ $\{\omega_i\}_{i=1}^{dJ}$ are non-negative, computable quantities.

$$Z_1,\ldots,Z_{dJ}\stackrel{i.i.d.}{\sim}\mathcal{N}(0,1)$$

■ Under $H_1: p \neq q$, asymptotically $\sqrt{n}(\widehat{\text{FSSD}}^2 - \text{FSSD}^2) \stackrel{d}{\to} \mathcal{N}(0, \sigma_{H_1}^2)$.

(3) Asymptotic Distributions of $\hat{\lambda}_n := n \tilde{\mathsf{FSSD}}^2$



■ Under $H_0: p = q$, asymptotically

$$\hat{\lambda}_n := n \widehat{ ext{FSSD}^2} \overset{d}{
ightarrow} \sum_{i=1}^{dJ} (Z_i^2 - 1) \omega_i,$$

lacksquare $\{\omega_i\}_{i=1}^{dJ}$ are non-negative, computable quantities.

$$Z_1,\ldots,Z_{dJ}\stackrel{i.i.d.}{\sim}\mathcal{N}(0,1)$$

■ Under $H_1: p \neq q$, asymptotically $\sqrt{n}(\widehat{\text{FSSD}}^2 - \text{FSSD}^2) \stackrel{d}{\to} \mathcal{N}(0, \sigma_{H_1}^2)$.

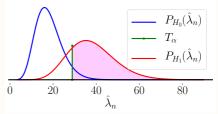
(4) What Does arg max_v score(v) Do?

Proposition 1 (Asymptotic test power).

For large n, the test power $\mathbb{P}(reject \ H_0 \mid H_1 \ true) =$

$$egin{aligned} \mathbb{P}_{H_1}(n\widehat{ t FSSD^2} > T_lpha) \ &pprox \Phi\left(\sqrt{n}rac{ t FSSD^2}{\sigma_{H_1}} - rac{T_lpha}{\sqrt{n}\sigma_{H_1}}
ight), \end{aligned}$$

where $\Phi = CDF$ of $\mathcal{N}(0,1)$.



For large n, the 2^{nd} term dominates.

$$rg \max_{V,\sigma_k^2} \mathbb{P}_{H_1}(n\widehat{ t FSSD}^2 > T_lpha) pprox rg \max_{V,\sigma_k^2} \left[rac{\widehat{ t FSSD}^2}{\widehat{\sigma_{H_1}}} = \operatorname{score}(V,\sigma_k^2)
ight]$$

Maximize score $(V, \sigma_k^2) \iff$ Maximize test power

■ In practice, split $\{\mathbf{x}_i\}_{i=1}^n$ into independent training/test sets. Optimize on tr. Goodness-of-fit test on te.

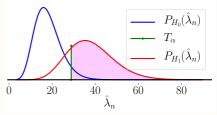
(4) What Does arg max_v score(v) Do?

Proposition 1 (Asymptotic test power).

For large n, the test power $\mathbb{P}(reject \ H_0 \mid H_1 \ true) =$

$$egin{aligned} \mathbb{P}_{H_1}(n\widehat{ t FSSD^2} > T_{lpha}) \ &pprox \Phi\left(\sqrt{n}rac{ t FSSD^2}{\sigma_{H_1}} - rac{T_{lpha}}{\sqrt{n}\sigma_{H_1}}
ight), \end{aligned}$$

where $\Phi = CDF$ of $\mathcal{N}(0,1)$.



For large n, the 2^{nd} term dominates.

$$rg \max_{V,\sigma_k^2} \mathbb{P}_{H_1}(n\widehat{ t FSSD}^2 > T_{m{lpha}}) pprox rg \max_{V,\sigma_k^2} \left[rac{\widehat{ t FSSD}^2}{\widehat{\sigma_{H_1}}} = ext{score}(\,V,\sigma_k^2)
ight].$$

Maximize score $(V, \sigma_k^2) \iff$ Maximize test power

■ In practice, split $\{x_i\}_{i=1}^n$ into independent training/test sets. Optimize on tr. Goodness-of-fit test on te.

14/25

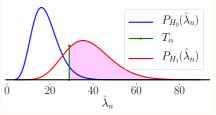
(4) What Does arg max_v score(v) Do?

Proposition 1 (Asymptotic test power).

For large n, the test power $\mathbb{P}(reject \ H_0 \mid H_1 \ true) =$

$$egin{aligned} \mathbb{P}_{H_1}(n\widehat{ t FSSD^2} > T_{lpha}) \ &pprox \Phi\left(\sqrt{n}rac{ t FSSD^2}{\sigma_{H_1}} - rac{T_{lpha}}{\sqrt{n}\sigma_{H_1}}
ight), \end{aligned}$$

where $\Phi = CDF$ of $\mathcal{N}(0,1)$.



For large n, the 2^{nd} term dominates.

$$rg \max_{V,\sigma_k^2} \mathbb{P}_{H_1}(n\widehat{ t FSSD}^2 > T_{m{lpha}}) pprox rg \max_{V,\sigma_k^2} \left[rac{\widehat{ t FSSD}^2}{\widehat{\sigma_{H_1}}} = ext{score}(\,V,\sigma_k^2)
ight].$$

Maximize score $(V, \sigma_k^2) \iff$ Maximize test power

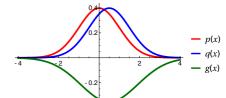
■ In practice, split $\{\mathbf{x}_i\}_{i=1}^n$ into independent training/test sets. Optimize on tr. Goodness-of-fit test on te.

Related Works

Kernel Stein Discrepancy (KSD) [Liu et al., 2016, Chwialkowski et al., 2016]

Recall Stein witness:

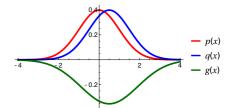
$$\mathbf{g}(\mathbf{v}) := \mathbb{E}_{\mathbf{x} \sim q} \left[\frac{1}{p(\mathbf{x})} \frac{d}{d\mathbf{x}} [k_{\mathbf{v}}(\mathbf{x}) p(\mathbf{x})] \right].$$

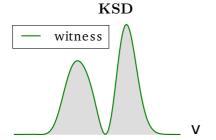


Kernel Stein Discrepancy (KSD) [Liu et al., 2016, Chwialkowski et al., 2016]

Recall Stein witness:

$$\mathbf{g}(\mathbf{v}) := \mathbb{E}_{\mathbf{x} \sim q} \left[\frac{1}{p(\mathbf{x})} \frac{d}{d\mathbf{x}} [k_{\mathbf{v}}(\mathbf{x}) p(\mathbf{x})] \right].$$





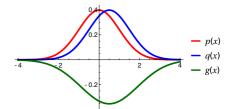
$$\text{KSD}^2 = \|\mathbf{g}\|_{\text{RKHS}}^2 \text{ (RKHS norm)}.$$

Good when the difference between p, q is spatially diffuse.

Kernel Stein Discrepancy (KSD) [Liu et al., 2016, Chwialkowski et al., 2016]

Recall Stein witness:

$$\mathbf{g}(\mathbf{v}) := \mathbb{E}_{\mathbf{x} \sim q} \left[\frac{1}{p(\mathbf{x})} \frac{d}{d\mathbf{x}} [k_{\mathbf{v}}(\mathbf{x}) p(\mathbf{x})] \right].$$

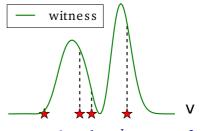


KSD

$$KSD^2 = \|g\|_{RKHS}^2$$
 (RKHS norm).

Good when the difference between p, q is spatially diffuse.

Proposed FSSD



$$FSSD^2 = \frac{1}{dJ} \sum_{j=1}^{J} ||\mathbf{g}(\mathbf{v}_j)||_2^2.$$

Good when the difference between p, q is local.

Kernel Stein Discrepancy (KSD)

Closed-form expression for KSD: [Liu et al., 2016, Chwialkowski et al., 2016]

$$\mathrm{KSD}^2 = \|\mathbf{g}\|_{\mathrm{RKHS}}^2 = \underbrace{\mathbb{E}_{\mathbf{x} \sim q} \mathbb{E}_{\mathbf{y} \sim q}}_{\mathbf{double \ sums}} h_{\boldsymbol{p}}(\mathbf{x}, \mathbf{y})$$

where

$$egin{aligned} h_{m{p}}(\mathbf{x},\mathbf{y}) &:= \left[\partial_{\mathbf{x}} \log m{p}(\mathbf{x})
ight] k(\mathbf{x},\mathbf{y}) \left[\partial_{\mathbf{y}} \log m{p}(\mathbf{y})
ight] \ &+ \left[\partial_{\mathbf{y}} \log m{p}(\mathbf{y})
ight] \partial_{\mathbf{x}} k(\mathbf{x},\mathbf{y}) \ &+ \left[\partial_{\mathbf{x}} \log m{p}(\mathbf{x})
ight] \partial_{\mathbf{y}} k(\mathbf{x},\mathbf{y}) \ &+ \partial_{\mathbf{x}} \partial_{\mathbf{y}} k(\mathbf{x},\mathbf{y}) \end{aligned}$$

and k is a kernel.

■ X The "double sums" make it $\mathcal{O}(d^2n^2)$. Slow.

Kernel Stein Discrepancy (KSD)

Closed-form expression for KSD: [Liu et al., 2016, Chwialkowski et al., 2016]

$$\mathrm{KSD}^2 = \|\mathbf{g}\|_{\mathrm{RKHS}}^2 = \underbrace{\mathbb{E}_{\mathbf{x} \sim q} \mathbb{E}_{\mathbf{y} \sim q}}_{\text{double sums}} \, h_{p}(\mathbf{x}, \mathbf{y})$$

where

$$egin{aligned} h_{m{p}}(\mathbf{x},\mathbf{y}) &:= \left[\partial_{\mathbf{x}} \log m{p}(\mathbf{x})
ight] k(\mathbf{x},\mathbf{y}) \left[\partial_{\mathbf{y}} \log m{p}(\mathbf{y})
ight] \ &+ \left[\partial_{\mathbf{y}} \log m{p}(\mathbf{y})
ight] \partial_{\mathbf{x}} k(\mathbf{x},\mathbf{y}) \ &+ \left[\partial_{\mathbf{x}} \log m{p}(\mathbf{x})
ight] \partial_{\mathbf{y}} k(\mathbf{x},\mathbf{y}) \ &+ \partial_{\mathbf{x}} \partial_{\mathbf{y}} k(\mathbf{x},\mathbf{y}) \end{aligned}$$

and k is a kernel.

■ X The "double sums" make it $\mathcal{O}(d^2n^2)$. Slow.

Linear-Time Kernel Stein Discrepancy (LKS)

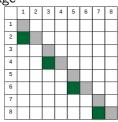
- [Liu et al., 2016] also proposed a linear version of KSD.
- For $\{\mathbf{x}_i\}_{i=1}^n \sim q$, KSD test statistic is

$$rac{2}{n(n-1)}\sum_{i < j} h_p(\mathbf{x}_i, \mathbf{x}_j).$$

.~	ь								
		1	2	3	4	5	6	7	8
	1								
	2								
	3								
	4								
	5								
	6								
	7								
	8								
		,							

■ LKS test statistic is a "running average"

$$rac{2}{n}\sum_{i=1}^{n/2}h_p(\mathbf{x}_{2i-1},\mathbf{x}_{2i}).$$



- Both unbiased. LKS has $\mathcal{O}(d^2n)$ runtime. Same as proposed FSSD.
- X LKS has high variance. Poor test power.

Simulation Settings

$$lacksquare$$
 Gaussian kernel $k(\mathbf{x},\mathbf{v}) = \exp\left(-rac{\|\mathbf{x}-\mathbf{v}\|_2^2}{2\sigma_k^2}
ight)$

	Method	Description
1 2	FSSD-rand	Proposed. With optimization. $J = 5$. Proposed. Random test locations.
		Quadratic-time kernel Stein discrepancy [Liu et al., 2016, Chwialkowski et al., 2016]
		Linear-time running average version of KSD.
	MMD-opt	MMD two-sample test [Gretton et al., 2012]. With optimization.
)	ME-test	Mean Embeddings two-sample test [Jitkrittum et al., 2016]. With optimization.

- \blacksquare Two-sample tests need to draw sample from p.
- Tests with optimization use 20% of the data.
- Significance level $\alpha = 0.05$.

Simulation Settings

lacksquare Gaussian kernel $k(\mathbf{x},\mathbf{v}) = \exp\left(-rac{\|\mathbf{x}-\mathbf{v}\|_2^2}{2\sigma_k^2}
ight)$

	Method	Description	
1 2	FSSD-opt FSSD-rand	Proposed. With optimization. $J = 5$. Proposed. Random test locations.	
3	KSD LKS	[Liu et al., 2016, Chwialkowski et al., 2016]	
5	MMD-opt	MMD two-sample test [Gretton et al., 2012]. With optimization.	
6	ME-test	Mean Embeddings two-sample test [Jitkrittum et al., 2016]. With optimization.	

- \blacksquare Two-sample tests need to draw sample from p.
- Tests with optimization use 20% of the data.
- Significance level $\alpha = 0.05$.

Simulation Settings

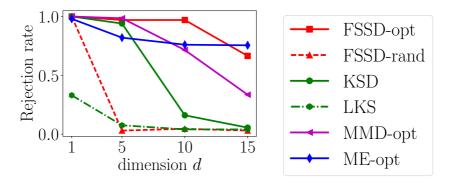
lacksquare Gaussian kernel $k(\mathbf{x},\mathbf{v}) = \exp\left(-rac{\|\mathbf{x}-\mathbf{v}\|_2^2}{2\sigma_k^2}
ight)$

	Method	Description
1 2	FSSD-opt FSSD-rand	Proposed. With optimization. $J = 5$. Proposed. Random test locations.
3 4	KSD LKS	Quadratic-time kernel Stein discrepancy [Liu et al., 2016, Chwialkowski et al., 2016] Linear-time running average version of KSD.
5	MMD-opt MMD two-sample test [Gretton et al., 2012]. With optimization. Mean Embeddings two-sample test	
6	IVI E-test	[Jitkrittum et al., 2016]. With optimization.

- Two-sample tests need to draw sample from p.
- Tests with optimization use 20% of the data.
- Significance level $\alpha = 0.05$.

Gaussian Vs. Laplace

- p = Gaussian. q = Laplace. Same mean and variance. High-order moments differ.
- Sample size n = 1000.



- Optimization increases the power.
- Two-sample tests can perform well in this case (p, q) clearly differ.

p(x) is the marginal of

$$p(\mathbf{x}, \mathbf{h}) = \frac{1}{Z} \exp\left(\mathbf{x}^{\top} \mathbf{B} \mathbf{h} + \mathbf{b}^{\top} \mathbf{x} + \mathbf{c}^{\top} \mathbf{x} - \frac{1}{2} \|\mathbf{x}\|^{2}\right),$$

where $\mathbf{x} \in \mathbb{R}^{50}$, $\mathbf{h} \in \{\pm 1\}^{40}$ is latent. Randomly pick $\mathbf{B}, \mathbf{b}, \mathbf{c}$.

- $\mathbf{q}(\mathbf{x}) = p(\mathbf{x})$ with i.i.d. $\mathcal{N}(0, \sigma_{per})$ noise added to all entries of B.
- Sample size n = 1000.

p(x) is the marginal of

$$p(\mathbf{x}, \mathbf{h}) = \frac{1}{Z} \exp\left(\mathbf{x}^{\top} \mathbf{B} \mathbf{h} + \mathbf{b}^{\top} \mathbf{x} + \mathbf{c}^{\top} \mathbf{x} - \frac{1}{2} ||\mathbf{x}||^2\right),$$

where $\mathbf{x} \in \mathbb{R}^{50}$, $\mathbf{h} \in \{\pm 1\}^{40}$ is latent. Randomly pick $\mathbf{B}, \mathbf{b}, \mathbf{c}$.

- q(x) = p(x) with i.i.d. $\mathcal{N}(0, \sigma_{per})$ noise added to all entries of B.
- Sample size n = 1000.

p(x) is the marginal of

$$p(\mathbf{x}, \mathbf{h}) = \frac{1}{Z} \exp\left(\mathbf{x}^{\top} \mathbf{B} \mathbf{h} + \mathbf{b}^{\top} \mathbf{x} + \mathbf{c}^{\top} \mathbf{x} - \frac{1}{2} ||\mathbf{x}||^2\right),$$

where $\mathbf{x} \in \mathbb{R}^{50}$, $\mathbf{h} \in \{\pm 1\}^{40}$ is latent. Randomly pick $\mathbf{B}, \mathbf{b}, \mathbf{c}$.

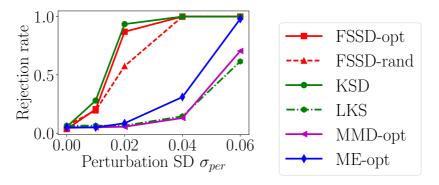
- q(x) = p(x) with i.i.d. $\mathcal{N}(0, \sigma_{per})$ noise added to all entries of B.
- Sample size n = 1000.

p(x) is the marginal of

$$p(\mathbf{x}, \mathbf{h}) = \frac{1}{Z} \exp\left(\mathbf{x}^{\top} \mathbf{B} \mathbf{h} + \mathbf{b}^{\top} \mathbf{x} + \mathbf{c}^{\top} \mathbf{x} - \frac{1}{2} ||\mathbf{x}||^2\right),$$

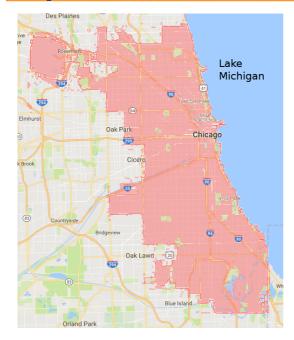
where $\mathbf{x} \in \mathbb{R}^{50}$, $\mathbf{h} \in \{\pm 1\}^{40}$ is latent. Randomly pick $\mathbf{B}, \mathbf{b}, \mathbf{c}$.

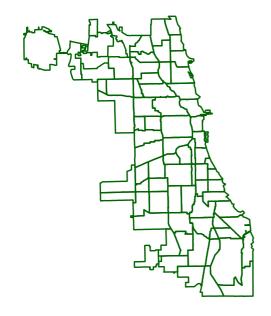
- q(x) = p(x) with i.i.d. $\mathcal{N}(0, \sigma_{per})$ noise added to all entries of B.
- Sample size n = 1000.

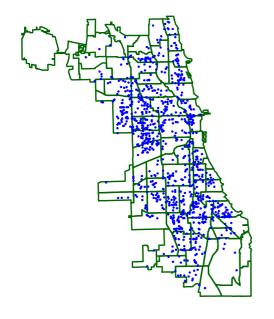


KSD $(\mathcal{O}(n^2))$, FSSD-opt $(\mathcal{O}(n))$ comparable. LKS has low power.

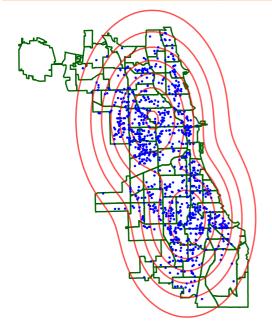
Interpretable Test Locations: Chicago Crime



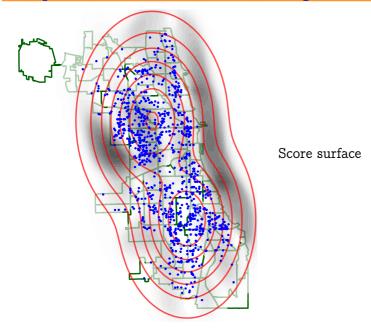


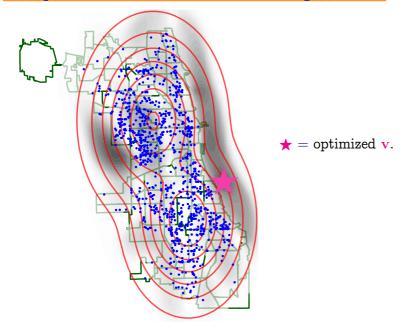


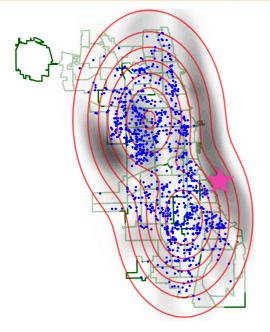
- n = 11957 robbery events in Chicago in 2016.
 - lat/long coordinates = sample from q.
- Model spatial density with Gaussian mixtures.



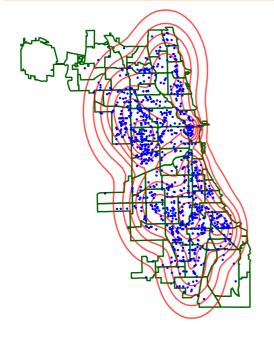
Model p = 2-component Gaussian mixture.



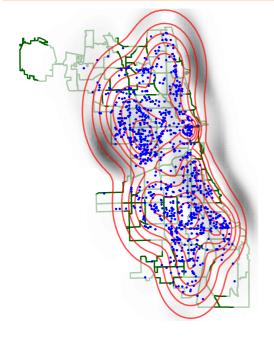




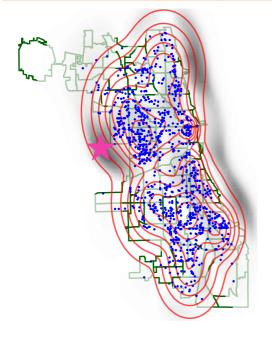
★ = optimized v. No robbery in Lake Michigan.



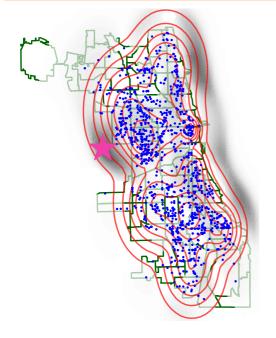
Model p = 10-component Gaussian mixture.



Capture the right tail better.



Still, does not capture the left tail.



Still, does not capture the left tail.

Learned test locations are interpretable.

- Bahadur slope \cong rate of p-value \to 0 under H_1 as $n \to \infty$.
- Measure a test's sensitivity to the departure from H_0 .

$$H_0$$
: $\theta = \mathbf{0}$, H_1 : $\theta \neq \mathbf{0}$.

- Typically $\operatorname{pval}_n \approx \exp\left(-\frac{1}{2}c(\theta)n\right)$ where $c(\theta) > 0$ under H_1 , and $c(\mathbf{0}) = 0$ [Bahadur, 1960].
- $c(\theta)$ higher \Longrightarrow more sensitive. Good.

Bahadur slope

$$c(heta) := -2 \min_{n o \infty} rac{\log \left(1 - F(|T_n|
ight)}{n}$$

where F(t) = CDF of T_n under H_0 .

- Bahadur slope \cong rate of p-value \to 0 under H_1 as $n \to \infty$.
- Measure a test's sensitivity to the departure from H_0 .

$$H_0$$
: $\theta = \mathbf{0}$, H_1 : $\theta \neq \mathbf{0}$.

- Typically $\operatorname{pval}_n \approx \exp\left(-\frac{1}{2}c(\theta)n\right)$ where $c(\theta) > 0$ under H_1 , and c(0) = 0 [Bahadur, 1960].
- $c(\theta)$ higher \Longrightarrow more sensitive. Good.

Bahadur slope

$$c(heta) := -2 \min_{n o \infty} rac{\log \left(1 - F(|T_n|
ight)}{n},$$

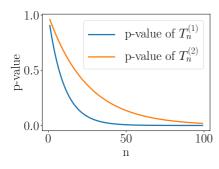
where F(t) = CDF of T_n under H_0 .

- Bahadur slope \cong rate of p-value \to 0 under H_1 as $n \to \infty$.
- Measure a test's sensitivity to the departure from H_0 .

$$H_0$$
: $\theta = \mathbf{0}$,

$$H_1$$
: $\theta \neq \mathbf{0}$.

- Typically $\operatorname{pval}_n \approx \exp\left(-\frac{1}{2}c(\theta)n\right)$ where $c(\theta) > 0$ under H_1 , and c(0) = 0 [Bahadur, 1960].
- $c(\theta)$ higher \Longrightarrow more sensitive. Good.



Bahadur slope

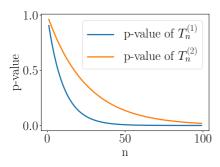
$$c(heta) := -2 \operatorname*{plim}_{n o \infty} rac{\log \left(1 - F(T_n)
ight)}{n},$$

where $F(t) = \text{CDF of } T_n \text{ under } H_0$.

- Bahadur slope \cong rate of p-value \to 0 under H_1 as $n \to \infty$.
- Measure a test's sensitivity to the departure from H_0 .

$$H_0$$
: $\theta = \mathbf{0}$, H_1 : $\theta \neq \mathbf{0}$.

- Typically $\operatorname{pval}_n \approx \exp\left(-\frac{1}{2}c(\theta)n\right)$ where $c(\theta) > 0$ under H_1 , and c(0) = 0 [Bahadur, 1960].
- $c(\theta)$ higher \Longrightarrow more sensitive. Good.



Bahadur slope

$$c(heta) := -2 \min_{n o \infty} rac{\log \left(1 - F(T_n)
ight)}{n},$$

where $F(t) = \text{CDF of } T_n \text{ under } H_0$.

Consider $p = \mathcal{N}(0, 1)$ and $q = \mathcal{N}(\mu_q, 1)$.

Assume J=1 location for $n \text{FSSD}^2$. Gaussian kernel (bandwidth $=\sigma_k^2$)

$$c^{(\mathrm{FSSD})}(\mu_q, v, \sigma_k^2) = \frac{\sigma_k^2 \left(\sigma_k^2 + 2\right)^3 \mu_q^2 e^{\frac{v^2}{\sigma_k^2 + 2} - \frac{\left(v - \mu_q\right)^2}{\sigma_k^2 + 1}}}{\sqrt{\frac{2}{\sigma_k^2} + 1} \left(\sigma_k^2 + 1\right) \left(\sigma_k^6 + 4\sigma_k^4 + \left(v^2 + 5\right)\sigma_k^2 + 2\right)}.$$

■ For LKS, Gaussian kernel (bandwidth = κ^2).

$$c^{(\text{LKS})}(\mu_q,\kappa^2) = \frac{\left(\kappa^2\right)^{5/2} \left(\kappa^2 + 4\right)^{5/2} \mu_q^4}{2\left(\kappa^2 + 2\right) \left(\kappa^8 + 8\kappa^6 + 21\kappa^4 + 20\kappa^2 + 12\right)}$$

Theorem 2 (FSSD is at least two times more efficient).

Fix $\sigma_k^2=1$ for $n \widetilde{\text{FSSD}}^2$. Then, $\forall \mu_q \neq 0$, $\exists v \in \mathbb{R}$, $\forall \kappa^2>0$, we have Bahadur efficiency

$$\frac{c^{(\text{FSSD})}(\mu_q, v, \sigma_k^2)}{c^{(\text{LKS})}(\mu_q, \kappa^2)} > 2.$$

Consider $p = \mathcal{N}(0, 1)$ and $q = \mathcal{N}(\mu_q, 1)$.

■ Assume J = 1 location for $nFSSD^2$. Gaussian kernel (bandwidth = σ_k^2)

$$c^{(\text{FSSD})}(\mu_q, v, \sigma_k^2) = \frac{\sigma_k^2 \left(\sigma_k^2 + 2\right)^3 \mu_q^2 e^{\frac{v^2}{\sigma_k^2 + 2} - \frac{\left(v - \mu_q\right)^2}{\sigma_k^2 + 1}}}{\sqrt{\frac{2}{\sigma_k^2} + 1} \left(\sigma_k^2 + 1\right) \left(\sigma_k^6 + 4\sigma_k^4 + \left(v^2 + 5\right)\sigma_k^2 + 2\right)}.$$

■ For LKS, Gaussian kernel (bandwidth = κ^2).

$$c^{(\text{LKS})}(\mu_q,\kappa^2) = \frac{\left(\kappa^2\right)^{5/2} \left(\kappa^2 + 4\right)^{5/2} \mu_q^4}{2\left(\kappa^2 + 2\right) \left(\kappa^8 + 8\kappa^6 + 21\kappa^4 + 20\kappa^2 + 12\right)}$$

Theorem 2 (FSSD is at least two times more efficient)

Fix $\sigma_k^2 = 1$ for $n \text{FSSD}^2$. Then, $\forall \mu_q \neq 0$, $\exists v \in \mathbb{R}$, $\forall \kappa^2 > 0$, we have Bahadur efficiency

$$\frac{c^{(\text{FSSD})}(\mu_q, v, \sigma_k^2)}{c^{(\text{LKS})}(\mu_q, \kappa^2)} > 2.$$

Consider $p = \mathcal{N}(0, 1)$ and $q = \mathcal{N}(\mu_q, 1)$.

■ Assume J=1 location for $nFSSD^2$. Gaussian kernel (bandwidth = σ_k^2)

$$c^{(\text{FSSD})}(\mu_q, v, \sigma_k^2) = \frac{\sigma_k^2 \left(\sigma_k^2 + 2\right)^3 \mu_q^2 e^{\frac{v^2}{\sigma_k^2 + 2} - \frac{\left(v - \mu_q\right)^2}{\sigma_k^2 + 1}}}{\sqrt{\frac{2}{\sigma_k^2} + 1} \left(\sigma_k^2 + 1\right) \left(\sigma_k^6 + 4\sigma_k^4 + \left(v^2 + 5\right)\sigma_k^2 + 2\right)}.$$

■ For LKS, Gaussian kernel (bandwidth = κ^2).

$$c^{(\text{LKS})}(\mu_q, \kappa^2) = \frac{\left(\kappa^2\right)^{5/2} \left(\kappa^2 + 4\right)^{5/2} \mu_q^4}{2\left(\kappa^2 + 2\right) \left(\kappa^8 + 8\kappa^6 + 21\kappa^4 + 20\kappa^2 + 12\right)}.$$

Theorem 2 (FSSD is at least two times more efficient).

Fix $\sigma_k^2=1$ for $n\widehat{\text{FSSD}}^2$. Then, $\forall \mu_q \neq 0$, $\exists v \in \mathbb{R}$, $\forall \kappa^2>0$, we have Bahadur efficiency

$$rac{c^{(\mathrm{FSSD})}(\mu_q,\,v,\,\sigma_k^2)}{c^{(\mathrm{LKS})}(\mu_q,\,\kappa^2)} > 2.$$

Consider $p = \mathcal{N}(0, 1)$ and $q = \mathcal{N}(\mu_q, 1)$.

■ Assume J=1 location for $nFSSD^2$. Gaussian kernel (bandwidth = σ_k^2)

$$c^{(\text{FSSD})}(\mu_q, v, \sigma_k^2) = \frac{\sigma_k^2 \left(\sigma_k^2 + 2\right)^3 \mu_q^2 e^{\frac{v^2}{\sigma_k^2 + 2} - \frac{\left(v - \mu_q\right)^2}{\sigma_k^2 + 1}}}{\sqrt{\frac{2}{\sigma_k^2} + 1} \left(\sigma_k^2 + 1\right) \left(\sigma_k^6 + 4\sigma_k^4 + \left(v^2 + 5\right)\sigma_k^2 + 2\right)}.$$

■ For LKS, Gaussian kernel (bandwidth = κ^2).

$$c^{(\text{LKS})}(\mu_q, \kappa^2) = \frac{\left(\kappa^2\right)^{5/2} \left(\kappa^2 + 4\right)^{5/2} \mu_q^4}{2\left(\kappa^2 + 2\right) \left(\kappa^8 + 8\kappa^6 + 21\kappa^4 + 20\kappa^2 + 12\right)}.$$

Theorem 2 (FSSD is at least two times more efficient).

Fix $\sigma_k^2=1$ for $n \text{FSSD}^2$. Then, $\forall \mu_q \neq 0$, $\exists v \in \mathbb{R}$, $\forall \kappa^2>0$, we have Bahadur efficiency

$$rac{c^{(ext{FSSD})}(\mu_q,\,v,\sigma_k^2)}{c^{(ext{LKS})}(\mu_q,\,\kappa^2)} > 2.$$

Conclusion

- Proposed The Finite Set Stein Discrepancy (FSSD).
- Goodness-of-fit test based on FSSD is
 - 1 nonparametric,
 - 2 linear-time,
 - 3 tunable (parameters automatically tuned).
 - 4 interpretable.

A Linear-Time Kernel Goodness-of-Fit Test

Wittawat Jitkrittum, Wenkai Xu, Zoltán Szabó, Kenji Fukumizu, Arthur Gretton NIPS 2017 (best paper award)

Python code: https://github.com/wittawatj/kgof

Questions?

Thank you

Illustration: Score Surface

- Consider J = 1 location.
- lacksquare score(v) = $\frac{\widehat{\mathrm{FSSD}}^2(\mathbf{v})}{\widehat{\sigma_{H_1}}(\mathbf{v})}$ (gray), p in wireframe, $\{\mathbf{x}_i\}_{i=1}^n \sim q$ in purple, $\bigstar = 1$ best v.

$$p = \mathcal{N}\left(\mathbf{0}, \left(egin{array}{cc} 1 & 0 \ 0 & 1 \end{array}
ight)
ight) ext{ vs. } q = \mathcal{N}\left(\mathbf{0}, \left(egin{array}{cc} 2 & 0 \ 0 & 1 \end{array}
ight)
ight).$$

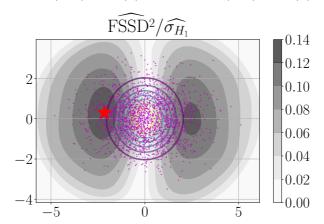
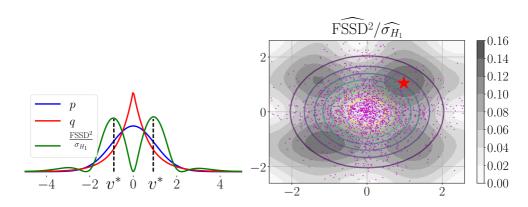


Illustration: Score Surface

- Consider J = 1 location.
- $score(\mathbf{v}) = \frac{\widehat{FSSD}^2(\mathbf{v})}{\widehat{\sigma_{H_1}}(\mathbf{v})}$ (gray), p in wireframe, $\{\mathbf{x}_i\}_{i=1}^n \sim q$ in purple, $\bigstar =$ best \mathbf{v} .

 $p = \mathcal{N}(0, \mathbf{I})$ vs. q = Laplace with same mean & variance.



FSSD and KSD in 1D Gaussian Case

Consider $p = \mathcal{N}(0, 1)$ and $q = \mathcal{N}(\mu_q, \sigma_q^2)$.

Assume J=1 feature for $n\widehat{\text{FSSD}^2}$. Gaussian kernel (bandwidth = σ_k^2).

$$\mathrm{FSSD}^2 = \frac{\sigma_k^2 e^{-\frac{\left(v-\mu_q\right)^2}{\sigma_k^2 + \sigma_q^2}} \left(\left(\sigma_k^2 + 1\right) \mu_q + v \left(\sigma_q^2 - 1\right)\right)^2}{\left(\sigma_k^2 + \sigma_q^2\right)^3}.$$

- If $\mu_q \neq 0$, $\sigma_q^2 \neq 1$, and $v = -\frac{\left(\sigma_k^2 + 1\right)\mu_q}{\left(\sigma_q^2 1\right)}$, then FSSD² = 0!
 - ullet This is why v should be drawn from a distribution with a density.
- For KSD, Gaussian kernel (bandwidth = κ^2).

$$S^{2} = \frac{\mu_{q}^{2} \left(\kappa^{2} + 2\sigma_{q}^{2}\right) + \left(\sigma_{q}^{2} - 1\right)^{2}}{\left(\kappa^{2} + 2\sigma_{q}^{2}\right) \sqrt{\frac{2\sigma_{q}^{2}}{\kappa^{2}} + 1}}$$

FSSD and KSD in 1D Gaussian Case

Consider $p = \mathcal{N}(0, 1)$ and $q = \mathcal{N}(\mu_q, \sigma_q^2)$.

Assume J=1 feature for $n\bar{\mathrm{FSSD}^2}$. Gaussian kernel (bandwidth $=\sigma_k^2$).

$$\mathrm{FSSD}^2 = \frac{\sigma_k^2 e^{-\frac{\left(v-\mu_q\right)^2}{\sigma_k^2 + \sigma_q^2}} \left(\left(\sigma_k^2 + 1\right) \mu_q + v \left(\sigma_q^2 - 1\right)\right)^2}{\left(\sigma_k^2 + \sigma_q^2\right)^3}.$$

- If $\mu_q \neq 0$, $\sigma_q^2 \neq 1$, and $v = -\frac{\left(\sigma_k^2 + 1\right)\mu_q}{\left(\sigma_q^2 1\right)}$, then FSSD² = 0!
 - ullet This is why v should be drawn from a distribution with a density.
- For KSD, Gaussian kernel (bandwidth = κ^2).

$$S^{2} = \frac{\mu_{q}^{2} \left(\kappa^{2} + 2\sigma_{q}^{2}\right) + \left(\sigma_{q}^{2} - 1\right)^{2}}{\left(\kappa^{2} + 2\sigma_{q}^{2}\right)\sqrt{\frac{2\sigma_{q}^{2}}{\kappa^{2}} + 1}}.$$

FSSD is a Discrepancy Measure

Theorem 3.

Let $V = \{\mathbf{v}_1, \dots, \mathbf{v}_J\} \subset \mathbb{R}^d$ be drawn i.i.d. from a distribution η which has a density. Let \mathcal{X} be a connected open set in \mathbb{R}^d . Assume

- 1 (Nice RKHS) Kernel $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is C_0 -universal, and real analytic.
- 2 (Stein witness not too rough) $||g||_{\mathcal{F}}^2 < \infty$.
- 3 (Finite Fisher divergence) $\mathbb{E}_{\mathbf{x} \sim q} \| \nabla_{\mathbf{x}} \log \frac{p(\mathbf{x})}{q(\mathbf{x})} \|^2 < \infty$.
- $\text{4} \ \ \textit{(Vanishing boundary)} \ \lim_{\|\mathbf{x}\| \to \infty} p(\mathbf{x}) \mathbf{g}(\mathbf{x}) = \mathbf{0}.$

Then, for any $J \geq 1$, η -almost surely

$$FSSD^2 = 0$$
 if and only if $p = q$.

- Gaussian kernel $k(\mathbf{x}, \mathbf{v}) = \exp\left(-\frac{\|\mathbf{x} \mathbf{v}\|_2^2}{2\sigma_k^2}\right)$ works.
- In practice, J = 1 or J = 5.

- Recall $\xi(\mathbf{x}, \mathbf{v}) := \frac{1}{p(\mathbf{x})} \partial_{\mathbf{x}} [k(\mathbf{x}, \mathbf{v}) \frac{p}{p}(\mathbf{x})] \in \mathbb{R}^d$.
- ullet $au(\mathbf{x}) := ext{vertically stack } \xi(\mathbf{x}, \mathbf{v}_1), \dots \xi(\mathbf{x}, \mathbf{v}_J) \in \mathbb{R}^{dJ}.$ Feature vector of \mathbf{x} .
- lacksquare Mean feature: $\mu:=\mathbb{E}_{\mathbf{x}\sim\,q}[au(\mathbf{x})].$
- lacksquare $\Sigma_r := \mathsf{cov}_{\mathbf{x} \sim r}[au(\mathbf{x})] \in \mathbb{R}^{dJ imes dJ} ext{ for } r \in \{p,q\}$

Proposition 2 (Asymptotic distributions).

Let $Z_1,\ldots,Z_{dJ}\stackrel{i.i.d.}{\sim}\mathcal{N}(0,1)$, and $\{\omega_i\}_{i=1}^{dJ}$ be the eigenvalues of Σ_p .

- 1 Under $H_0: p=q$, asymptotically $n\widehat{\text{FSSD}}^2 \stackrel{d}{ o} \sum_{i=1}^{dJ} (Z_i^2-1)\omega_i$.
 - Easy to simulate to get p-value.
 - Simulation cost independent of n.
- 2 Under $H_1: p \neq q$, we have $\sqrt{n}(\widetilde{\text{FSSD}}^2 \widetilde{\text{FSSD}}^2) \stackrel{d}{\to} \mathcal{N}(0, \sigma_{H_1}^2)$ where $\sigma_{H_1}^2 := 4\mu^\top \Sigma_q \mu$. Implies $\mathbb{P}(\text{reject } H_0) \to 1$ as $n \to \infty$.

But, how to estimate Σ_p ? No sample from p

■ Theorem: Using $\hat{\Sigma}_q$ (computed with $\{\mathbf{x}_i\}_{i=1}^n \sim q$) still leads to a consistent test.

- Recall $\xi(\mathbf{x}, \mathbf{v}) := \frac{1}{p(\mathbf{x})} \partial_{\mathbf{x}} [k(\mathbf{x}, \mathbf{v}) \frac{p}{p}(\mathbf{x})] \in \mathbb{R}^d$.
- $au(\mathbf{x}) := \text{vertically stack } \xi(\mathbf{x}, \mathbf{v}_1), \dots \xi(\mathbf{x}, \mathbf{v}_J) \in \mathbb{R}^{dJ}.$ Feature vector of \mathbf{x} .
- lacksquare Mean feature: $\mu:=\mathbb{E}_{\mathbf{x}\sim\,q}[au(\mathbf{x})].$
- lacksquare $\Sigma_r := \mathsf{cov}_{\mathbf{x} \sim r}[au(\mathbf{x})] \in \mathbb{R}^{dJ imes dJ} ext{ for } r \in \{p,q\}$

Proposition 2 (Asymptotic distributions).

Let $Z_1, \ldots, Z_{dJ} \overset{i.i.d.}{\sim} \mathcal{N}(0,1)$, and $\{\omega_i\}_{i=1}^{dJ}$ be the eigenvalues of Σ_p .

- 1 Under $H_0: p=q$, asymptotically $n\widehat{\text{FSSD}}^2 \stackrel{d}{ o} \sum_{i=1}^{dJ} (Z_i^2-1)\omega_i$.
 - Easy to simulate to get p-value.
 - Simulation cost independent of n.
- 2 Under $H_1: p \neq q$, we have $\sqrt{n}(\text{FSSD}^2 \text{FSSD}^2) \stackrel{d}{ o} \mathcal{N}(0, \sigma_{H_1}^2)$ where $\sigma_{H_1}^2 := 4\mu^{\top}\Sigma_q\mu$. Implies $\mathbb{P}(\text{reject } H_0) \to 1$ as $n \to \infty$.

But, how to estimate Σ_p ? No sample from p!

■ Theorem: Using $\hat{\Sigma}_q$ (computed with $\{\mathbf{x}_i\}_{i=1}^n \sim q$) still leads to a consistent test.

- Recall $\xi(\mathbf{x}, \mathbf{v}) := \frac{1}{p(\mathbf{x})} \partial_{\mathbf{x}} [k(\mathbf{x}, \mathbf{v}) p(\mathbf{x})] \in \mathbb{R}^d$.
- ullet $au(\mathbf{x}) := ext{vertically stack } \xi(\mathbf{x}, \mathbf{v}_1), \dots \xi(\mathbf{x}, \mathbf{v}_J) \in \mathbb{R}^{dJ}.$ Feature vector of \mathbf{x} .
- lacksquare Mean feature: $\mu:=\mathbb{E}_{\mathbf{x}\sim\,q}[au(\mathbf{x})].$
- lacksquare $\Sigma_r := \mathsf{cov}_{\mathbf{x} \sim r}[au(\mathbf{x})] \in \mathbb{R}^{dJ imes dJ} ext{ for } r \in \{p,q\}$

Proposition 2 (Asymptotic distributions).

Let $Z_1, \ldots, Z_{dJ} \overset{i.i.d.}{\sim} \mathcal{N}(0,1)$, and $\{\omega_i\}_{i=1}^{dJ}$ be the eigenvalues of Σ_p .

- 1 Under $H_0: p=q$, asymptotically $n\widehat{\text{FSSD}}^2 \stackrel{d}{ o} \sum_{i=1}^{dJ} (Z_i^2-1)\omega_i$.
 - Easy to simulate to get p-value.
 - Simulation cost independent of n.
- 2 Under $H_1: p \neq q$, we have $\sqrt{n}(\widehat{\mathrm{FSSD}}^2 \mathrm{FSSD}^2) \overset{d}{\to} \mathcal{N}(0, \sigma_{H_1}^2)$ where $\sigma_{H_1}^2 := 4\mu^\top \Sigma_q \mu$. Implies $\mathbb{P}(\text{reject } H_0) \to 1$ as $n \to \infty$.

But, how to estimate Σ_p ? No sample from p

■ Theorem: Using $\hat{\Sigma}_q$ (computed with $\{\mathbf{x}_i\}_{i=1}^n \sim q$) still leads to a consistent test.

- Recall $\xi(\mathbf{x}, \mathbf{v}) := \frac{1}{p(\mathbf{x})} \partial_{\mathbf{x}} [k(\mathbf{x}, \mathbf{v}) p(\mathbf{x})] \in \mathbb{R}^d$.
- $au(\mathbf{x}) := \text{vertically stack } \xi(\mathbf{x}, \mathbf{v}_1), \dots \xi(\mathbf{x}, \mathbf{v}_J) \in \mathbb{R}^{dJ}.$ Feature vector of \mathbf{x} .
- lacksquare Mean feature: $\mu:=\mathbb{E}_{\mathbf{x}\sim\,q}[au(\mathbf{x})].$
- lacksquare $\Sigma_r := \mathsf{cov}_{\mathbf{x} \sim r}[au(\mathbf{x})] \in \mathbb{R}^{dJ imes dJ} ext{ for } r \in \{p,q\}$

Proposition 2 (Asymptotic distributions).

Let $Z_1, \ldots, Z_{dJ} \overset{i.i.d.}{\sim} \mathcal{N}(0,1)$, and $\{\omega_i\}_{i=1}^{dJ}$ be the eigenvalues of Σ_p .

- 1 Under $H_0: p=q$, asymptotically $n\widehat{\text{FSSD}}^2 \stackrel{d}{ o} \sum_{i=1}^{dJ} (Z_i^2-1)\omega_i$.
 - Easy to simulate to get p-value.
 - Simulation cost independent of n.
- 2 Under $H_1: p \neq q$, we have $\sqrt{n}(\widehat{\mathrm{FSSD}}^2 \mathrm{FSSD}^2) \overset{d}{\to} \mathcal{N}(0, \sigma_{H_1}^2)$ where $\sigma_{H_1}^2 := 4\mu^\top \Sigma_q \mu$. Implies $\mathbb{P}(\text{reject } H_0) \to 1$ as $n \to \infty$.

But, how to estimate Σ_p ? No sample from p!

■ Theorem: Using $\hat{\Sigma}_{q}$ (computed with $\{\mathbf{x}_{i}\}_{i=1}^{n} \sim q$) still leads to a consistent test.

Bahadur Slopes of FSSD and LKS

Theorem 4.

The Bahadur slope of $nFSSD^2$ is

$$c^{(\mathrm{FSSD})} := \mathrm{FSSD}^2/\omega_1$$

where ω_1 is the maximum eigenvalue of $\Sigma_p := \operatorname{cov}_{\mathbf{x} \sim p}[\tau(\mathbf{x})]$.

Theorem 5.

The Bahadur slope of the linear-time kernel Stein (LKS) statistic $\sqrt{n}\widehat{S_l^2}$ is

$$c^{(LKS)} = \frac{1}{2} \frac{\left[\mathbb{E}_q h_p(\mathbf{x}, \mathbf{x}')\right]^2}{\mathbb{E}_p\left[h_p^2(\mathbf{x}, \mathbf{x}')\right]}$$

where h_p is the U-statistic kernel of the KSD statistic

Bahadur Slopes of FSSD and LKS

Theorem 4.

The Bahadur slope of $nFSSD^2$ is

$$c^{(\mathrm{FSSD})} := \mathrm{FSSD}^2/\omega_1,$$

where ω_1 is the maximum eigenvalue of $\Sigma_p := \operatorname{cov}_{\mathbf{x} \sim p}[\tau(\mathbf{x})]$.

Theorem 5.

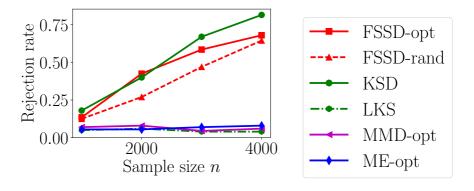
The Bahadur slope of the linear-time kernel Stein (LKS) statistic $\sqrt{n}\,\widehat{S}_l^2$ is

$$c^{(ext{LKS})} = rac{1}{2} rac{\left[\mathbb{E}_q h_p(\mathbf{x}, \mathbf{x}')
ight]^2}{\mathbb{E}_p \left[h_p^2(\mathbf{x}, \mathbf{x}')
ight]},$$

where h_p is the U-statistic kernel of the KSD statistic.

Harder RBM Problem

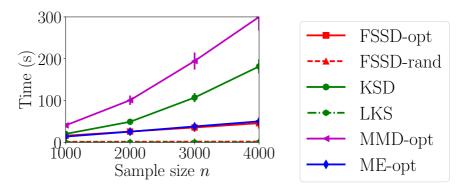
- Perturb only one entry of $\mathbf{B} \in \mathbb{R}^{50 \times 40}$ (in the RBM).
- $lacksquare B_{1,1} \leftarrow B_{1,1} + \mathcal{N}(0, \sigma_{per}^2 = 0.1^2).$



- Two-sample tests fail. Samples from p, q look roughly the same.
- FSSD-opt is comparable to KSD at low n. One order of magnitude faster.

Harder RBM Problem

- Perturb only one entry of $\mathbf{B} \in \mathbb{R}^{50 \times 40}$ (in the RBM).
- $B_{1,1} \leftarrow B_{1,1} + \mathcal{N}(0, \sigma_{per}^2 = 0.1^2).$



- Two-sample tests fail. Samples from p, q look roughly the same.
- FSSD-opt is comparable to KSD at low n. One order of magnitude faster.

References I

Bahadur, R. R. (1960).

Stochastic comparison of tests.

The Annals of Mathematical Statistics, 31(2):276–295.

Chwialkowski, K., Strathmann, H., and Gretton, A. (2016). A kernel test of goodness of fit.

In ICML, pages 2606–2615.

Gretton, A., Borgwardt, K. M., Rasch, M. J., Schölkopf, B., and Smola, A. (2012).
A Kernel Two-Sample Test.

A Kernel Two-Sample Test. *JMLR*, 13:723–773.

Jitkrittum, W., Szabó, Z., Chwialkowski, K. P., and Gretton, A. (2016). Interpretable Distribution Features with Maximum Testing Power. In NIPS, pages 181–189.

References II

Liu, Q., Lee, J., and Jordan, M. (2016).

A Kernelized Stein Discrepancy for Goodness-of-fit Tests.

In ICML, pages 276-284.