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Model Criticism

Data = robbery events
in Chicago in 2016.
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Model Criticism

Goals:

1 Test if a (complicated)
model fits the data.

2 If it does not, show a
location where it fails.
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Problem Setting: Goodness-of-Fit Test

?

(unknown) (model)

z }| {
x1; x2; : : : ; xn

Test goal: Are data from the model p?
1 Nonparametric.
2 Linear-time. Runtime is O(n). Fast.

3 Interpretable. Model criticism by finding F.
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Find a location v at which q and p differ most [Jitkrittum et al., 2016].
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Model Criticism by Maximum Mean Discrepancy [Gretton et al., 2012]

Find a location v at which q and p differ most [Jitkrittum et al., 2016].

score: 0.008

kv(x) = v

witness(v) = Ex�q [ v ]� Ey�p[ v ]

score(v) =
jwitness(v)j

standard deviation(v)
:
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Model Criticism by Maximum Mean Discrepancy [Gretton et al., 2012]

Find a location v at which q and p differ most [Jitkrittum et al., 2016].

score: 1.6

witness(v) = Ex�q [ v ]� Ey�p[ v ]

score(v) =
jwitness(v)j

standard deviation(v)
:
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Model Criticism by Maximum Mean Discrepancy [Gretton et al., 2012]

Find a location v at which q and p differ most [Jitkrittum et al., 2016].
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standard deviation(v)
:
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Model Criticism by Maximum Mean Discrepancy [Gretton et al., 2012]

Find a location v at which q and p differ most [Jitkrittum et al., 2016].
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Model Criticism by Maximum Mean Discrepancy [Gretton et al., 2012]

Find a location v at which q and p differ most [Jitkrittum et al., 2016].

score: 25

Best v

witness(v) = Ex�q [ v ]� Ey�p[ v ]

score(v) =
jwitness(v)j

standard deviation(v)
:

No sample from p.
Difficult to generate.
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The Stein Witness Function [Liu et al., 2016, Chwialkowski et al., 2016]

Problem: No sample from p. Cannot estimate Ey�p [kv(y)].
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The Stein Witness Function [Liu et al., 2016, Chwialkowski et al., 2016]

Problem: No sample from p. Cannot estimate Ey�p [kv(y)].

Idea: Define Tp such that Ey�p(Tpkv)(y) = 0; for any v.

(Stein) witness(v) = Ex�q [ Tpkv(x) ]

Proposal: Good v should have high

score(v) =
jwitness(v)j

standard deviation(v)
:

signal-to-noise
ratio

score(v) can be estimated in linear-time.
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Proposal: Model Criticism with the Stein Witness

score(v) =
jwitness(v)j

standard deviation(v)
:
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Proposal: Model Criticism with the Stein Witness

score: 0.034

(Tpkv)(x)

= v
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Proposal: Model Criticism with the Stein Witness

score: 0.17

score(v) =
jwitness(v)j

standard deviation(v)
:

6/11



Proposal: Model Criticism with the Stein Witness
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:

6/11



Proposal: Model Criticism with the Stein Witness

score: 0.49

score(v) =
jwitness(v)j

standard deviation(v)
:

6/11



Proposal: Model Criticism with the Stein Witness

score: 0.47

score(v) =
jwitness(v)j

standard deviation(v)
:

6/11



Proposal: Model Criticism with the Stein Witness

score: 0.44

score(v) =
jwitness(v)j

standard deviation(v)
:

6/11



Proposal: Model Criticism with the Stein Witness

score: 0.034

score(v) =
jwitness(v)j

standard deviation(v)
:

6/11



Proposal: Model Criticism with the Stein Witness

score: 0.37

score(v) =
jwitness(v)j

standard deviation(v)
:

6/11



Proposal: Model Criticism with the Stein Witness

score: 0.16

score(v) =
jwitness(v)j

standard deviation(v)
:

6/11



Proposal: Model Criticism with the Stein Witness

score: 0.44

score(v) =
jwitness(v)j

standard deviation(v)
:

6/11



What is Tpkv?

Recall witness(v) = Ex�q(Tpkv)(x)�((((((
((

Ey�p(Tpkv)(y)

7/11



What is Tpkv?

Recall witness(v) = Ex�q(Tpkv)(x)�((((((
((

Ey�p(Tpkv)(y)

(Tpkv)(y) =
1

p(y)
d
dy

[kv(y)p(y)]:

Then, Ey�p(Tpkv)(y) = 0:
[Liu et al., 2016, Chwialkowski et al., 2016]

7/11



What is Tpkv?

Recall witness(v) = Ex�q(Tpkv)(x)�((((((
((

Ey�p(Tpkv)(y)

(Tpkv)(y) =
1

p(y)
d
dy

[kv(y)p(y)]:

Then, Ey�p(Tpkv)(y) = 0:
[Liu et al., 2016, Chwialkowski et al., 2016]

Normalizer
cancels
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Technical Details

Theorem: Maximizing

score(v) =
jwitness(v)j

uncertainty(v)

increases true positive rate
= P(detect difference when p 6= q),
does not affect false positive rate.

General form: score(v1; : : : ; vJ ) with J test
locations.
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Experiment: Restricted Boltzmann Machine (RBM)

Model p =

· · ·

· · ·

40 hidden units

50 visible units

9/11



Experiment: Restricted Boltzmann Machine (RBM)

Model p =

· · ·

· · ·

40 hidden units

50 visible units

Sample
from

· · ·

· · ·

Perturb one weight

9/11



Experiment: Restricted Boltzmann Machine (RBM)

Model p =

· · ·

· · ·

40 hidden units

50 visible units

Sample
from

· · ·

· · ·

Perturb one weight
B
et
te
r

2000 4000
Sample size n

0.00

0.25

0.50

0.75

P
(d

et
ec

t
d

iff
er

en
ce

)

MMD test
(quadratic-time)
[Gretton et al., 2012]

9/11



Experiment: Restricted Boltzmann Machine (RBM)

Model p =

· · ·

· · ·

40 hidden units

50 visible units

Sample
from

· · ·

· · ·

Perturb one weight
B
et
te
r

2000 4000
Sample size n

0.00

0.25

0.50

0.75

P
(d

et
ec

t
d

iff
er

en
ce

)
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(quadratic-time)
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(linear-time)
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Interpretable Features: Chicago Crime

Learned test locations are
interpretable.
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Interpretable Features: Chicago Crime

n = 11957 robbery events
in Chicago in 2016.

� lat/long coordinates =
sample from q .

Model spatial density with
Gaussian mixtures.

Learned test locations are
interpretable.
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Interpretable Features: Chicago Crime

Model p = 2-component Gaus-
sian mixture.

Learned test locations are
interpretable.
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Interpretable Features: Chicago Crime

Score surface

Learned test locations are
interpretable.
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Interpretable Features: Chicago Crime

F = optimized v.

Learned test locations are
interpretable.
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Interpretable Features: Chicago Crime

F = optimized v.
No robbery in Lake Michigan.

Learned test locations are
interpretable.
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Interpretable Features: Chicago Crime

Model p = 10-component Gaus-
sian mixture.

Learned test locations are
interpretable.
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Interpretable Features: Chicago Crime

Capture the right tail better.

Learned test locations are
interpretable.
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Interpretable Features: Chicago Crime

Still, does not capture the left
tail.

Learned test locations are
interpretable.
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Interpretable Features: Chicago Crime

Still, does not capture the left
tail.

Learned test locations are
interpretable.
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Conclusions

Proposed a new goodness-of-fit test.

1 Nonparametric. Normalizer not needed.
2 Linear-time
3 Interpretable

Poster #57 tonight
Python code: https://github.com/wittawatj/kernel-gof
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Questions?

Thank you
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FSSD and KSD in 1D Gaussian Case
Consider p = N (0; 1) and q = N (�q ; �

2
q).

Assume J = 1 feature for n \FSSD2. Gaussian kernel (bandwidth =
�2
k ).

FSSD2 =
�

2
ke
�

(v��q )2

�
2
k
+�2

q
��
�

2
k + 1

�
�q + v

�
�

2
q � 1

��2�
�

2
k + �2

q
�3 :

If �q 6= 0; �2
q 6= 1, and v = �(�

2
k+1)�q

(�2
q�1)

, then FSSD2 = 0 !

� This is why v should be drawn from a distribution with a density.

For KSD, Gaussian kernel (bandwidth = �2).

S2 =
�

2
q
�
�

2 + 2�2
q
�
+
�
�

2
q � 1

�
2�

�2 + 2�2
q
�q 2�2

q
�2 + 1

:
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= 0

(assume limjyj!1 kv(y)p(y))
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FSSD is a Discrepancy Measure
Theorem 1.
Let V = fv1; : : : ;vJg � Rd be drawn i.i.d. from a distribution � which
has a density. Let X be a connected open set in Rd . Assume

1 (Nice RKHS) Kernel k : X � X ! R is C0-universal, and real
analytic.

2 (Stein witness not too rough) kgk2k <1.

3 (Finite Fisher divergence) Ex�qkrx log
p(x)
q(x)k2 <1 .

4 (Vanishing boundary) limkxk!1 p(x)g(x) = 0.

Then, for any J � 1, �-almost surely

FSSD2 = 0 if and only if p = q.

Gaussian kernel k(x;v) = exp
�
�kx�vk22

2�2
k

�
works.

In practice, J = 1 or J = 5.
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What Are “Blind Spots”?

g(v) : = Ex�q

�
1

p(x)
d
dx

[kv(x)p(x)]
�

= Ex�q

��
d
dx

log p(x)
�
kv(x) + @xkv(x)

�
2 Rd :

Consider p = N (0; 1) and q = N (0; �2
q). Use unit-width Gaussian kernel.

g(v) =
v exp

�
�

v2

2+2�2
q

� �
�

2
q � 1

�
�
1+ �2

q
�3=2

−5.0 −2.5 0.0 2.5 5.0

−0.25

0.00

0.25
p = N (0, 1)

q = N (0, 4)

g

If v = 0, then FSSD2 = g2(v) = 0 regardless of �2
q .

If g 6= 0, and k is real analytic, R = fv j g(v) = 0g (blind spots) has
0 Lebesgue measure.
So, if v � a distribution with a density, then v =2 R. 16/11
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Asymptotic Distributions of \FSSD2

Recall �(x;v) := 1
p(x)

d
dx [k(x;v)p(x)] 2 Rd :

� (x) := vertically stack �(x;v1); : : : �(x;vJ ) 2 RdJ . Features of x.
Mean feature: � := Ex�q [� (x)].
�r := covx�r [� (x)] 2 RdJ�dJ for r 2 fp; qg

Proposition 1 (Asymptotic distributions).

Let Z1; : : : ;ZdJ
i :i :d :� N (0; 1), and f!igdJi=1 be the eigenvalues of �p.

1 Under H0 : p = q, asymptotically n \FSSD2 d!PdJ
i=1(Z

2
i � 1)!i .

� Simulation cost independent of n.

2 Under H1 : p 6= q, we have
p
n(\FSSD2 � FSSD2)

d! N (0; �2
H1
)

where �2
H1

:= 4�>�q�. Implies P(reject H0)! 1 as n !1.

But, how to estimate �p? No sample from p!

Theorem: Using �̂q (computed with fxigni=1 � q) still leads to a
consistent test.
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Bahadur Slope and Bahadur Efficiency

Bahadur slope u rate of p-value ! 0 under H1 as n !1.
Measure a test’s sensitivity to the departure from H0.

H0 : � = 0;

H1 : � 6= 0:

Typically pvaln � exp
�
�1

2c(�)n
�
where c(�) > 0 under H1, and

c(0) = 0 [Bahadur, 1960].
c(�) higher =) more sensitive. Good.

0 50 100

n
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1.0

p
-v

al
u

e T
(1)
n

T
(2)
n

Bahadur slope

c(�) := �2 plim
n!1

log (1� F (Tn))

n
;

where F (t) = CDF of Tn under H0.

Bahadur efficiency = ratio of slopes
of two tests. 18/11
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Gaussian Mean Shift Problem
Consider p = N (0; 1) and q = N (�q ; 1).

Assume J = 1 location for n \FSSD2. Gaussian kernel (bandwidth =
�2
k )

c(FSSD)(�q ; v ; �2
k ) =

�
2
k

�
�

2
k + 2

�3
�

2
qe

v2

�
2
k
+2
�

(v��q )2

�
2
k
+1q

2
�2
k
+ 1

�
�

2
k + 1

� �
�

6
k + 4�4

k + (v2 + 5)�2
k + 2

� :
For LKS, Gaussian kernel (bandwidth = �2).

c(LKS)(�q ; �
2) =

�
�

2
�5=2 �

�
2 + 4

�5=2
�

4
q

2 (�2 + 2) (�8 + 8�6 + 21�4 + 20�2 + 12)
:

Theorem 2 (FSSD is at least two times more efficient).

Fix �2
k = 1 for n \FSSD2. Then, 8�q 6= 0, 9v 2 R, 8�2 > 0, we have

Bahadur efficiency
c(FSSD)(�q ; v ; �2

k )

c(LKS)(�q ; �2)
> 2:

19/11



Gaussian Mean Shift Problem
Consider p = N (0; 1) and q = N (�q ; 1).

Assume J = 1 location for n \FSSD2. Gaussian kernel (bandwidth =
�2
k )

c(FSSD)(�q ; v ; �2
k ) =

�
2
k

�
�

2
k + 2

�3
�

2
qe

v2

�
2
k
+2
�

(v��q )2

�
2
k
+1q

2
�2
k
+ 1

�
�

2
k + 1

� �
�

6
k + 4�4

k + (v2 + 5)�2
k + 2

� :
For LKS, Gaussian kernel (bandwidth = �2).

c(LKS)(�q ; �
2) =

�
�

2
�5=2 �

�
2 + 4

�5=2
�

4
q

2 (�2 + 2) (�8 + 8�6 + 21�4 + 20�2 + 12)
:

Theorem 2 (FSSD is at least two times more efficient).

Fix �2
k = 1 for n \FSSD2. Then, 8�q 6= 0, 9v 2 R, 8�2 > 0, we have

Bahadur efficiency
c(FSSD)(�q ; v ; �2

k )

c(LKS)(�q ; �2)
> 2:

19/11



Gaussian Mean Shift Problem
Consider p = N (0; 1) and q = N (�q ; 1).

Assume J = 1 location for n \FSSD2. Gaussian kernel (bandwidth =
�2
k )

c(FSSD)(�q ; v ; �2
k ) =

�
2
k

�
�

2
k + 2

�3
�

2
qe

v2

�
2
k
+2
�

(v��q )2

�
2
k
+1q

2
�2
k
+ 1

�
�

2
k + 1

� �
�

6
k + 4�4

k + (v2 + 5)�2
k + 2

� :
For LKS, Gaussian kernel (bandwidth = �2).

c(LKS)(�q ; �
2) =

�
�

2
�5=2 �

�
2 + 4

�5=2
�

4
q

2 (�2 + 2) (�8 + 8�6 + 21�4 + 20�2 + 12)
:

Theorem 2 (FSSD is at least two times more efficient).

Fix �2
k = 1 for n \FSSD2. Then, 8�q 6= 0, 9v 2 R, 8�2 > 0, we have

Bahadur efficiency
c(FSSD)(�q ; v ; �2

k )

c(LKS)(�q ; �2)
> 2:

19/11



Linear-Time Kernel Stein Discrepancy (LKS)

[Liu et al., 2016] also proposed a linear version of KSD.
For fxigni=1 � q , KSD test statistic is

2
n(n � 1)

X
i<j

hp(xi ;xj ):

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

LKS test statistic is a “running average”

2
n

n=2X
i=1

hp(x2i�1;x2i ):

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

Both unbiased. LKS has O(d2n) runtime.
7 LKS has high variance. Poor test power.
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Bahadur Slopes of FSSD and LKS

Theorem 3.

The Bahadur slope of n \FSSD2 is

c(FSSD) := FSSD2=!1;

where !1 is the maximum eigenvalue of �p := covx�p [� (x)].
The Bahadur slope of the linear-time kernel Stein (LKS) statisticp
ncS2

l is

c(LKS) =
1
2
[Eqhp(x;x0)]

2

Ep

h
h2
p (x;x0)

i ;
where hp is the U-statistic kernel of the KSD statistic.
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Illustration: Optimization Objective

Consider J = 1 location.
Training objective

\FSSD2(v)c�H1 (v)
(gray), p in wireframe, fxigni=1 � q in

purple, H = best v.

p = N
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Consider J = 1 location.
Training objective

\FSSD2(v)c�H1 (v)
(gray), p in wireframe, fxigni=1 � q in

purple, H = best v.

p = N (0; I) vs. q = Laplace with same mean & variance.
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Simulation Settings

Gaussian kernel k(x;v) = exp
�
�kx�vk22

2�2
k

�
Method Description

1 FSSD-opt Proposed. With optimization. J = 5.
2 FSSD-rand Proposed. Random test locations.

3 KSD
Quadratic-time kernel Stein discrepancy
[Liu et al., 2016, Chwialkowski et al., 2016]

4 LKS Linear-time running average version of KSD.

5 MMD-opt
MMD two-sample test [Gretton et al., 2012]. With
optimization.

6 ME-test
Mean Embeddings two-sample test
[Jitkrittum et al., 2016]. With optimization.

Two-sample tests need to draw sample from p.
Tests with optimization use 20% of the data.
� = 0:05. 200 trials.

23/11



Simulation Settings

Gaussian kernel k(x;v) = exp
�
�kx�vk22

2�2
k

�
Method Description

1 FSSD-opt Proposed. With optimization. J = 5.
2 FSSD-rand Proposed. Random test locations.

3 KSD
Quadratic-time kernel Stein discrepancy
[Liu et al., 2016, Chwialkowski et al., 2016]

4 LKS Linear-time running average version of KSD.

5 MMD-opt
MMD two-sample test [Gretton et al., 2012]. With
optimization.

6 ME-test
Mean Embeddings two-sample test
[Jitkrittum et al., 2016]. With optimization.

Two-sample tests need to draw sample from p.
Tests with optimization use 20% of the data.
� = 0:05. 200 trials.

23/11



Simulation Settings

Gaussian kernel k(x;v) = exp
�
�kx�vk22

2�2
k

�
Method Description

1 FSSD-opt Proposed. With optimization. J = 5.
2 FSSD-rand Proposed. Random test locations.

3 KSD
Quadratic-time kernel Stein discrepancy
[Liu et al., 2016, Chwialkowski et al., 2016]

4 LKS Linear-time running average version of KSD.

5 MMD-opt
MMD two-sample test [Gretton et al., 2012]. With
optimization.

6 ME-test
Mean Embeddings two-sample test
[Jitkrittum et al., 2016]. With optimization.

Two-sample tests need to draw sample from p.
Tests with optimization use 20% of the data.
� = 0:05. 200 trials.

23/11



Gaussian Vs. Laplace

p = Gaussian. q = Laplace. Same mean and variance. High-order
moments differ.
Sample size n = 1000.
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Optimization increases the power.
Two-sample tests can perform well in this case (p; q clearly differ).
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Harder RBM Problem

Perturb only one entry of B 2 R50�40 (in the RBM).
B1;1  B1;1 +N (0; �2

per = 0:12).
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Two-sample tests fail. Samples from p; q look roughly the same.
FSSD-opt is comparable to KSD at low n . One order of magnitude
faster.
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