A Linear-Time Kernel Goodness-of-Fit Test

Wittawat Jitkrittum¹ Wenkai Xu¹ Zoltán Szabó² Kenji Fukumizu³ Arthur Gretton¹

wittawat@gatsby.ucl.ac.uk

¹Gatsby Unit, University College London ²CMAP, École Polytechnique ³The Institute of Statistical Mathematics, Tokyo

> NIPS 2017, Long Beach 5 December 2017

Data = robbery eventsin Chicago in 2016.

Is this a good model?

Goals:

- Test if a (complicated) model fits the data.
- If it does not, show a location where it fails.

Goals:

- Test if a (complicated) model fits the data.
- If it does not, show a location where it fails.

Problem Setting: Goodness-of-Fit Test

Test goal: Are data from the model p?

- **1** Nonparametric.
- 2 Linear-time. Runtime is $\mathcal{O}(n)$. Fast.
- 🖪 Interpretable. Model criticism by finding ★.

Problem Setting: Goodness-of-Fit Test

Test goal: Are data from the model p?

- 1 Nonparametric.
- **2** Linear-time. Runtime is $\mathcal{O}(n)$. Fast.
- 🖪 Interpretable. Model criticism by finding ★.

Problem Setting: Goodness-of-Fit Test

Test goal: Are data from the model p?

- 1 Nonparametric.
- 2 Linear-time. Runtime is $\mathcal{O}(n)$. Fast.
- 🖪 Interpretable. Model criticism by finding 📩

$$ext{witness}(\mathbf{v}) = \mathbb{E}_{\mathbf{x} \sim q}[\quad k_{\mathbf{v}}(\mathbf{x}) \quad] - \mathbb{E}_{\mathbf{y} \sim p}[\quad k_{\mathbf{v}}(\mathbf{y}) \quad]$$

$$\operatorname{witness}(\mathbf{v}) = \mathbb{E}_{\mathbf{x} \sim q}[\mathbf{v}] - \mathbb{E}_{\mathbf{y} \sim p}[\mathbf{v}]$$

$$\begin{split} \text{witness}(\mathbf{v}) &= \mathbb{E}_{\mathbf{x} \sim q}[\overbrace{\mathbf{v}}] - \mathbb{E}_{\mathbf{y} \sim p}[\overbrace{\mathbf{v}}]\\ \text{score}(\mathbf{v}) &= \frac{|\text{witness}(\mathbf{v})|}{\text{standard deviation}(\mathbf{v})}. \end{split}$$

witness(**v**) =
$$\mathbb{E}_{\mathbf{x} \sim q}[$$

 $\mathbf{v}^{\mathbf{v}}] - \mathbb{E}_{\mathbf{y} \sim p}[$
 $\mathbf{score}(\mathbf{v}) = \frac{|\text{witness}(\mathbf{v})|}{\text{standard deviation}(\mathbf{v})}.$

score: 1.6
witness(v) =
$$\mathbb{E}_{x \sim q}[\sqrt{v}] - \mathbb{E}_{y \sim p}[\sqrt{v}]$$

score(v) = $\frac{|\text{witness}(v)|}{\text{standard deviation}(v)}$.

score: 13
witness(v) =
$$\mathbb{E}_{x \sim q}[\overbrace{v}] - \mathbb{E}_{y \sim p}[\overbrace{v}]$$

score(v) = $\frac{|\text{witness}(v)|}{\text{standard deviation}(v)}$.

score: 25
witness(v) =
$$\mathbb{E}_{x \sim q}[\overbrace{v}] - \mathbb{E}_{y \sim p}[\overbrace{v}]$$

score(v) = $\frac{|\text{witness}(v)|}{\text{standard deviation}(v)}$.

Problem: No sample from p. Cannot estimate $\mathbb{E}_{\mathbf{y} \sim p}[k_{\mathbf{v}}(\mathbf{y})]$.

Problem: No sample from p. Cannot estimate $\mathbb{E}_{\mathbf{y} \sim p}[k_{\mathbf{v}}(\mathbf{y})]$.

 $(\text{Stein}) \text{ witness}(\mathbf{v}) = \mathbb{E}_{\mathbf{x} \sim q} [\quad T_p k_{\mathbf{v}}(\mathbf{x}) \quad] - \mathbb{E}_{\mathbf{y} \sim p} [\quad T_p k_{\mathbf{v}}(\mathbf{y}) \quad]$

Problem: No sample from p. Cannot estimate $\mathbb{E}_{\mathbf{y} \sim p}[k_{\mathbf{v}}(\mathbf{y})]$.

(Stein) witness(
$$\mathbf{v}$$
) = $\mathbb{E}_{\mathbf{x} \sim q}[T_p / \mathbf{v}] - \mathbb{E}_{\mathbf{y} \sim p}[T_p / \mathbf{v}]$

Problem: No sample from p. Cannot estimate $\mathbb{E}_{\mathbf{y} \sim p}[k_{\mathbf{v}}(\mathbf{y})]$.

Problem: No sample from p. Cannot estimate $\mathbb{E}_{\mathbf{y} \sim p}[k_{\mathbf{v}}(\mathbf{y})]$.

(Stein) witness(
$$\mathbf{v}$$
) = $\mathbb{E}_{\mathbf{x} \sim q}$ [] - $\mathbb{E}_{\mathbf{y} \sim p}$ [

Problem: No sample from p. Cannot estimate $\mathbb{E}_{\mathbf{y} \sim p}[k_{\mathbf{v}}(\mathbf{y})]$.

$$(ext{Stein}) ext{ witness}(\mathbf{v}) = \mathbb{E}_{\mathbf{x} \sim q}[$$

Problem: No sample from p. Cannot estimate $\mathbb{E}_{\mathbf{y} \sim p}[k_{\mathbf{v}}(\mathbf{y})]$.

 $(ext{Stein}) ext{ witness}(\mathbf{v}) = \mathbb{E}_{\mathbf{x} \sim q} [\quad T_p k_{\mathbf{v}}(\mathbf{x}) \quad]$

Problem: No sample from p. Cannot estimate $\mathbb{E}_{\mathbf{y} \sim p}[k_{\mathbf{v}}(\mathbf{y})]$.

 $(ext{Stein}) ext{ witness}(\mathbf{v}) = \mathbb{E}_{\mathbf{x} \sim q}[\quad T_p k_{\mathbf{v}}(\mathbf{x}) \quad]$

Idea: Define T_p such that $\mathbb{E}_{\mathbf{y} \sim p}(T_p k_{\mathbf{v}})(\mathbf{y}) = 0$, for any \mathbf{v} .

Proposal: Good **v** should have high $score(\mathbf{v}) = \frac{|witness(\mathbf{v})|}{standard deviation(\mathbf{v})}$.

Problem: No sample from p. Cannot estimate $\mathbb{E}_{\mathbf{y} \sim p}[k_{\mathbf{v}}(\mathbf{y})]$.

 $(ext{Stein}) ext{ witness}(\mathbf{v}) = \mathbb{E}_{\mathbf{x} \sim q} [\quad T_p k_{\mathbf{v}}(\mathbf{x}) \quad]$

Problem: No sample from p. Cannot estimate $\mathbb{E}_{\mathbf{y} \sim p}[k_{\mathbf{v}}(\mathbf{y})]$.

 $(ext{Stein}) ext{ witness}(\mathbf{v}) = \mathbb{E}_{\mathbf{x} \sim q} [\quad T_p k_{\mathbf{v}}(\mathbf{x}) \quad]$

Idea: Define T_p such that $\mathbb{E}_{\mathbf{y} \sim p}(T_p k_{\mathbf{v}})(\mathbf{y}) = 0$, for any \mathbf{v} .

s score(\mathbf{v}) can be estimated in linear-time.

$$score(\mathbf{v}) = \frac{|witness(\mathbf{v})|}{standard deviation(\mathbf{v})}$$

$$score(\mathbf{v}) = \frac{|witness(\mathbf{v})|}{standard deviation(\mathbf{v})}$$

$$score(\mathbf{v}) = \frac{|witness(\mathbf{v})|}{standard deviation(\mathbf{v})}$$

score: 0.089

$$score(\mathbf{v}) = \frac{|witness(\mathbf{v})|}{standard deviation(\mathbf{v})}$$

score: 0.17

$$score(\mathbf{v}) = \frac{|witness(\mathbf{v})|}{standard deviation(\mathbf{v})}$$

score: 0.26

$$score(\mathbf{v}) = \frac{|witness(\mathbf{v})|}{standard deviation(\mathbf{v})}$$

$$score(\mathbf{v}) = \frac{|witness(\mathbf{v})|}{standard deviation(\mathbf{v})}$$

$$score(\mathbf{v}) = \frac{|witness(\mathbf{v})|}{standard deviation(\mathbf{v})}$$

$$score(\mathbf{v}) = \frac{|witness(\mathbf{v})|}{standard deviation(\mathbf{v})}$$

$$score(\mathbf{v}) = \frac{|witness(\mathbf{v})|}{standard deviation(\mathbf{v})}$$

$$score(\mathbf{v}) = \frac{|witness(\mathbf{v})|}{standard deviation(\mathbf{v})}$$

$$score(\mathbf{v}) = \frac{|witness(\mathbf{v})|}{standard deviation(\mathbf{v})}$$

$$score(\mathbf{v}) = \frac{|witness(\mathbf{v})|}{standard deviation(\mathbf{v})}$$

$$score(\mathbf{v}) = \frac{|witness(\mathbf{v})|}{standard deviation(\mathbf{v})}$$

$$score(\mathbf{v}) = \frac{|witness(\mathbf{v})|}{standard deviation(\mathbf{v})}$$

$$score(\mathbf{v}) = \frac{|witness(\mathbf{v})|}{standard deviation(\mathbf{v})}$$

$$score(\mathbf{v}) = \frac{|witness(\mathbf{v})|}{standard deviation(\mathbf{v})}$$

$$score(\mathbf{v}) = \frac{|witness(\mathbf{v})|}{standard deviation(\mathbf{v})}$$

$$score(\mathbf{v}) = \frac{|witness(\mathbf{v})|}{standard deviation(\mathbf{v})}$$

$$score(\mathbf{v}) = \frac{|witness(\mathbf{v})|}{standard deviation(\mathbf{v})}$$

$$score(\mathbf{v}) = \frac{|witness(\mathbf{v})|}{standard deviation(\mathbf{v})}$$

$$score(\mathbf{v}) = \frac{|witness(\mathbf{v})|}{standard deviation(\mathbf{v})}$$

score: 0.16

 $\operatorname{score}(\mathbf{v}) = \frac{|\operatorname{witness}(\mathbf{v})|}{\operatorname{standard deviation}(\mathbf{v})}.$

$$score(\mathbf{v}) = \frac{|witness(\mathbf{v})|}{standard deviation(\mathbf{v})}$$

What is $T_p k_v$?

Recall witness(\mathbf{v}) = $\mathbb{E}_{\mathbf{x} \sim q}(T_p k_{\mathbf{v}})(\mathbf{x}) - \mathbb{E}_{\mathbf{y} \sim p}(T_p k_{\mathbf{v}})(\mathbf{y})$

What is $T_p k_v$?

 $\text{Recall witness}(\mathbf{v}) = \mathbb{E}_{\mathbf{x} \sim q}(T_p k_{\mathbf{v}})(\mathbf{x}) - \mathbb{E}_{\mathbf{y} \sim p}(T_p k_{\mathbf{v}})(\mathbf{y})$

$$(T_pk_{\mathbf{v}})(\mathbf{y}) = rac{1}{p(\mathbf{y})}rac{d}{d\mathbf{y}}[k_{\mathbf{v}}(\mathbf{y})p(\mathbf{y})].$$

Then, $\mathbb{E}_{\mathbf{y} \sim p}(T_p k_{\mathbf{v}})(\mathbf{y}) = 0.$

[Liu et al., 2016, Chwialkowski et al., 2016]

What is $T_p k_v$?

 $\text{Recall witness}(\mathbf{v}) = \mathbb{E}_{\mathbf{x} \sim q}(T_p k_{\mathbf{v}})(\mathbf{x}) - \mathbb{E}_{\mathbf{y} \sim p}(T_p k_{\mathbf{v}})(\mathbf{y})$

$$(T_p k_{\mathbf{v}})(\mathbf{y}) = \frac{1}{p(\mathbf{y})} \frac{d}{d\mathbf{y}} [k_{\mathbf{v}}(\mathbf{y})p(\mathbf{y})].$$
 Normalizer
 $(T_p k_{\mathbf{v}})(\mathbf{y}) = 0.$

Then, $\mathbb{E}_{\mathbf{y} \sim p}(T_p k_{\mathbf{v}})(\mathbf{y}) = 0$

[Liu et al., 2016, Chwialkowski et al., 2016]

Theorem: Maximizing

$$ext{score}(\mathbf{v}) = rac{| ext{witness}(\mathbf{v})|}{ ext{uncertainty}(\mathbf{v})}$$

increases true positive rate

 = ℙ(detect difference when p ≠ q),

 does not affect false positive rate.

■ General form: score(**v**₁,...,**v**_J) with J test locations.

Theorem: Maximizing

$$ext{score}(\mathbf{v}) = rac{| ext{witness}(\mathbf{v})|}{ ext{uncertainty}(\mathbf{v})}$$

- increases true positive rate $= \mathbb{P}(ext{detect difference when } p
 eq q),$
- does not affect false positive rate.

■ General form: score(**v**₁,...,**v**_J) with J test locations.

Theorem: Maximizing

$$ext{score}(\mathbf{v}) = rac{| ext{witness}(\mathbf{v})|}{ ext{uncertainty}(\mathbf{v})}$$

- increases true positive rate $= \mathbb{P}(ext{detect difference when } p
 eq q),$
- does not affect false positive rate.

■ General form: score(v₁,..., v_J) with J test locations.

- n = 11957 robbery events in Chicago in 2016.
 - lat/long coordinates = sample from q.
- Model spatial density with Gaussian mixtures.

Model p = 2-component Gaussian mixture.

Score surface

\star = optimized **v**.

 \star = optimized **v**. No robbery in Lake Michigan.

Model p = 10-component Gaussian mixture.
Interpretable Features: Chicago Crime

Capture the right tail better.

Interpretable Features: Chicago Crime

Still, does not capture the left tail.

Interpretable Features: Chicago Crime

Still, does not capture the left tail.

Learned test locations are interpretable.

Conclusions

Proposed a new goodness-of-fit test.

- 1 Nonparametric. Normalizer not needed.
- 2 Linear-time
- 3 Interpretable

Poster #57 tonight Python code: https://github.com/wittawatj/kernel-gof

Thank you

FSSD and KSD in 1D Gaussian Case

Consider $p = \mathcal{N}(0, 1)$ and $q = \mathcal{N}(\mu_q, \sigma_q^2)$.

Assume J = 1 feature for $n FSSD^2$. Gaussian kernel (bandwidth = σ_k^2).

$$\text{FSSD}^{2} = \frac{\sigma_{k}^{2} e^{-\frac{(v-\mu_{q})^{2}}{\sigma_{k}^{2} + \sigma_{q}^{2}}} \left(\left(\sigma_{k}^{2} + 1\right) \mu_{q} + v \left(\sigma_{q}^{2} - 1\right) \right)^{2}}{\left(\sigma_{k}^{2} + \sigma_{q}^{2}\right)^{3}}.$$

If
$$\mu_q \neq 0, \sigma_q^2 \neq 1$$
, and $v = -\frac{(\sigma_k^2 + 1)\mu_q}{(\sigma_q^2 - 1)}$, then $\text{FSSD}^2 = 0$!

This is why υ should be drawn from a distribution with a density.
For KSD, Gaussian kernel (bandwidth = κ²).

$$S^{2} = \frac{\mu_{q}^{2} \left(\kappa^{2} + 2\sigma_{q}^{2}\right) + \left(\sigma_{q}^{2} - 1\right)^{2}}{\left(\kappa^{2} + 2\sigma_{q}^{2}\right) \sqrt{\frac{2\sigma_{q}^{2}}{\kappa^{2}} + 1}}$$

FSSD and KSD in 1D Gaussian Case

Consider $p = \mathcal{N}(0, 1)$ and $q = \mathcal{N}(\mu_q, \sigma_q^2)$.

Assume J = 1 feature for $n FSSD^2$. Gaussian kernel (bandwidth = σ_k^2).

$$\text{FSSD}^{2} = \frac{\sigma_{k}^{2} e^{-\frac{(v-\mu_{q})^{2}}{\sigma_{k}^{2} + \sigma_{q}^{2}}} \left(\left(\sigma_{k}^{2} + 1\right) \mu_{q} + v \left(\sigma_{q}^{2} - 1\right) \right)^{2}}{\left(\sigma_{k}^{2} + \sigma_{q}^{2}\right)^{3}}.$$

If
$$\mu_q \neq 0, \sigma_q^2 \neq 1$$
, and $v = -\frac{(\sigma_k^2 + 1)\mu_q}{(\sigma_q^2 - 1)}$, then $\text{FSSD}^2 = 0$!

This is why v should be drawn from a distribution with a density.
For KSD, Gaussian kernel (bandwidth = κ²).

$$S^2=rac{\mu_q^2\left(\kappa^2+2\sigma_q^2
ight)+\left(\sigma_q^2-1
ight)^2}{\left(\kappa^2+2\sigma_q^2
ight)\sqrt{rac{2\sigma_q^2}{\kappa^2}+1}}.$$

 $\text{Recall witness}(\mathbf{v}) = \mathbb{E}_{\mathbf{x} \sim q}(T_p k_{\mathbf{v}})(\mathbf{x}) - \mathbb{E}_{\mathbf{y} \sim p}(T_p k_{\mathbf{v}})(\mathbf{y})$

 $\text{Recall witness}(\mathbf{v}) = \mathbb{E}_{\mathbf{x} \sim q}(T_p k_{\mathbf{v}})(\mathbf{x}) - \mathbb{E}_{\mathbf{y} \sim p}(T_p k_{\mathbf{v}})(\mathbf{y})$

$$(T_pk_{\mathbf{v}})(\mathbf{y}) = rac{1}{p(\mathbf{y})}rac{d}{d\mathbf{y}}[k(\mathbf{y},\mathbf{v})p(\mathbf{y})].$$

Then, $\mathbb{E}_{\mathbf{y} \sim p}(T_p k_{\mathbf{v}})(\mathbf{y}) = 0.$

[Liu et al., 2016, Chwialkowski et al., 2016]

 $\text{Recall witness}(\mathbf{v}) = \mathbb{E}_{\mathbf{x} \sim q}(T_p k_{\mathbf{v}})(\mathbf{x}) - \mathbb{E}_{\mathbf{y} \sim p}(T_p k_{\mathbf{v}})(\mathbf{y})$

$$(T_p k_v)(\mathbf{y}) = \frac{1}{p(\mathbf{y})} \frac{d}{d\mathbf{y}} [k(\mathbf{y}, \mathbf{v})p(\mathbf{y})].$$
 Normalizer
 $T_p k_v)(\mathbf{y}) = 0.$

Then, $\mathbb{E}_{\mathbf{y} \sim p}(T_p k_{\mathbf{v}})(\mathbf{y}) = 0$

[Liu et al., 2016, Chwialkowski et al., 2016]

 $\text{Recall witness}(\mathbf{v}) = \mathbb{E}_{\mathbf{x} \sim q}(T_p k_{\mathbf{v}})(\mathbf{x}) - \mathbb{E}_{\mathbf{y} \sim p}(T_p k_{\mathbf{v}})(\mathbf{y})$

$$(T_p k_{\mathbf{v}})(\mathbf{y}) = \frac{1}{p(\mathbf{y})} \frac{d}{d\mathbf{y}} [k(\mathbf{y}, \mathbf{v})p(\mathbf{y})].$$
 Normalizer
cancels

Then, $\mathbb{E}_{\mathbf{y} \sim p}(T_p k_{\mathbf{v}})(\mathbf{y}) = 0.$

[Liu et al., 2016, Chwialkowski et al., 2016]

Proof:

 $\mathbb{E}_{\mathbf{y} \sim p}\left[(T_p k_{\mathbf{v}})(\mathbf{y})
ight]$

 $\text{Recall witness}(\mathbf{v}) = \mathbb{E}_{\mathbf{x} \sim q}(T_p k_{\mathbf{v}})(\mathbf{x}) - \mathbb{E}_{\mathbf{y} \sim p}(T_p k_{\mathbf{v}})(\mathbf{y})$

$$(T_p k_{\mathbf{v}})(\mathbf{y}) = \frac{1}{p(\mathbf{y})} \frac{d}{d\mathbf{y}} [k(\mathbf{y}, \mathbf{v})p(\mathbf{y})].$$
 Normalizer
cancels

Then, $\mathbb{E}_{\mathbf{y} \sim p}(T_p k_{\mathbf{v}})(\mathbf{y}) = 0.$

[Liu et al., 2016, Chwialkowski et al., 2016]

$$\mathbb{E}_{\mathbf{y}\sim p}\left[(\,T_pk_{\mathbf{v}})(\mathbf{y})
ight] = \int_{-\infty}^{\infty}\left[(\,T_pk_{\mathbf{v}})(\mathbf{y})
ight]p(\mathbf{y})\mathrm{d}\mathbf{y}$$

 $\text{Recall witness}(\mathbf{v}) = \mathbb{E}_{\mathbf{x} \sim q}(T_p k_{\mathbf{v}})(\mathbf{x}) - \mathbb{E}_{\mathbf{y} \sim p}(T_p k_{\mathbf{v}})(\mathbf{y})$

$$(T_p k_v)(\mathbf{y}) = \frac{1}{p(\mathbf{y})} \frac{d}{d\mathbf{y}} [k(\mathbf{y}, \mathbf{v})p(\mathbf{y})].$$
 Normalizer cancels

Then, $\mathbb{E}_{\mathbf{y} \sim p}(T_p k_{\mathbf{v}})(\mathbf{y}) = 0.$

[Liu et al., 2016, Chwialkowski et al., 2016]

$$\mathbb{E}_{\mathbf{y}\sim p}\left[(\,T_p\,k_{\mathbf{v}})(\mathbf{y})
ight] = \int_{-\infty}^{\infty}\left[rac{1}{p(\mathbf{y})}rac{d}{d\mathbf{y}}[k_{\mathbf{v}}(\mathbf{y})p(\mathbf{y})]
ight]p(\mathbf{y})\,\mathrm{d}\mathbf{y}$$

 $\text{Recall witness}(\mathbf{v}) = \mathbb{E}_{\mathbf{x} \sim q}(T_p k_{\mathbf{v}})(\mathbf{x}) - \mathbb{E}_{\mathbf{y} \sim p}(T_p k_{\mathbf{v}})(\mathbf{y})$

$$(T_p k_v)(\mathbf{y}) = \frac{1}{p(\mathbf{y})} \frac{d}{d\mathbf{y}} [k(\mathbf{y}, \mathbf{v})p(\mathbf{y})].$$
 Normalizer cancels

Then, $\mathbb{E}_{\mathbf{y} \sim p}(T_p k_{\mathbf{v}})(\mathbf{y}) = 0.$

[Liu et al., 2016, Chwialkowski et al., 2016]

$$\mathbb{E}_{\mathbf{y} \sim p}\left[(T_p k_{\mathbf{v}})(\mathbf{y})\right] = \int_{-\infty}^{\infty} \left[\frac{1}{p(\mathbf{y})} \frac{d}{d\mathbf{y}} [k_{\mathbf{v}}(\mathbf{y}) p(\mathbf{y})]\right] p(\mathbf{y}) d\mathbf{y}$$

 $\text{Recall witness}(\mathbf{v}) = \mathbb{E}_{\mathbf{x} \sim q}(T_p k_{\mathbf{v}})(\mathbf{x}) - \mathbb{E}_{\mathbf{y} \sim p}(T_p k_{\mathbf{v}})(\mathbf{y})$

$$(T_p k_v)(\mathbf{y}) = \frac{1}{p(\mathbf{y})} \frac{d}{d\mathbf{y}} [k(\mathbf{y}, \mathbf{v})p(\mathbf{y})].$$
 Normalizer cancels

Then, $\mathbb{E}_{\mathbf{y} \sim p}(T_p k_{\mathbf{v}})(\mathbf{y}) = 0.$

[Liu et al., 2016, Chwialkowski et al., 2016]

$$egin{aligned} \mathbb{E}_{\mathbf{y}\sim p}\left[(\,T_p\,k_\mathbf{v}^{\phantom{\mathbf{v}}})(\mathbf{y})
ight]&=\int_{-\infty}^{\infty}\,\left[rac{1}{p(\mathbf{y})}rac{d}{d\mathbf{y}}[k_\mathbf{v}^{\phantom{\mathbf{v}}}(\mathbf{y})p(\mathbf{y})]
ight]p(\mathbf{y})\,\mathrm{d}\mathbf{y}\ &=\int_{-\infty}^{\infty}\,rac{d}{d\mathbf{y}}[k_\mathbf{v}^{\phantom{\mathbf{v}}}(\mathbf{y})p(\mathbf{y})]\,\mathrm{d}\mathbf{y} \end{aligned}$$

 $\text{Recall witness}(\mathbf{v}) = \mathbb{E}_{\mathbf{x} \sim q}(T_p k_{\mathbf{v}})(\mathbf{x}) - \mathbb{E}_{\mathbf{y} \sim p}(T_p k_{\mathbf{v}})(\mathbf{y})$

$$(T_p k_{\mathbf{v}})(\mathbf{y}) = \frac{1}{p(\mathbf{y})} \frac{d}{d\mathbf{y}} [k(\mathbf{y}, \mathbf{v})p(\mathbf{y})].$$
 Normalizer cancels

Then, $\mathbb{E}_{\mathbf{y} \sim p}(T_p k_{\mathbf{v}})(\mathbf{y}) = 0.$

[Liu et al., 2016, Chwialkowski et al., 2016]

$$\begin{split} \mathbb{E}_{\mathbf{y} \sim p} \left[(T_p k_{\mathbf{v}})(\mathbf{y}) \right] &= \int_{-\infty}^{\infty} \left[\frac{1}{p(\mathbf{y})} \frac{d}{d\mathbf{y}} [k_{\mathbf{v}}(\mathbf{y}) p(\mathbf{y})] \right] p(\mathbf{y}) d\mathbf{y} \\ &= \int_{-\infty}^{\infty} \frac{d}{d\mathbf{y}} [k_{\mathbf{v}}(\mathbf{y}) p(\mathbf{y})] d\mathbf{y} \\ &= [k_{\mathbf{v}}(\mathbf{y}) p(\mathbf{y})]_{\mathbf{y} = -\infty}^{\mathbf{y} = \infty} \end{split}$$

 $\text{Recall witness}(\mathbf{v}) = \mathbb{E}_{\mathbf{x} \sim q}(T_p k_{\mathbf{v}})(\mathbf{x}) - \mathbb{E}_{\mathbf{y} \sim p}(T_p k_{\mathbf{v}})(\mathbf{y})$

$$(T_p k_{\mathbf{v}})(\mathbf{y}) = \frac{1}{p(\mathbf{y})} \frac{d}{d\mathbf{y}} [k(\mathbf{y}, \mathbf{v})p(\mathbf{y})].$$
 Normalizer cancels

Then, $\mathbb{E}_{\mathbf{y} \sim p}(T_p k_{\mathbf{v}})(\mathbf{y}) = 0.$

[Liu et al., 2016, Chwialkowski et al., 2016]

Proof:

$$\mathbb{E}_{\mathbf{y}\sim p} \left[(T_p k_{\mathbf{v}})(\mathbf{y}) \right] = \int_{-\infty}^{\infty} \left[\frac{1}{p(\mathbf{y})} \frac{d}{d\mathbf{y}} [k_{\mathbf{v}}(\mathbf{y})p(\mathbf{y})] \right] p(\mathbf{y}) d\mathbf{y}$$
$$= \int_{-\infty}^{\infty} \frac{d}{d\mathbf{y}} [k_{\mathbf{v}}(\mathbf{y})p(\mathbf{y})] d\mathbf{y}$$
$$= [k_{\mathbf{v}}(\mathbf{y})p(\mathbf{y})]_{\mathbf{y}=-\infty}^{\mathbf{y}=\infty}$$
$$= 0$$

 $(ext{assume lim}_{|\mathbf{y}|
ightarrow \infty} k_{\mathbf{v}}(\mathbf{y}) p(\mathbf{y}))$

FSSD is a Discrepancy Measure

Theorem 1.

Let $V = {\mathbf{v}_1, \dots, \mathbf{v}_J} \subset \mathbb{R}^d$ be drawn i.i.d. from a distribution η which has a density. Let \mathcal{X} be a connected open set in \mathbb{R}^d . Assume

- 1 (Nice RKHS) Kernel $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is C_0 -universal, and real analytic.
- 2 (Stein witness not too rough) $\|g\|_k^2 < \infty$.
- 3 (Finite Fisher divergence) $\mathbb{E}_{\mathbf{x} \sim q} \| \nabla_{\mathbf{x}} \log \frac{p(\mathbf{x})}{q(\mathbf{x})} \|^2 < \infty$.
- 4 (Vanishing boundary) $\lim_{\|\mathbf{x}\| \to \infty} p(\mathbf{x}) \mathbf{g}(\mathbf{x}) = \mathbf{0}.$

Then, for any $J \ge 1$, η -almost surely

 $FSSD^2 = 0$ if and only if p = q.

Gaussian kernel $k(\mathbf{x}, \mathbf{v}) = \exp\left(-\frac{\|\mathbf{x}-\mathbf{v}\|_2^2}{2\sigma_k^2}\right)$ works.

In practice, J = 1 or J = 5.

$$egin{aligned} \mathbf{g}(\mathbf{v}) &:= \mathbb{E}_{\mathbf{x} \sim q} \left[rac{1}{oldsymbol{p}(\mathbf{x})} rac{d}{d\mathbf{x}} [k_{\mathbf{v}}(\mathbf{x}) oldsymbol{p}(\mathbf{x})]
ight] \ &= \mathbb{E}_{\mathbf{x} \sim q} \left[\left(rac{d}{d\mathbf{x}} \log oldsymbol{p}(\mathbf{x})
ight) k_{\mathbf{v}}(\mathbf{x}) + \partial_{\mathbf{x}} k_{\mathbf{v}}(\mathbf{x})
ight] \in \mathbb{R}^d. \end{aligned}$$

Consider $p = \mathcal{N}(0, 1)$ and $q = \mathcal{N}(0, \sigma_q^2)$. Use unit-width Gaussian kernel.

$$g(v) = rac{v \exp \left(-rac{v^2}{2+2\sigma_q^2}
ight) \left(\sigma_q^2-1
ight)}{\left(1+\sigma_q^2
ight)^{3/2}}$$

- If v = 0, then $FSSD^2 = g^2(v) = 0$ regardless of σ_q^2 .
- If $g \neq 0$, and k is real analytic, $R = \{v \mid g(v) = 0\}$ (blind spots) has 0 Lebesgue measure.
- So, if $v \sim$ a distribution with a density, then $v \notin R$.

$$egin{aligned} \mathbf{g}(\mathbf{v}) &:= \mathbb{E}_{\mathbf{x} \sim q} \left[rac{1}{oldsymbol{p}(\mathbf{x})} rac{d}{d\mathbf{x}} [k_{\mathbf{v}}(\mathbf{x}) oldsymbol{p}(\mathbf{x})]
ight] \ &= \mathbb{E}_{\mathbf{x} \sim q} \left[\left(rac{d}{d\mathbf{x}} \log oldsymbol{p}(\mathbf{x})
ight) k_{\mathbf{v}}(\mathbf{x}) + \partial_{\mathbf{x}} k_{\mathbf{v}}(\mathbf{x})
ight] \in \mathbb{R}^d. \end{aligned}$$

Consider $p = \mathcal{N}(0, 1)$ and $q = \mathcal{N}(0, \sigma_q^2)$. Use unit-width Gaussian kernel.

If v = 0, then $FSSD^2 = g^2(v) = 0$ regardless of σ_q^2 .

- If $g \neq 0$, and k is real analytic, $R = \{v \mid g(v) = 0\}$ (blind spots) has 0 Lebesgue measure.
- So, if $v \sim$ a distribution with a density, then $v \notin R$.

$$egin{aligned} \mathbf{g}(\mathbf{v}) &:= \mathbb{E}_{\mathbf{x} \sim q} \left[rac{1}{oldsymbol{p}(\mathbf{x})} rac{d}{d\mathbf{x}} [k_{\mathbf{v}}(\mathbf{x}) oldsymbol{p}(\mathbf{x})]
ight] \ &= \mathbb{E}_{\mathbf{x} \sim q} \left[\left(rac{d}{d\mathbf{x}} \log oldsymbol{p}(\mathbf{x})
ight) k_{\mathbf{v}}(\mathbf{x}) + \partial_{\mathbf{x}} k_{\mathbf{v}}(\mathbf{x})
ight] \in \mathbb{R}^d. \end{aligned}$$

Consider $p = \mathcal{N}(0, 1)$ and $q = \mathcal{N}(0, \sigma_q^2)$. Use unit-width Gaussian kernel.

If v = 0, then $FSSD^2 = g^2(v) = 0$ regardless of σ_q^2 .

If $g \neq 0$, and k is real analytic, $R = \{v \mid g(v) = 0\}$ (blind spots) has 0 Lebesgue measure.

So, if $v \sim$ a distribution with a density, then $v \notin R$.

$$egin{aligned} \mathbf{g}(\mathbf{v}) &:= \mathbb{E}_{\mathbf{x} \sim q} \left[rac{1}{oldsymbol{p}(\mathbf{x})} rac{d}{d\mathbf{x}} [k_{\mathbf{v}}(\mathbf{x}) oldsymbol{p}(\mathbf{x})]
ight] \ &= \mathbb{E}_{\mathbf{x} \sim q} \left[\left(rac{d}{d\mathbf{x}} \log oldsymbol{p}(\mathbf{x})
ight) k_{\mathbf{v}}(\mathbf{x}) + \partial_{\mathbf{x}} k_{\mathbf{v}}(\mathbf{x})
ight] \in \mathbb{R}^d. \end{aligned}$$

Consider $p = \mathcal{N}(0, 1)$ and $q = \mathcal{N}(0, \sigma_q^2)$. Use unit-width Gaussian kernel.

If v = 0, then $FSSD^2 = g^2(v) = 0$ regardless of σ_q^2 .

If $g \neq 0$, and k is real analytic, $R = \{v \mid g(v) = 0\}$ (blind spots) has 0 Lebesgue measure.

So, if $v \sim$ a distribution with a density, then $v \notin R$.

$$egin{aligned} \mathbf{g}(\mathbf{v}) &:= \mathbb{E}_{\mathbf{x} \sim q} \left[rac{1}{oldsymbol{p}(\mathbf{x})} rac{d}{d\mathbf{x}} [k_{\mathbf{v}}(\mathbf{x}) oldsymbol{p}(\mathbf{x})]
ight] \ &= \mathbb{E}_{\mathbf{x} \sim q} \left[\left(rac{d}{d\mathbf{x}} \log oldsymbol{p}(\mathbf{x})
ight) k_{\mathbf{v}}(\mathbf{x}) + \partial_{\mathbf{x}} k_{\mathbf{v}}(\mathbf{x})
ight] \in \mathbb{R}^d. \end{aligned}$$

Consider $p = \mathcal{N}(0, 1)$ and $q = \mathcal{N}(0, \sigma_q^2)$. Use unit-width Gaussian kernel.

If v = 0, then $FSSD^2 = g^2(v) = 0$ regardless of σ_q^2 .

- If $g \neq 0$, and k is real analytic, $R = \{v \mid g(v) = 0\}$ (blind spots) has 0 Lebesgue measure.
- So, if $v \sim$ a distribution with a density, then $v \notin R$.

Asymptotic Distributions of $\widehat{\text{FSSD}^2}$

- **Recall** $\xi(\mathbf{x}, \mathbf{v}) := \frac{1}{p(\mathbf{x})} \frac{d}{d\mathbf{x}} [k(\mathbf{x}, \mathbf{v}) p(\mathbf{x})] \in \mathbb{R}^d.$
- $\tau(\mathbf{x}) :=$ vertically stack $\xi(\mathbf{x}, \mathbf{v}_1), \ldots \xi(\mathbf{x}, \mathbf{v}_J) \in \mathbb{R}^{dJ}$. Features of \mathbf{x} .
- Mean feature: $\mu := \mathbb{E}_{\mathbf{x} \sim q}[\tau(\mathbf{x})].$
- $\Sigma_r := \operatorname{cov}_{\mathbf{x} \sim r}[au(\mathbf{x})] \in \mathbb{R}^{dJ imes dJ}$ for $r \in \{p, q\}$

Proposition 1 (Asymptotic distributions).

Let $Z_1, \ldots, Z_{dJ} \stackrel{i.i.d.}{\sim} \mathcal{N}(0,1)$, and $\{\omega_i\}_{i=1}^{dJ}$ be the eigenvalues of Σ_p .

1 Under $H_0: p = q$, asymptotically $n \widetilde{\text{FSSD}^2} \stackrel{d}{\rightarrow} \sum_{i=1}^{dJ} (Z_i^2 - 1) \omega_i$.

• Simulation cost independent of n.

2 Under $H_1: p \neq q$, we have $\sqrt{n}(\widehat{\mathrm{FSSD}}^2 - \mathrm{FSSD}^2) \xrightarrow{d} \mathcal{N}(0, \sigma_{H_1}^2)$ where $\sigma_{H_1}^2 := 4\mu^\top \Sigma_q \mu$. Implies $\mathbb{P}(\text{reject } H_0) \to 1$ as $n \to \infty$.

But, how to estimate Σ_p ? No sample from p!

Theorem: Using $\hat{\Sigma}_q$ (computed with $\{\mathbf{x}_i\}_{i=1}^n \sim q$) still leads to a consistent test.

Asymptotic Distributions of $\widetilde{\text{FSSD}^2}$

- **Recall** $\xi(\mathbf{x}, \mathbf{v}) := \frac{1}{p(\mathbf{x})} \frac{d}{d\mathbf{x}} [k(\mathbf{x}, \mathbf{v}) p(\mathbf{x})] \in \mathbb{R}^d.$
- $\tau(\mathbf{x}) :=$ vertically stack $\xi(\mathbf{x}, \mathbf{v}_1), \ldots \xi(\mathbf{x}, \mathbf{v}_J) \in \mathbb{R}^{dJ}$. Features of \mathbf{x} .
- Mean feature: $\mu := \mathbb{E}_{\mathbf{x} \sim q}[\tau(\mathbf{x})].$
- $\bullet \ \Sigma_r := \operatorname{cov}_{\mathbf{x} \sim r}[\tau(\mathbf{x})] \in \mathbb{R}^{dJ \times dJ} \ \text{for} \ r \in \{p,q\}$

Proposition 1 (Asymptotic distributions).

Let $Z_1, \ldots, Z_{dJ} \stackrel{i.i.d.}{\sim} \mathcal{N}(0,1)$, and $\{\omega_i\}_{i=1}^{dJ}$ be the eigenvalues of Σ_p .

1 Under $H_0: p = q$, asymptotically $n \widehat{\text{FSSD}^2} \stackrel{d}{\rightarrow} \sum_{i=1}^{dJ} (Z_i^2 - 1) \omega_i$.

• Simulation cost independent of n.

But, how to estimate Σ_p ? No sample from p!

Theorem: Using $\hat{\Sigma}_q$ (computed with $\{\mathbf{x}_i\}_{i=1}^n \sim q$) still leads to a consistent test.

Asymptotic Distributions of $\widetilde{\text{FSSD}^2}$

- **Recall** $\xi(\mathbf{x}, \mathbf{v}) := \frac{1}{p(\mathbf{x})} \frac{d}{d\mathbf{x}} [k(\mathbf{x}, \mathbf{v}) p(\mathbf{x})] \in \mathbb{R}^d.$
- $\tau(\mathbf{x}) :=$ vertically stack $\xi(\mathbf{x}, \mathbf{v}_1), \ldots \xi(\mathbf{x}, \mathbf{v}_J) \in \mathbb{R}^{dJ}$. Features of \mathbf{x} .
- Mean feature: $\mu := \mathbb{E}_{\mathbf{x} \sim q}[\tau(\mathbf{x})].$
- $\bullet \ \Sigma_r := \operatorname{cov}_{\mathbf{x} \sim r}[\tau(\mathbf{x})] \in \mathbb{R}^{dJ \times dJ} \ \text{for} \ r \in \{p,q\}$

Proposition 1 (Asymptotic distributions).

Let $Z_1, \ldots, Z_{dJ} \stackrel{i.i.d.}{\sim} \mathcal{N}(0,1)$, and $\{\omega_i\}_{i=1}^{dJ}$ be the eigenvalues of Σ_p .

1 Under $H_0: p = q$, asymptotically $n \widehat{\text{FSSD}}^2 \xrightarrow{d} \sum_{i=1}^{dJ} (Z_i^2 - 1) \omega_i$.

• Simulation cost independent of n.

2 Under $H_1: p \neq q$, we have $\sqrt{n}(\widehat{\mathrm{FSSD}}^2 - \mathrm{FSSD}^2) \xrightarrow{d} \mathcal{N}(0, \sigma_{H_1}^2)$ where $\sigma_{H_1}^2 := 4\mu^\top \Sigma_q \mu$. Implies $\mathbb{P}(\text{reject } H_0) \to 1$ as $n \to \infty$.

But, how to estimate Σ_p ? No sample from p!

Theorem: Using $\hat{\Sigma}_q$ (computed with $\{\mathbf{x}_i\}_{i=1}^n \sim q$) still leads to a consistent test.

Asymptotic Distributions of $\widetilde{\text{FSSD}^2}$

- **Recall** $\xi(\mathbf{x}, \mathbf{v}) := \frac{1}{p(\mathbf{x})} \frac{d}{d\mathbf{x}} [k(\mathbf{x}, \mathbf{v}) p(\mathbf{x})] \in \mathbb{R}^d.$
- $\tau(\mathbf{x}) :=$ vertically stack $\xi(\mathbf{x}, \mathbf{v}_1), \ldots \xi(\mathbf{x}, \mathbf{v}_J) \in \mathbb{R}^{dJ}$. Features of \mathbf{x} .
- Mean feature: $\mu := \mathbb{E}_{\mathbf{x} \sim q}[\tau(\mathbf{x})].$
- $\bullet \ \Sigma_r := \operatorname{cov}_{\mathbf{x} \sim r}[\tau(\mathbf{x})] \in \mathbb{R}^{dJ \times dJ} \ \text{for} \ r \in \{p,q\}$

Proposition 1 (Asymptotic distributions).

Let $Z_1, \ldots, Z_{dJ} \stackrel{i.i.d.}{\sim} \mathcal{N}(0,1)$, and $\{\omega_i\}_{i=1}^{dJ}$ be the eigenvalues of Σ_p .

- Under H₀: p = q, asymptotically nFSSD² → ∑^{dJ}_{i=1}(Z²_i − 1)ω_i.
 Simulation cost independent of n.
- 2 Under $H_1: p \neq q$, we have $\sqrt{n}(\widehat{\mathrm{FSSD}}^2 \mathrm{FSSD}^2) \xrightarrow{d} \mathcal{N}(0, \sigma_{H_1}^2)$ where $\sigma_{H_1}^2 := 4\mu^\top \Sigma_q \mu$. Implies $\mathbb{P}(\text{reject } H_0) \to 1$ as $n \to \infty$.

But, how to estimate Σ_p ? No sample from p!

Theorem: Using Σ̂_q (computed with {x_i}ⁿ_{i=1} ~ q) still leads to a consistent test.

- Bahadur slope \cong rate of p-value \rightarrow 0 under H_1 as $n \rightarrow \infty$.
- Measure a test's sensitivity to the departure from H_0 .

 $H_0: \ heta = \mathbf{0},$ $H_1: \ heta \neq \mathbf{0}.$

- Typically $\operatorname{pval}_n \approx \exp\left(-\frac{1}{2}c(\theta)n\right)$ where $c(\theta) > 0$ under H_1 , and c(0) = 0 [Bahadur, 1960].
- $c(\theta)$ higher \implies more sensitive. Good.

Bahadur slope

$$c(heta):=-2 \mathop{\mathrm{plim}}\limits_{n
ightarrow\infty} rac{\log\left(1-F(\,T_n\,)
ight)}{n},$$

where F(t) = CDF of T_n under H₀.
Bahadur efficiency = ratio of slopes of two tests.

- Bahadur slope \cong rate of p-value \rightarrow 0 under H_1 as $n \rightarrow \infty$.
- Measure a test's sensitivity to the departure from H_0 .

 $H_0: \theta = \mathbf{0},$ $H_1: \theta \neq \mathbf{0}.$

- Typically $\operatorname{pval}_n \approx \exp\left(-\frac{1}{2}c(\theta)n\right)$ where $c(\theta) > 0$ under H_1 , and c(0) = 0 [Bahadur, 1960].
- $c(\theta)$ higher \implies more sensitive. Good.

Bahadur slope

$$c(heta):=-2 \mathop{\mathrm{plim}}\limits_{n
ightarrow\infty} rac{\log\left(1-F(\,T_n)
ight)}{n},$$

where F(t) = CDF of T_n under H₀.
Bahadur efficiency = ratio of slopes of two tests.

- Bahadur slope \cong rate of p-value \rightarrow 0 under H_1 as $n \rightarrow \infty$.
- Measure a test's sensitivity to the departure from H_0 .

 $H_0: \theta = \mathbf{0},$ $H_1: \theta \neq \mathbf{0}.$

- Typically $\operatorname{pval}_n \approx \exp\left(-\frac{1}{2}c(\theta)n\right)$ where $c(\theta) > 0$ under H_1 , and c(0) = 0 [Bahadur, 1960].
- $c(\theta)$ higher \implies more sensitive. Good.

Bahadur slope

$$c(heta):=-2 \mathop{\mathrm{plim}}\limits_{n
ightarrow\infty} rac{\log\left(1-F(\,T_n)
ight)}{n},$$

where F(t) = CDF of T_n under H_0 .

Bahadur efficiency = ratio of slopes of two tests. 18/11

- Bahadur slope \cong rate of p-value \rightarrow 0 under H_1 as $n \rightarrow \infty$.
- Measure a test's sensitivity to the departure from H_0 .

 $H_0: \theta = \mathbf{0},$ $H_1: \theta \neq \mathbf{0}.$

- Typically $\operatorname{pval}_n \approx \exp\left(-\frac{1}{2}c(\theta)n\right)$ where $c(\theta) > 0$ under H_1 , and c(0) = 0 [Bahadur, 1960].
- $c(\theta)$ higher \implies more sensitive. Good.

Bahadur slope

$$c(heta):=-2 \lim_{n o \infty} rac{\log \left(1-F(\,T_n)
ight)}{n},$$

where F(t) = CDF of T_n under H_0 .

Bahadur efficiency = ratio of slopes of two tests.
18/11

Gaussian Mean Shift Problem

Consider $p = \mathcal{N}(0, 1)$ and $q = \mathcal{N}(\mu_q, 1)$.

Assume J = 1 location for $n \widehat{\text{FSSD}^2}$. Gaussian kernel (bandwidth = σ_k^2)

$$c^{(\text{FSSD})}(\mu_q, v, \sigma_k^2) = \frac{\sigma_k^2 \left(\sigma_k^2 + 2\right)^3 \mu_q^2 e^{\frac{v^2}{\sigma_k^2 + 2} - \frac{\left(v - \mu_q\right)}{\sigma_k^2 + 1}}}{\sqrt{\frac{2}{\sigma_k^2} + 1} \left(\sigma_k^2 + 1\right) \left(\sigma_k^6 + 4\sigma_k^4 + \left(v^2 + 5\right)\sigma_k^2 + 2\right)}}.$$

For LKS, Gaussian kernel (bandwidth = κ^2).

$$c^{(\text{LKS})}(\mu_q,\kappa^2) = \frac{\left(\kappa^2\right)^{5/2} \left(\kappa^2 + 4\right)^{5/2} \mu_q^4}{2\left(\kappa^2 + 2\right) \left(\kappa^8 + 8\kappa^6 + 21\kappa^4 + 20\kappa^2 + 12\right)}.$$

Theorem 2 (FSSD is at least two times more efficient).

Fix $\sigma_k^2 = 1$ for $n \widehat{\text{FSSD}^2}$. Then, $\forall \mu_q \neq 0$, $\exists v \in \mathbb{R}$, $\forall \kappa^2 > 0$, we have Bahadur efficiency

$$rac{c^{(ext{FSSD})}(\mu_q,v,\sigma_k^2)}{c^{(ext{LKS})}(\mu_q,\kappa^2)}>2.$$

Gaussian Mean Shift Problem

Consider $p = \mathcal{N}(0, 1)$ and $q = \mathcal{N}(\mu_q, 1)$.

Assume J = 1 location for $n \widehat{\text{FSSD}^2}$. Gaussian kernel (bandwidth = σ_k^2)

$$c^{(\text{FSSD})}(\mu_q, v, \sigma_k^2) = \frac{\sigma_k^2 \left(\sigma_k^2 + 2\right)^3 \mu_q^2 e^{\frac{v^2}{\sigma_k^2 + 2} - \frac{\left(v - \mu_q\right)^2}{\sigma_k^2 + 1}}}{\sqrt{\frac{2}{\sigma_k^2} + 1} \left(\sigma_k^2 + 1\right) \left(\sigma_k^6 + 4\sigma_k^4 + \left(v^2 + 5\right)\sigma_k^2 + 2\right)}.$$

For LKS, Gaussian kernel (bandwidth = κ^2).

$$c^{(\mathrm{LKS})}(\mu_q,\kappa^2) = rac{\left(\kappa^2
ight)^{5/2}\left(\kappa^2+4
ight)^{5/2}\mu_q^4}{2\left(\kappa^2+2
ight)\left(\kappa^8+8\kappa^6+21\kappa^4+20\kappa^2+12
ight)}.$$

Theorem 2 (FSSD is at least two times more efficient).

Fix $\sigma_k^2 = 1$ for $n \widehat{\text{FSSD}^2}$. Then, $\forall \mu_q \neq 0, \exists v \in \mathbb{R}, \forall \kappa^2 > 0$, we have Bahadur efficiency

$$rac{c^{(\mathrm{FSSD})}(\mu_q,v,\sigma_k^2)}{c^{(\mathrm{LKS})}(\mu_q,\kappa^2)}>2.$$

Gaussian Mean Shift Problem

Consider $p = \mathcal{N}(0, 1)$ and $q = \mathcal{N}(\mu_q, 1)$.

Assume J = 1 location for $n \widehat{\text{FSSD}^2}$. Gaussian kernel (bandwidth = σ_k^2)

$$c^{(\text{FSSD})}(\mu_q, v, \sigma_k^2) = \frac{\sigma_k^2 \left(\sigma_k^2 + 2\right)^3 \mu_q^2 e^{\frac{v^2}{\sigma_k^2 + 2} - \frac{\left(v - \mu_q\right)}{\sigma_k^2 + 1}}}{\sqrt{\frac{2}{\sigma_k^2} + 1} \left(\sigma_k^2 + 1\right) \left(\sigma_k^6 + 4\sigma_k^4 + \left(v^2 + 5\right)\sigma_k^2 + 2\right)}}.$$

For LKS, Gaussian kernel (bandwidth = κ^2).

$$c^{(\mathrm{LKS})}(\mu_q,\kappa^2) = rac{\left(\kappa^2
ight)^{5/2}\left(\kappa^2+4
ight)^{5/2}\mu_q^4}{2\left(\kappa^2+2
ight)\left(\kappa^8+8\kappa^6+21\kappa^4+20\kappa^2+12
ight)}.$$

Theorem 2 (FSSD is at least two times more efficient).

Fix $\sigma_k^2 = 1$ for $n \widehat{\text{FSSD}}^2$. Then, $\forall \mu_q \neq 0$, $\exists v \in \mathbb{R}$, $\forall \kappa^2 > 0$, we have Bahadur efficiency

$$rac{c^{(\mathrm{FSSD})}(\mu_q,v,\sigma_k^2)}{c^{(\mathrm{LKS})}(\mu_q,\kappa^2)}>2.$$

Linear-Time Kernel Stein Discrepancy (LKS)

■ [Liu et al., 2016] also proposed a linear version of KSD.
 ■ For {x_i}ⁿ_{i=1} ~ q, KSD test statistic is

$$rac{2}{n(n-1)}\sum_{i < j}h_p(\mathbf{x}_i,\mathbf{x}_j).$$

LKS test statistic is a "running average"

$$rac{2}{n}\sum_{i=1}^{n/2}h_p(\mathbf{x}_{2i-1},\mathbf{x}_{2i}).$$

- Both unbiased. LKS has $\mathcal{O}(d^2n)$ runtime.
- X LKS has high variance. Poor test power.

Theorem 3.

The Bahadur slope of $n \widetilde{FSSD^2}$ is

 $c^{(\mathrm{FSSD})} := \mathrm{FSSD}^2/\omega_1,$

where ω_1 is the maximum eigenvalue of $\Sigma_p := \operatorname{cov}_{\mathbf{x} \sim p}[\tau(\mathbf{x})]$. The Bahadur slope of the linear-time kernel Stein (LKS) statistic $\sqrt{n}\widehat{S_l^2}$ is

$$c^{(\mathrm{LKS})} = rac{1}{2} rac{\left[\mathbb{E}_q h_p(\mathbf{x},\mathbf{x}')
ight]^2}{\mathbb{E}_p\left[h_p^2(\mathbf{x},\mathbf{x}')
ight]},$$

where h_p is the U-statistic kernel of the KSD statistic.
Illustration: Optimization Objective

22/11

Illustration: Optimization Objective

Consider J = 1 location.
 Training objective FSSD²(v)/(\vec{FSSD²(v)}{\vec{\vec{FSSD}^2(v)}{\vec{FSSD}^2(v)}}}} (gray), p in wireframe, {x_i}ⁿ

 $p = \mathcal{N}(\mathbf{0}, \mathbf{I})$ vs. q = Laplace with same mean & variance.

Simulation Settings

1

Gaussian kernel
$$k(\mathbf{x}, \mathbf{v}) = \exp\left(-rac{\|\mathbf{x}-\mathbf{v}\|_2^2}{2\sigma_k^2}
ight)$$

	Method	Description
1 2	FSSD-opt FSSD-rand	Proposed. With optimization. $J = 5$. Proposed. Random test locations.
3		Quadratic-time kernel Stein discrepancy [Liu et al., 2016, Chwialkowski et al., 2016] Linear time running average version of KSD
		Diffeat-time funning average version of RSD.
5	MMD-opt	MMD two-sample test [Gretton et al., 2012]. With optimization.
6	ME-test	<u>Mean Embeddings two-sample test</u> [Jitkrittum et al., 2016]. With optimization.

- Two-sample tests need to draw sample from *p*.
- Tests with optimization use 20% of the data.
- $\alpha = 0.05$. 200 trials.

Simulation Settings

1

Gaussian kernel
$$k(\mathbf{x},\mathbf{v}) = \exp\left(-rac{\|\mathbf{x}-\mathbf{v}\|_2^2}{2\sigma_k^2}
ight)$$

	Method	Description
1 2	FSSD-opt FSSD-rand	Proposed. With optimization. $J = 5$. Proposed. Random test locations.
3	KSD	Quadratic-time kernel Stein discrepancy [Liu et al., 2016, Chwialkowski et al., 2016]
4	LKS	Linear-time running average version of KSD.
5	MMD-opt	MMD two-sample test [Gretton et al., 2012]. With optimization.
5 6	MMD-opt ME-test	MMD two-sample test [Gretton et al., 2012]. With optimization. <u>Mean Embeddings two-sample test</u> [Jitkrittum et al., 2016]. With optimization.

- Two-sample tests need to draw sample from p.
- Tests with optimization use 20% of the data.
- $\bullet \ \alpha = 0.05. \ 200 \ trials.$

Simulation Settings

1

Gaussian kernel
$$k(\mathbf{x},\mathbf{v}) = \exp\left(-rac{\|\mathbf{x}-\mathbf{v}\|_2^2}{2\sigma_k^2}
ight)$$

	Method	Description
1 2	FSSD-opt FSSD-rand	Proposed. With optimization. $J = 5$. Proposed. Random test locations.
3 4	KSD LKS	Quadratic-time kernel Stein discrepancy [Liu et al., 2016, Chwialkowski et al., 2016] Linear-time running average version of KSD.
5	MMD-opt	MMD two-sample test [Gretton et al., 2012]. With optimization.
6	ME-test	Mean Embeddings two-sample test [Jitkrittum et al., 2016]. With optimization.

- Two-sample tests need to draw sample from p.
- Tests with optimization use 20% of the data.
- $\alpha = 0.05$. 200 trials.

Gaussian Vs. Laplace

- p = Gaussian. q = Laplace. Same mean and variance. High-order moments differ.
- Sample size n = 1000.

- Optimization increases the power.
- Two-sample tests can perform well in this case (p, q clearly differ).

Harder RBM Problem

Perturb only one entry of B ∈ R^{50×40} (in the RBM).
 B_{1,1} ← B_{1,1} + N(0, σ²_{per} = 0.1²).

Two-sample tests fail. Samples from p, q look roughly the same.

• FSSD-opt is comparable to KSD at low *n*. One order of magnitude faster.

Harder RBM Problem

Perturb only one entry of B ∈ R^{50×40} (in the RBM).
 B_{1,1} ← B_{1,1} + N(0, σ²_{per} = 0.1²).

- Two-sample tests fail. Samples from p, q look roughly the same.
- FSSD-opt is comparable to KSD at low *n*. One order of magnitude faster.

References I

Bahadur, R. R. (1960).

Stochastic comparison of tests.

The Annals of Mathematical Statistics, 31(2):276–295.

Chwialkowski, K., Strathmann, H., and Gretton, A. (2016).
 A kernel test of goodness of fit.
 In *ICML*, pages 2606-2615.

 Gretton, A., Borgwardt, K. M., Rasch, M. J., Schölkopf, B., and Smola, A. (2012).
 A kernel two-sample test.
 JMLR, 13:723-773.

- Jitkrittum, W., Szabó, Z., Chwialkowski, K. P., and Gretton, A. (2016).
 Interpretable Distribution Features with Maximum Testing Power. In NIPS, pages 181–189.
- Liu, Q., Lee, J., and Jordan, M. (2016).
 A kernelized Stein discrepancy for goodness-of-fit tests.
 In *ICML*, pages 276-284.