A Linear-Time Kernel Goodness-of-Fit Test

Wittawat Jitkrittum ${ }^{1} \quad$ Wenkai Xu ${ }^{1} \quad$ Zoltán Szabó ${ }^{2}$
Kenji Fukumizu ${ }^{3}$ Arthur Gretton ${ }^{1}$

wittawat@gatsby.ucl.ac.uk
${ }^{1}$ Gatsby Unit, University College London
${ }^{2}$ CMAP, École Polytechnique
${ }^{3}$ The Institute of Statistical Mathematics, Tokyo

NIPS 2017, Long Beach
5 December 2017

Model Criticism

Model Criticism

Model Criticism

Data $=$ robbery events in Chicago in 2016.

Model Criticism

Is this a good model?

Model Criticism

Goals:
1 Test if a (complicated) model fits the data.

2 If it does not, show a location where it fails.

Model Criticism

Goals:
1 Test if a (complicated) model fits the data.

2 If it does not, show a location where it fails.

Problem Setting: Goodness-of-Fit Test

Test goal: Are data from the model p ?
1 Nonnarametric.
${ }_{2}$ Linear-time. Runtime is $\mathcal{O}(n)$. Fast.
${ }_{3}$ Interpretable. Model criticism by finding

Problem Setting: Goodness-of-Fit Test

Test goal: Are data from the model p ?
1 Nonparametric.
2 Linear-time. Runtime is $O(n)$. Fast.
3 Interpretable. Model criticism by finding

Problem Setting: Goodness-of-Fit Test

Test goal: Are data from the model p ?
${ }_{1}$ Nonparametric.
${ }_{2}$ Linear-time. Runtime is $\mathcal{O}(n)$. Fast.
${ }_{3}$ Interpretable. Model criticism by finding

Model Criticism by Maximum Mean Discrepancy [Gretton et al., 2012]

■ Find a location v at which q and p differ most [Jitkrittum et al., 2016].

Model Criticism by Maximum Mean Discrepancy [Gretton et al., 2012]

- Find a location v at which q and p differ most [Jitkrittum et al., 2016].
witness $(\mathrm{v})=\mathbb{E}_{\mathrm{x} \sim q}\left[\quad k_{\mathrm{v}}(\mathrm{x}) \quad\right]-\mathbb{E}_{\mathrm{y} \sim p}\left[\quad k_{\mathrm{v}}(\mathrm{y})\right]$

Model Criticism by Maximum Mean Discrepancy [Gretton et al., 2012]

■ Find a location v at which q and p differ most [Jitkrittum et al., 2016].

Model Criticism by Maximum Mean Discrepancy [Gretton et al., 2012]

■ Find a location v at which q and p differ most [Jitkrittum et al., 2016].

■ Find a location v at which q and p differ most [Jitkrittum et al., 2016].

■ Find a location v at which q and p differ most [Jitkrittum et al., 2016].

score: 0.008

■ Find a location v at which q and p differ most [Jitkrittum et al., 2016].

$$
\text { score: } 1.6
$$

■ Find a location v at which q and p differ most [Jitkrittum et al., 2016].

$$
\text { score: } 13
$$

witness $(\mathrm{v})=\mathbb{E}_{\mathrm{x} \sim q}\left[\quad \mathrm{E}_{\mathrm{y} \sim p}[\right.$

$$
\text { score }(\mathrm{v})=\frac{\mid \text { witness }(\mathrm{v}) \mid}{\text { standard deviation(v) }} .
$$

■ Find a location v at which q and p differ most [Jitkrittum et al., 2016].

$$
\text { score: } 25
$$

witness $(\mathrm{v})=\mathbb{E}_{\mathrm{x} \sim q}[\bigcirc]-\mathbb{E}_{\mathrm{y} \sim p}[$

$$
\text { score }(\mathrm{v})=\frac{\mid \text { witness }(\mathrm{v}) \mid}{\text { standard deviation(v) }} .
$$

Model Criticism by Maximum Mean Discrepancy [Gretton et al., 2012]

■ Find a location v at which q and p differ most [Jitkrittum et al., 2016].

$$
\text { score: } 25
$$

$$
\operatorname{score}(\mathrm{v})=\frac{\mid \text { witness }(\mathrm{v}) \mid}{\text { standard deviation }(\mathrm{v})} . \begin{aligned}
& \text { No sample from } p . \\
& \text { Difficult to generate. }
\end{aligned}
$$

The Stein Witness Function [Liu et al., 2016, Chwialkowski et al., 2016]

Problem: No sample from p. Cannot estimate $\mathbb{E}_{\mathrm{y} \sim p}\left[k_{\mathrm{v}}(\mathrm{y})\right]$.

Problem: No sample from p. Cannot estimate $\mathbb{E}_{\mathrm{y} \sim p}\left[k_{\mathrm{v}}(\mathrm{y})\right]$.
(Stein) witness $(\mathrm{v})=\mathbb{E}_{\mathbf{x} \sim q}\left[\quad T_{p} k_{\mathrm{v}}(\mathrm{x}) \quad\right]-\mathbb{E}_{\mathrm{y} \sim p}\left[\quad T_{p} k_{\mathrm{v}}(\mathrm{y})\right]$

Problem: No sample from p. Cannot estimate $\mathbb{E}_{\mathrm{y} \sim p}\left[k_{\mathrm{v}}(\mathrm{y})\right]$.
(Stein) witness $(\mathrm{v})=\mathbb{E}_{\mathbf{x} \sim q}\left[T_{p}\right.$

Problem: No sample from p. Cannot estimate $\mathbb{E}_{\mathrm{y} \sim p}\left[k_{\mathrm{v}}(\mathrm{y})\right]$.
(Stein) witness $(\mathrm{v})=\mathbb{E}_{\mathbf{x} \sim q}[$

Problem: No sample from p. Cannot estimate $\mathbb{E}_{\mathrm{y} \sim p}\left[k_{\mathrm{v}}(\mathrm{y})\right]$.
(Stein) witness(v$)=\mathbb{E}_{\mathrm{x} \sim q}[$

Idea: Define T_{p} such that $\mathbb{E}_{\mathrm{y} \sim p}\left(T_{p} k_{\mathrm{v}}\right)(\mathrm{y})=0$, for any v .

Problem: No sample from p. Cannot estimate $\mathbb{E}_{\mathrm{y} \sim p}\left[k_{\mathrm{v}}(\mathrm{y})\right]$.
(Stein) witness $(\mathrm{v})=\mathbb{E}_{\mathbf{x} \sim q}[$

Idea: Define T_{p} such that $\mathbb{E}_{\mathrm{y} \sim p}\left(T_{p} k_{\mathrm{v}}\right)(\mathrm{y})=0$, for any v .

Problem: No sample from p. Cannot estimate $\mathbb{E}_{\mathrm{y} \sim p}\left[k_{\mathrm{v}}(\mathrm{y})\right]$.
(Stein) witness $(\mathrm{v})=\mathbb{E}_{\mathbf{x} \sim q}\left[\quad T_{p} k_{\mathrm{v}}(\mathrm{x}) \quad\right]$
Idea: Define T_{p} such that $\mathbb{E}_{\mathbf{y} \sim p}\left(T_{p} k_{\mathrm{v}}\right)(\mathrm{y})=0$, for any v .

Problem: No sample from p. Cannot estimate $\mathbb{E}_{\mathrm{y} \sim p}\left[k_{\mathrm{v}}(\mathrm{y})\right]$.
(Stein) witness(v$)=\mathbb{E}_{\mathbf{x} \sim q}\left[\quad T_{p} k_{\mathrm{v}}(\mathrm{x}) \quad\right]$
Idea: Define T_{p} such that $\mathbb{E}_{\mathrm{y} \sim p}\left(T_{p} k_{\mathrm{v}}\right)(\mathrm{y})=0$, for any v .
Proposal: Good v should have high

$$
\operatorname{score}(\mathrm{v})=\frac{\mid \text { witness }(\mathrm{v}) \mid}{\text { standard deviation(v) }}
$$

Problem: No sample from p. Cannot estimate $\mathbb{E}_{\mathrm{y} \sim p}\left[k_{\mathrm{v}}(\mathrm{y})\right]$.
(Stein) witness(v$)=\mathbb{E}_{\mathbf{x} \sim q}\left[\quad T_{p} k_{\mathrm{v}}(\mathrm{x}) \quad\right]$
Idea: Define T_{p} such that $\mathbb{E}_{\mathrm{y} \sim p}\left(T_{p} k_{\mathrm{v}}\right)(\mathrm{y})=0$, for any v .
Proposal: Good v should have high
signal-to-noise $\quad \operatorname{score}(\mathrm{v})=\frac{\mid \text { witness }(\mathrm{v}) \mid}{\text { standard deviation(v) }}$.
ratio

Problem: No sample from p. Cannot estimate $\mathbb{E}_{\mathrm{y} \sim p}\left[k_{\mathrm{v}}(\mathrm{y})\right]$.
(Stein) witness(v$)=\mathbb{E}_{\mathbf{x} \sim q}\left[\quad T_{p} k_{\mathrm{v}}(\mathrm{x}) \quad\right]$
Idea: Define T_{p} such that $\mathbb{E}_{\mathrm{y} \sim p}\left(T_{p} k_{\mathrm{v}}\right)(\mathrm{y})=0$, for any v .
Proposal: Good v should have high
signal-to-noise $\operatorname{score}(\mathrm{v})=\frac{\mid \text { witness }(\mathrm{v}) \mid}{\text { standard deviation(v) }}$. ratio

- score(v) can be estimated in linear-time.

Proposal: Model Criticism with the Stein Witness

$$
\operatorname{score}(\mathrm{v})=\frac{\mid \text { witness }(\mathrm{v}) \mid}{\text { standard deviation(v) }} .
$$

Proposal: Model Criticism with the Stein Witness

Proposal: Model Criticism with the Stein Witness

score: 0.034

$$
\operatorname{score}(\mathrm{v})=\frac{\mid \text { witness }(\mathrm{v}) \mid}{\text { standard deviation }(\mathrm{v})}
$$

Proposal: Model Criticism with the Stein Witness

score: 0.089

Proposal: Model Criticism with the Stein Witness

score: 0.17

Proposal: Model Criticism with the Stein Witness

score: 0.26

Proposal: Model Criticism with the Stein Witness

score: 0.33

Proposal: Model Criticism with the Stein Witness

score: 0.37

$$
\operatorname{score}(\mathrm{v})=\frac{\mid \text { witness }(\mathrm{v}) \mid}{\text { standard deviation }(\mathrm{v})}
$$

Proposal: Model Criticism with the Stein Witness

score: 0.37

$$
\operatorname{score}(\mathrm{v})=\frac{\mid \text { witness }(\mathrm{v}) \mid}{\text { standard deviation }(\mathrm{v})}
$$

Proposal: Model Criticism with the Stein Witness

score: 0.45

Proposal: Model Criticism with the Stein Witness

score: 0.44

Proposal: Model Criticism with the Stein Witness

score: 0.39

Proposal: Model Criticism with the Stein Witness

score: 0.31

$$
\operatorname{score}(\mathrm{v})=\frac{\mid \text { witness }(\mathrm{v}) \mid}{\text { standard deviation }(\mathrm{v})}
$$

Proposal: Model Criticism with the Stein Witness

score: 0.32

Proposal: Model Criticism with the Stein Witness

score: 0.32

Proposal: Model Criticism with the Stein Witness

score: 0.37

$$
\operatorname{score}(\mathrm{v})=\frac{\mid \text { witness }(\mathrm{v}) \mid}{\text { standard deviation }(\mathrm{v})}
$$

Proposal: Model Criticism with the Stein Witness

score: 0.48

Proposal: Model Criticism with the Stein Witness

score: 0.49

$$
\operatorname{score}(\mathrm{v})=\frac{\mid \text { witness }(\mathrm{v}) \mid}{\operatorname{standard} \operatorname{deviation}(\mathrm{v})}
$$

Proposal: Model Criticism with the Stein Witness

score: 0.47

$$
\operatorname{score}(\mathrm{v})=\frac{\mid \text { witness }(\mathrm{v}) \mid}{\operatorname{standard} \operatorname{deviation}(\mathrm{v})}
$$

Proposal: Model Criticism with the Stein Witness

score: 0.44

$$
\operatorname{score}(\mathrm{v})=\frac{\mid \text { witness }(\mathrm{v}) \mid}{\text { standard deviation }(\mathrm{v})}
$$

Proposal: Model Criticism with the Stein Witness

score: 0.034

Proposal: Model Criticism with the Stein Witness

score: 0.37

$$
\operatorname{score}(\mathrm{v})=\frac{\mid \text { witness }(\mathrm{v}) \mid}{\text { standard deviation }(\mathrm{v})}
$$

Proposal: Model Criticism with the Stein Witness

score: 0.16

Proposal: Model Criticism with the Stein Witness

score: 0.44

$$
\operatorname{score}(\mathrm{v})=\frac{\mid \text { witness }(\mathrm{v}) \mid}{\text { standard deviation }(\mathrm{v})}
$$

What is $T_{p} k_{\mathrm{v}} ?$

Recall witness $(\mathrm{v})=\mathbb{E}_{\mathrm{x} \sim q}\left(T_{p} k_{\mathrm{v}}\right)(\mathrm{x})-\mathbb{E}_{\mathrm{y} \sim p}\left(T_{p} k_{\mathrm{v}}\right)(\mathrm{y})$

What is $T_{p} k_{\mathrm{v}} ?$

Recall witness $(\mathrm{v})=\mathbb{E}_{\mathbf{x} \sim q}\left(T_{p} k_{\mathrm{v}}\right)(\mathrm{x})-\mathbb{E}_{\mathrm{y} \sim p}\left(T_{p} k_{\mathrm{v}}\right)(\mathrm{y})$

$$
\left(T_{p} k_{\mathrm{v}}\right)(\mathbf{y})=\frac{1}{p(\mathbf{y})} \frac{d}{d \mathbf{y}}\left[k_{\mathrm{v}}(\mathbf{y}) p(\mathbf{y})\right] .
$$

Then, $\mathbb{E}_{\mathrm{y} \sim p}\left(T_{p} k_{\mathrm{v}}\right)(\mathrm{y})=0$.
[Liu et al., 2016, Chwialkowski et al., 2016]

What is $T_{p} k_{\mathrm{v}} ?$

Recall witness $(\mathrm{v})=\mathbb{E}_{\mathrm{x} \sim q}\left(T_{p} k_{\mathrm{v}}\right)(\mathrm{x})-\mathbb{E}_{\mathrm{y} \sim p}\left(T_{p} k_{\mathrm{v}}\right)(\mathrm{y})$

$$
\left(T_{p} k_{\mathrm{v}}\right)(\mathbf{y})=\frac{1}{p(\mathbf{y})} \frac{d}{d \mathbf{y}}\left[k_{\mathrm{v}}(\mathbf{y}) p(\mathbf{y})\right]
$$

Normalizer cancels

Then, $\mathbb{E}_{\mathrm{y} \sim p}\left(T_{p} k_{\mathrm{v}}\right)(\mathrm{y})=0$.
[Liu et al., 2016, Chwialkowski et al., 2016]

Technical Details

Theorem: Maximizing

$$
\operatorname{score}(\mathrm{v})=\frac{|\operatorname{witness}(\mathrm{v})|}{\text { uncertainty }(\mathrm{v})}
$$

- increases true positive rate
$=\mathbb{P}($ detect difference when $p \neq q)$,
- does not affect false positive rate.
- General form: score $\left(\mathrm{v}_{1}, \ldots, \mathrm{v}_{J}\right)$ with J test locations.

Technical Details

Theorem: Maximizing

$$
\operatorname{score}(\mathrm{v})=\frac{|\operatorname{witness}(\mathrm{v})|}{\text { uncertainty }(\mathrm{v})}
$$

- increases true positive rate
$=\mathbb{P}($ detect difference when $p \neq q)$,
- does not affect false positive rate.
- General form: score $\left(\mathrm{v}_{1}, \ldots, \mathrm{v}_{J}\right)$ with J test

Technical Details

Theorem: Maximizing

$$
\operatorname{score}(\mathrm{v})=\frac{|\operatorname{witness}(\mathrm{v})|}{\text { uncertainty }(\mathrm{v})}
$$

- increases true positive rate
$=\mathbb{P}($ detect difference when $p \neq q)$,
- does not affect false positive rate.
- General form: score $\left(\mathrm{v}_{1}, \ldots, \mathrm{v}_{J}\right)$ with J test locations.

Experiment: Restricted Boltzmann Machine (RBM)

Experiment: Restricted Boltzmann Machine (RBM)

Experiment: Restricted Boltzmann Machine (RBM)

个

Experiment: Restricted Boltzmann Machine (RBM)

Interpretable Features: Chicago Crime

Interpretable Features: Chicago Crime

Interpretable Features: Chicago Crime

- $n=11957$ robbery events in Chicago in 2016.
- lat/long coordinates $=$ sample from q.
- Model spatial density with Gaussian mixtures.

Interpretable Features: Chicago Crime

Model $p=2$-component Gaussian mixture.

Interpretable Features: Chicago Crime

Score surface

Interpretable Features: Chicago Crime

Interpretable Features: Chicago Crime

$\star=$ optimized v .
No robbery in Lake Michigan.

Interpretable Features: Chicago Crime

Model $p=10$-component Gaussian mixture.

Interpretable Features: Chicago Crime

Capture the right tail better.

Interpretable Features: Chicago Crime

Still, does not capture the left tail.

Interpretable Features: Chicago Crime

Still, does not capture the left tail.

Learned test locations are interpretable.

Conclusions

Proposed a new goodness-of-fit test.
1 Nonparametric. Normalizer not needed.
2 Linear-time
3 Interpretable
Poster $\# 57$ tonight
Python code: https://github.com/wittawatj/kernel-gof

Questions?

Thank you

FSSD and KSD in 1D Gaussian Case

Consider $p=\mathcal{N}(0,1)$ and $q=\mathcal{N}\left(\mu_{q}, \sigma_{q}^{2}\right)$.

- Assume $J=1$ feature for $n \widehat{\mathrm{FSSD}^{2}}$. Gaussian kernel (bandwidth $=$ $\left.\sigma_{k}^{2}\right)$.

$$
\operatorname{FSSD}^{2}=\frac{\sigma_{k}^{2} e^{-\frac{\left(v-\mu_{q}\right)^{2}}{\sigma_{k}^{2}+\sigma_{q}^{2}}}\left(\left(\sigma_{k}^{2}+1\right) \mu_{q}+v\left(\sigma_{q}^{2}-1\right)\right)^{2}}{\left(\sigma_{k}^{2}+\sigma_{q}^{2}\right)^{3}}
$$

- If $\mu_{q} \neq 0, \sigma_{q}^{2} \neq 1$, and $v=-\frac{\left(\sigma_{k}^{2}+1\right) \mu_{q}}{\left(\sigma_{q}^{2}-1\right)}$, then $\mathrm{FSSD}^{2}=0$!
- This is why v should be drawn from a distribution with a density.
- For KSD, Gaussian kernel (bandwidth $=\kappa^{2}$).

FSSD and KSD in 1D Gaussian Case

Consider $p=\mathcal{N}(0,1)$ and $q=\mathcal{N}\left(\mu_{q}, \sigma_{q}^{2}\right)$.

- Assume $J=1$ feature for $n \widehat{\mathrm{FSSD}^{2}}$. Gaussian kernel (bandwidth $=$ $\left.\sigma_{k}^{2}\right)$.

$$
\operatorname{FSSD}^{2}=\frac{\sigma_{k}^{2} e^{-\frac{\left(v-\mu_{q}\right)^{2}}{\sigma_{k}^{2}+\sigma_{q}^{2}}}\left(\left(\sigma_{k}^{2}+1\right) \mu_{q}+v\left(\sigma_{q}^{2}-1\right)\right)^{2}}{\left(\sigma_{k}^{2}+\sigma_{q}^{2}\right)^{3}}
$$

- If $\mu_{q} \neq 0, \sigma_{q}^{2} \neq 1$, and $v=-\frac{\left(\sigma_{k}^{2}+1\right) \mu_{q}}{\left(\sigma_{q}^{2}-1\right)}$, then $\mathrm{FSSD}^{2}=0$!
- This is why v should be drawn from a distribution with a density.
- For KSD, Gaussian kernel (bandwidth $=\kappa^{2}$).

$$
S^{2}=\frac{\mu_{q}^{2}\left(\kappa^{2}+2 \sigma_{q}^{2}\right)+\left(\sigma_{q}^{2}-1\right)^{2}}{\left(\kappa^{2}+2 \sigma_{q}^{2}\right) \sqrt{\frac{2 \sigma_{q}^{2}}{\kappa^{2}}+1}} .
$$

What is $T_{p} k_{\mathrm{v}} ?$

Recall witness $(\mathrm{v})=\mathbb{E}_{\mathrm{x} \sim q}\left(T_{p} k_{\mathrm{v}}\right)(\mathrm{x})-\mathbb{E}_{\mathrm{y} \sim p}\left(T_{p} k_{\mathrm{v}}\right)(\mathrm{y})$

What is $T_{p} k_{\mathrm{v}} ?$

Recall witness $(\mathrm{v})=\mathbb{E}_{\mathrm{x} \sim q}\left(T_{p} k_{\mathrm{v}}\right)(\mathrm{x})-\mathbb{E}_{\mathrm{y} \sim p}\left(T_{p} k_{\mathrm{v}}\right)(\mathrm{y})$

$$
\left(T_{p} k_{\mathrm{v}}\right)(\mathbf{y})=\frac{1}{p(\mathbf{y})} \frac{d}{d \mathbf{y}}[k(\mathbf{y}, \mathrm{v}) p(\mathbf{y})]
$$

Then, $\mathbb{E}_{\mathrm{y} \sim p}\left(T_{p} k_{\mathrm{v}}\right)(\mathrm{y})=0$.
[Liu et al., 2016, Chwialkowski et al., 2016]

What is $T_{p} k_{\mathrm{v}} ?$

Recall witness $(\mathrm{v})=\mathbb{E}_{\mathbf{x} \sim q}\left(T_{p} k_{\mathrm{v}}\right)(\mathrm{x})-\mathbb{E}_{\mathrm{y} \sim p}\left(T_{p} k_{\mathrm{v}}\right)(\mathrm{y})$

$$
\left(T_{p} k_{\mathrm{v}}\right)(\mathbf{y})=\frac{1}{p(\mathbf{y})} \frac{d}{d \mathbf{y}}[k(\mathbf{y}, \mathrm{v}) p(\mathbf{y})]
$$

Normalizer cancels

Then, $\mathbb{E}_{\mathrm{y} \sim p}\left(T_{p} k_{\mathrm{v}}\right)(\mathrm{y})=0$.
[Liu et al., 2016, Chwialkowski et al., 2016]

What is $T_{p} k_{\mathrm{v}} ?$

Recall witness $(\mathrm{v})=\mathbb{E}_{\mathbf{x} \sim q}\left(T_{p} k_{\mathrm{v}}\right)(\mathrm{x})-\mathbb{E}_{\mathrm{y} \sim p}\left(T_{p} k_{\mathrm{v}}\right)(\mathrm{y})$

$$
\left(T_{p} k_{\mathrm{v}}\right)(\mathbf{y})=\frac{1}{p(\mathbf{y})} \frac{d}{d \mathbf{y}}[k(\mathbf{y}, \mathrm{v}) p(\mathbf{y})] . \quad \begin{aligned}
& \text { Normalizer } \\
& \text { cancels }
\end{aligned}
$$

Then, $\mathbb{E}_{\mathrm{y} \sim p}\left(T_{p} k_{\mathrm{v}}\right)(\mathrm{y})=0$.
[Liu et al., 2016, Chwialkowski et al., 2016]

Proof:

$$
\mathbb{E}_{\mathbf{y} \sim p}\left[\left(T_{p} k_{\mathrm{v}}\right)(\mathbf{y})\right]
$$

What is $T_{p} k_{\mathrm{v}} ?$

Recall witness $(\mathrm{v})=\mathbb{E}_{\mathbf{x} \sim q}\left(T_{p} k_{\mathrm{v}}\right)(\mathrm{x})-\mathbb{E}_{\mathrm{y} \sim p}\left(T_{p} k_{\mathrm{v}}\right)(\mathrm{y})$

$$
\left(T_{p} k_{\mathrm{v}}\right)(\mathbf{y})=\frac{1}{p(\mathbf{y})} \frac{d}{d \mathbf{y}}[k(\mathbf{y}, \mathrm{v}) p(\mathbf{y})] . \sum_{\text {cancels }}^{\text {Normalizer }}
$$

Then, $\mathbb{E}_{\mathrm{y} \sim p}\left(T_{p} k_{\mathrm{v}}\right)(\mathrm{y})=0$.
[Liu et al., 2016, Chwialkowski et al., 2016]

Proof:

$$
\mathbb{E}_{\mathbf{y} \sim p}\left[\left(T_{p} k_{\mathrm{v}}\right)(\mathbf{y})\right]=\int_{-\infty}^{\infty}\left[\left(T_{p} k_{\mathrm{v}}\right)(\mathbf{y})\right] p(\mathbf{y}) \mathrm{d} \mathbf{y}
$$

What is $T_{p} k_{\mathrm{v}} ?$

Recall witness $(\mathrm{v})=\mathbb{E}_{\mathbf{x} \sim q}\left(T_{p} k_{\mathrm{v}}\right)(\mathrm{x})-\mathbb{E}_{\mathrm{y} \sim p}\left(T_{p} k_{\mathrm{v}}\right)(\mathrm{y})$

$$
\left(T_{p} k_{\mathrm{v}}\right)(\mathbf{y})=\frac{1}{p(\mathbf{y})} \frac{d}{\mathrm{v}}[k(\mathbf{y}, \mathrm{v}) p(\mathbf{y})] . \quad \begin{aligned}
& \text { Normalizer } \\
& \text { cancels }
\end{aligned}
$$

Then, $\mathbb{E}_{\mathrm{y} \sim p}\left(T_{p} k_{\mathrm{v}}\right)(\mathrm{y})=0$.
[Liu et al., 2016, Chwialkowski et al., 2016]

Proof:

$$
\mathbb{E}_{\mathbf{y} \sim p}\left[\left(T_{p} k_{\mathrm{v}}\right)(\mathbf{y})\right]=\int_{-\infty}^{\infty}\left[\frac{1}{p(\mathbf{y})} \frac{d}{d \mathbf{y}}\left[k_{\mathrm{v}}(\mathbf{y}) p(\mathbf{y})\right]\right] p(\mathbf{y}) \mathrm{d} \mathbf{y}
$$

What is $T_{p} k_{\mathrm{v}} ?$

Recall witness $(\mathrm{v})=\mathbb{E}_{\mathbf{x} \sim q}\left(T_{p} k_{\mathrm{v}}\right)(\mathrm{x})-\mathbb{E}_{\mathrm{y} \sim p}\left(T_{p} k_{\mathrm{v}}\right)(\mathrm{y})$

$$
\left(T_{p} k_{\mathrm{v}}\right)(\mathbf{y})=\frac{1}{p(\mathbf{y})} \frac{d}{d \mathbf{y}}[k(\mathbf{y}, \mathrm{v}) p(\mathbf{y})] . \sum_{\text {cancels }}^{\text {Normalizer }}
$$

Then, $\mathbb{E}_{\mathrm{y} \sim p}\left(T_{p} k_{\mathrm{v}}\right)(\mathrm{y})=0$.
[Liu et al., 2016, Chwialkowski et al., 2016]

Proof:

$$
\mathbb{E}_{\mathbf{y} \sim p}\left[\left(T_{p} k_{\mathrm{v}}\right)(\mathbf{y})\right]=\int_{-\infty}^{\infty}\left[\frac{1}{p(\mathbf{y})} \frac{d}{d \mathbf{y}}\left[k_{\mathrm{v}}(\mathbf{y}) p(\mathbf{y})\right]\right] p(\mathbf{y}) \mathrm{d} \mathbf{y}
$$

What is $T_{p} k_{\mathrm{v}} ?$

Recall witness $(\mathrm{v})=\mathbb{E}_{\mathbf{x} \sim q}\left(T_{p} k_{\mathrm{v}}\right)(\mathrm{x})-\mathbb{E}_{\mathrm{y} \sim p}\left(T_{p} k_{\mathrm{v}}\right)(\mathrm{y})$

$$
\left(T_{p} k_{\mathrm{v}}\right)(\mathbf{y})=\frac{1}{p(\mathbf{y})} \frac{d}{d \mathbf{y}}[k(\mathbf{y}, \mathrm{v}) p(\mathbf{y})] . \quad \begin{aligned}
& \text { Normalizer } \\
& \text { cancels }
\end{aligned}
$$

Then, $\mathbb{E}_{\mathrm{y} \sim p}\left(T_{p} k_{\mathrm{v}}\right)(\mathrm{y})=0$.
[Liu et al., 2016, Chwialkowski et al., 2016]

Proof:

$$
\begin{aligned}
\mathbb{E}_{\mathbf{y} \sim p}\left[\left(T_{p} k_{\mathrm{v}}\right)(\mathbf{y})\right] & =\int_{-\infty}^{\infty}\left[\frac{1}{p(y)} \frac{d}{d \mathbf{y}}\left[k_{\mathrm{v}}(\mathbf{y}) p(\mathbf{y})\right]\right] p(\boldsymbol{y}) \mathrm{d} \mathbf{y} \\
& =\int_{-\infty}^{\infty} \frac{d}{d \mathbf{y}}\left[k_{\mathrm{v}}(\mathbf{y}) p(\mathbf{y})\right] \mathrm{d} \mathbf{y}
\end{aligned}
$$

What is $T_{p} k_{\mathrm{v}} ?$

Recall witness $(\mathrm{v})=\mathbb{E}_{\mathrm{x} \sim q}\left(T_{p} k_{\mathrm{v}}\right)(\mathrm{x})-\mathbb{E}_{\mathrm{y} \alpha p}\left(T_{p} k_{\mathrm{v}}\right)(\mathrm{y})$

$$
\left(T_{p} k_{\mathrm{v}}\right)(\mathbf{y})=\frac{1}{p(\mathbf{y})} \frac{d}{d \mathbf{y}}[k(\mathbf{y}, \mathrm{v}) p(\mathbf{y})] . \sum_{\text {cancels }}^{\text {Normalizer }}
$$

Then, $\mathbb{E}_{\mathrm{y} \sim p}\left(T_{p} k_{\mathrm{v}}\right)(\mathrm{y})=0$.
[Liu et al., 2016, Chwialkowski et al., 2016]

Proof:

$$
\begin{aligned}
& \mathbb{E}_{\mathbf{y} \sim p}\left[\left(T_{p} k_{\mathrm{v}}\right)(\mathbf{y})\right]=\int_{-\infty}^{\infty}\left[\frac{1}{p(y)} \frac{d}{d \mathbf{y}}\left[k_{\mathrm{v}}(\mathbf{y}) p(\mathbf{y})\right]\right] p(\mathbf{y}) \mathrm{d} \mathbf{y} \\
&=\int_{-\infty}^{\infty} \frac{d}{d \mathbf{y}}\left[k_{\mathrm{v}}(\mathbf{y}) p(\mathbf{y})\right] \mathrm{d} \mathbf{y} \\
&=\left[k_{\mathrm{v}}(\mathbf{y}) p(\mathbf{y})\right] \mathbf{y}=\infty \\
& \mathbf{y}=-\infty
\end{aligned}
$$

What is $T_{p} k_{\mathrm{v}} ?$

Recall witness $(\mathrm{v})=\mathbb{E}_{\mathbf{x} \sim q}\left(T_{p} k_{\mathrm{v}}\right)(\mathrm{x})-\mathbb{E}_{\mathrm{y} \sim p}\left(T_{p} k_{\mathrm{v}}\right)(\mathrm{y})$

$$
\left(T_{p} k_{\mathrm{v}}\right)(\mathbf{y})=\frac{1}{p(\mathbf{y})} \frac{d}{d \mathbf{y}}[k(\mathbf{y}, \mathrm{v}) p(\mathbf{y})] . \sum_{\text {cancels }}^{\text {Normalizer }}
$$

Then, $\mathbb{E}_{\mathrm{y} \sim p}\left(T_{p} k_{\mathrm{v}}\right)(\mathrm{y})=0$.
[Liu et al., 2016, Chwialkowski et al., 2016]

Proof:

$$
\begin{aligned}
& \mathbb{E}_{\mathbf{y} \sim p}\left[\left(T_{p} k_{\mathrm{v}}\right)(\mathbf{y})\right]=\int_{-\infty}^{\infty}\left[\frac{1}{p(y)} \frac{d}{d \mathbf{y}}\left[k_{\mathrm{v}}(\mathbf{y}) p(\mathbf{y})\right]\right] p(\mathbf{y}) \mathrm{d} \mathbf{y} \\
&=\int_{-\infty}^{\infty} \frac{d}{d \mathbf{y}}\left[k_{\mathrm{v}}(\mathbf{y}) p(\mathbf{y})\right] \mathrm{d} \mathbf{y} \\
&=\left[k_{\mathrm{v}}(\mathbf{y}) p(\mathbf{y})\right] \mathbf{y}=\infty \\
& \mathbf{y}=-\infty \\
&=0
\end{aligned}
$$

(assume $\lim _{|\mathbf{y}| \rightarrow \infty} k_{\mathrm{v}}(\mathbf{y}) p(\mathbf{y})$)

FSSD is a Discrepancy Measure

Theorem 1.

Let $V=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{J}\right\} \subset \mathbb{R}^{d}$ be drawn i.i.d. from a distribution η which has a density. Let \mathcal{X} be a connected open set in \mathbb{R}^{d}. Assume
1 (Nice RKHS) Kernel $k: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$ is C_{0}-universal, and real analytic.
2 (Stein witness not too rough) $\|g\|_{k}^{2}<\infty$.
3 (Finite Fisher divergence) $\mathbb{E}_{\mathbf{x} \sim q}\left\|\nabla_{\mathbf{x}} \log \frac{p(\mathbf{x})}{q(\mathbf{x})}\right\|^{2}<\infty$.
4 (Vanishing boundary) $\lim _{\|\mathrm{x}\| \rightarrow \infty} p(\mathrm{x}) \mathrm{g}(\mathrm{x})=\mathbf{0}$.
Then, for any $J \geq 1, \eta$-almost surely

$$
\mathrm{FSSD}^{2}=0 \text { if and only if } p=q
$$

- Gaussian kernel $k(\mathbf{x}, \mathbf{v})=\exp \left(-\frac{\|\mathbf{x}-\mathbf{v}\|_{2}^{2}}{2 \sigma_{k}^{2}}\right)$ works.
\square In practice, $J=1$ or $J=5$.

What Are "Blind Spots"?

$$
\begin{aligned}
\mathbf{g}(\mathbf{v}): & =\mathbb{E}_{\mathbf{x} \sim q}\left[\frac{1}{p(\mathbf{x})} \frac{d}{d \mathbf{x}}\left[k_{\mathrm{v}}(\mathbf{x}) p(\mathbf{x})\right]\right] \\
& =\mathbb{E}_{\mathbf{x} \sim q}\left[\left(\frac{d}{d \mathbf{x}} \log p(\mathbf{x})\right) k_{\mathrm{v}}(\mathbf{x})+\partial_{\mathbf{x}} k_{\mathrm{v}}(\mathbf{x})\right] \in \mathbb{R}^{d}
\end{aligned}
$$

Consider $p=\mathcal{N}(0,1)$ and $q=\mathcal{N}\left(0, \sigma_{q}^{2}\right)$. Use unit-width Gaussian kernel.

■ If $v=0$, then $\mathrm{FSSD}^{2}=g^{2}(v)=0$ regardless of σ_{q}^{2}.
■ If $g \neq 0$, and k is real analytic, $R=\{v \mid g(v)=0\}$ (blind spots) has 0 Lebesgue measure.

What Are "Blind Spots"?

$$
\begin{aligned}
\mathbf{g}(\mathrm{v}): & =\mathbb{E}_{\mathbf{x} \sim q}\left[\frac{1}{p(\mathbf{x})} \frac{d}{d \mathbf{x}}\left[k_{\mathrm{v}}(\mathbf{x}) p(\mathrm{x})\right]\right] \\
& =\mathbb{E}_{\mathbf{x} \sim q}\left[\left(\frac{d}{d \mathbf{x}} \log p(\mathbf{x})\right) k_{\mathrm{v}}(\mathbf{x})+\partial_{\mathbf{x}} k_{\mathrm{v}}(\mathbf{x})\right] \in \mathbb{R}^{d}
\end{aligned}
$$

Consider $p=\mathcal{N}(0,1)$ and $q=\mathcal{N}\left(0, \sigma_{q}^{2}\right)$. Use unit-width Gaussian kernel.

$$
g(v)=\frac{v \exp \left(-\frac{v^{2}}{2+2 \sigma_{q}^{2}}\right)\left(\sigma_{q}^{2}-1\right)}{\left(1+\sigma_{q}^{2}\right)^{3 / 2}}
$$

- If $v=0$, then FSSD ${ }^{2}=g^{2}(v)=0$ regardless of σ_{q}^{2}.

What Are "Blind Spots"?

$$
\begin{aligned}
\mathbf{g}(\mathrm{v}): & =\mathbb{E}_{\mathbf{x} \sim q}\left[\frac{1}{p(\mathbf{x})} \frac{d}{d \mathbf{x}}\left[k_{\mathrm{v}}(\mathbf{x}) p(\mathrm{x})\right]\right] \\
& =\mathbb{E}_{\mathbf{x} \sim q}\left[\left(\frac{d}{d \mathbf{x}} \log p(\mathbf{x})\right) k_{\mathrm{v}}(\mathbf{x})+\partial_{\mathbf{x}} k_{\mathrm{v}}(\mathbf{x})\right] \in \mathbb{R}^{d}
\end{aligned}
$$

Consider $p=\mathcal{N}(0,1)$ and $q=\mathcal{N}\left(0, \sigma_{q}^{2}\right)$. Use unit-width Gaussian kernel.

$$
g(v)=\frac{v \exp \left(-\frac{v^{2}}{2+2 \sigma_{q}^{2}}\right)\left(\sigma_{q}^{2}-1\right)}{\left(1+\sigma_{q}^{2}\right)^{3 / 2}}
$$

■ If $v=0$, then $\operatorname{FSSD}^{2}=g^{2}(v)=0$ regardless of σ_{q}^{2}.

What Are "Blind Spots"?

$$
\begin{aligned}
\mathbf{g}(\mathrm{v}): & =\mathbb{E}_{\mathbf{x} \sim q}\left[\frac{1}{p(\mathbf{x})} \frac{d}{d \mathbf{x}}\left[k_{\mathrm{v}}(\mathbf{x}) p(\mathrm{x})\right]\right] \\
& =\mathbb{E}_{\mathbf{x} \sim q}\left[\left(\frac{d}{d \mathbf{x}} \log p(\mathbf{x})\right) k_{\mathrm{v}}(\mathbf{x})+\partial_{\mathbf{x}} k_{\mathrm{v}}(\mathbf{x})\right] \in \mathbb{R}^{d}
\end{aligned}
$$

Consider $p=\mathcal{N}(0,1)$ and $q=\mathcal{N}\left(0, \sigma_{q}^{2}\right)$. Use unit-width Gaussian kernel.

$$
g(v)=\frac{v \exp \left(-\frac{v^{2}}{2+2 \sigma_{q}^{2}}\right)\left(\sigma_{q}^{2}-1\right)}{\left(1+\sigma_{q}^{2}\right)^{3 / 2}}
$$

■ If $v=0$, then $\operatorname{FSSD}^{2}=g^{2}(v)=0$ regardless of σ_{q}^{2}.
■ If $g \neq 0$, and k is real analytic, $R=\{v \mid g(v)=0\}$ (blind spots) has 0 Lebesgue measure.

What Are "Blind Spots"?

$$
\begin{aligned}
\mathbf{g}(\mathrm{v}): & =\mathbb{E}_{\mathbf{x} \sim q}\left[\frac{1}{p(\mathbf{x})} \frac{d}{d \mathbf{x}}\left[k_{\mathrm{v}}(\mathbf{x}) p(\mathrm{x})\right]\right] \\
& =\mathbb{E}_{\mathbf{x} \sim q}\left[\left(\frac{d}{d \mathbf{x}} \log p(\mathbf{x})\right) k_{\mathrm{v}}(\mathbf{x})+\partial_{\mathbf{x}} k_{\mathrm{v}}(\mathbf{x})\right] \in \mathbb{R}^{d}
\end{aligned}
$$

Consider $p=\mathcal{N}(0,1)$ and $q=\mathcal{N}\left(0, \sigma_{q}^{2}\right)$. Use unit-width Gaussian kernel.

$$
g(v)=\frac{v \exp \left(-\frac{v^{2}}{2+2 \sigma_{q}^{2}}\right)\left(\sigma_{q}^{2}-1\right)}{\left(1+\sigma_{q}^{2}\right)^{3 / 2}}
$$

■ If $v=0$, then $\operatorname{FSSD}^{2}=g^{2}(v)=0$ regardless of σ_{q}^{2}.
■ If $g \neq 0$, and k is real analytic, $R=\{v \mid g(v)=0\}$ (blind spots) has 0 Lebesgue measure.
■ So, if $v \sim$ a distribution with a density, then $v \notin R$.

Asymptotic Distributions of $\widehat{\mathrm{FSSD}^{2}}$

■ Recall $\xi(\mathbf{x}, \mathbf{v}):=\frac{1}{p(\mathbf{x})} \frac{d}{d \mathbf{x}}[k(\mathbf{x}, \mathbf{v}) p(\mathbf{x})] \in \mathbb{R}^{d}$.
$■ \tau(\mathrm{x}):=$ vertically stack $\xi\left(\mathrm{x}, \mathrm{v}_{1}\right), \ldots \xi\left(\mathrm{x}, \mathrm{v}_{J}\right) \in \mathbb{R}^{d J}$. Features of x .

- Mean feature: $\mu:=\mathbb{E}_{\mathbf{x} \sim q}[\tau(\mathrm{x})]$.

■ $\Sigma_{r}:=\operatorname{cov}_{\mathbf{x} \sim r}[\tau(\mathbf{x})] \in \mathbb{R}^{d J \times d J}$ for $r \in\{p, q\}$
Proposition 1 (Asymptotic distributions).
Let $Z_{1}, \ldots, Z_{d J} \stackrel{i . i . d .}{\sim} \mathcal{N}(0,1)$, and $\left\{\omega_{i}\right\}_{i=1}^{d J}$ be the eigenvalues of Σ_{p}.

1. Under $H_{0}: p=a$, asymptotically $n \widehat{\mathrm{FSSD}^{2}} \xrightarrow{d} \sum_{i-1}^{d J}\left(Z_{i}^{2}-1\right) \omega_{i}$.

Simulation cost independent of n.
2 Under $H_{1}: p \neq q$, we have $\sqrt{n}\left(\widehat{\mathrm{FSSD}^{2}}-\mathrm{FSSD}^{2}\right) \xrightarrow{d} \mathcal{N}\left(0, \sigma_{H_{1}}^{2}\right)$ where $\sigma_{H_{1}}^{2}:=4 \mu^{\top} \Sigma_{q} \mu$. Implies $\mathbb{P}\left(\right.$ reject $\left.H_{0}\right) \rightarrow 1$ as $n \rightarrow \infty$.

But, how to estimate Σ_{p} ? No sample from p !

- Theorem: Using $\hat{\Sigma}_{q}$ (computed with $\left\{\mathbf{x}_{i}\right\}_{i=1}^{n} \sim q$) still leads to a consistent test.

Asymptotic Distributions of $\widehat{\mathrm{FSD}^{2}}$

\square Recall $\xi(\mathbf{x}, \mathbf{v}):=\frac{1}{p(\mathbf{x})} \frac{d}{d \mathbf{x}}[k(\mathbf{x}, \mathbf{v}) p(\mathbf{x})] \in \mathbb{R}^{d}$.
$■ \tau(\mathrm{x}):=$ vertically stack $\xi\left(\mathrm{x}, \mathrm{v}_{1}\right), \ldots \xi\left(\mathrm{x}, \mathrm{v}_{J}\right) \in \mathbb{R}^{d J}$. Features of x .

- Mean feature: $\mu:=\mathbb{E}_{\mathbf{x} \sim q}[\tau(\mathbf{x})]$.

■ $\Sigma_{r}:=\operatorname{cov}_{\mathbf{x} \sim r}[\tau(\mathrm{x})] \in \mathbb{R}^{d J \times d J}$ for $r \in\{p, q\}$

Proposition 1 (Asymptotic distributions).

Let $Z_{1}, \ldots, Z_{d J} \stackrel{i . i . d .}{\sim} \mathcal{N}(0,1)$, and $\left\{\omega_{i}\right\}_{i=1}^{d J}$ be the eigenvalues of Σ_{p}.
1 Under $H_{0}: p=q$, asymptotically $n \widehat{\mathrm{FSSD}^{2}} \xrightarrow{d} \sum_{i=1}^{d J}\left(Z_{i}^{2}-1\right) \omega_{i}$.

- Simulation cost independent of n.

But, how to estimate Σ_{p} ? No sample from p !

Asymptotic Distributions of $\widehat{\mathrm{FSSD}^{2}}$

- Recall $\xi(\mathrm{x}, \mathrm{v}):=\frac{1}{p(\mathrm{x})} \frac{d}{d \mathbf{x}}[k(\mathrm{x}, \mathrm{v}) p(\mathrm{x})] \in \mathbb{R}^{d}$.
$■ \tau(\mathrm{x}):=$ vertically stack $\xi\left(\mathrm{x}, \mathrm{v}_{1}\right), \ldots \xi\left(\mathrm{x}, \mathrm{v}_{J}\right) \in \mathbb{R}^{d J}$. Features of x .
- Mean feature: $\mu:=\mathbb{E}_{\mathbf{x} \sim q}[\tau(\mathbf{x})]$.

■ $\Sigma_{r}:=\operatorname{cov}_{\mathbf{x} \sim r}[\tau(\mathrm{x})] \in \mathbb{R}^{d J \times d J}$ for $r \in\{p, q\}$

Proposition 1 (Asymptotic distributions).

Let $Z_{1}, \ldots, Z_{d J} \stackrel{i . i . d .}{\sim} \mathcal{N}(0,1)$, and $\left\{\omega_{i}\right\}_{i=1}^{d J}$ be the eigenvalues of Σ_{p}.
1 Under $H_{0}: p=q$, asymptotically $n \widehat{\mathrm{FSSD}^{2}} \xrightarrow{d} \sum_{i=1}^{d J}\left(Z_{i}^{2}-1\right) \omega_{i}$.

- Simulation cost independent of n.

2 Under $H_{1}: p \neq q$, we have $\sqrt{n}\left(\widehat{\mathrm{FSSD}^{2}}-\mathrm{FSSD}^{2}\right) \xrightarrow{d} \mathcal{N}\left(0, \sigma_{H_{1}}^{2}\right)$ where $\sigma_{H_{1}}^{2}:=4 \mu^{\top} \Sigma_{q} \mu$. Implies $\mathbb{P}\left(\right.$ reject $\left.H_{0}\right) \rightarrow 1$ as $n \rightarrow \infty$.

But, how to estimate Σ_{p} ? No sample from p !

- Theorem: Using $\hat{\Sigma}_{q}\left(\right.$ computed with $\left.\left\{\mathrm{x}_{i}\right\}_{i=1}^{n} \sim q\right)$ still leads to a consistent test.

Asymptotic Distributions of $\widehat{\mathrm{FSSD}^{2}}$

- Recall $\xi(\mathrm{x}, \mathrm{v}):=\frac{1}{p(\mathrm{x})} \frac{d}{d \mathrm{x}}[k(\mathrm{x}, \mathrm{v}) p(\mathrm{x})] \in \mathbb{R}^{d}$.
$■ \tau(\mathrm{x}):=$ vertically stack $\xi\left(\mathrm{x}, \mathrm{v}_{1}\right), \ldots \xi\left(\mathrm{x}, \mathrm{v}_{J}\right) \in \mathbb{R}^{d J}$. Features of x .
- Mean feature: $\mu:=\mathbb{E}_{\mathbf{x} \sim q}[\tau(\mathbf{x})]$.

■ $\Sigma_{r}:=\operatorname{cov}_{\mathbf{x} \sim r}[\tau(\mathrm{x})] \in \mathbb{R}^{d J \times d J}$ for $r \in\{p, q\}$

Proposition 1 (Asymptotic distributions).

Let $Z_{1}, \ldots, Z_{d J} \stackrel{i . i . d .}{\sim} \mathcal{N}(0,1)$, and $\left\{\omega_{i}\right\}_{i=1}^{d J}$ be the eigenvalues of Σ_{p}.
1 Under $H_{0}: p=q$, asymptotically $n \widehat{\mathrm{FSSD}^{2}} \xrightarrow{d} \sum_{i=1}^{d J}\left(Z_{i}^{2}-1\right) \omega_{i}$.

- Simulation cost independent of n.

2 Under $H_{1}: p \neq q$, we have $\sqrt{n}\left(\widehat{\mathrm{FSSD}^{2}}-\mathrm{FSSD}^{2}\right) \xrightarrow{d} \mathcal{N}\left(0, \sigma_{H_{1}}^{2}\right)$ where $\sigma_{H_{1}}^{2}:=4 \mu^{\top} \Sigma_{q} \mu$. Implies $\mathbb{P}\left(\right.$ reject $\left.H_{0}\right) \rightarrow 1$ as $n \rightarrow \infty$.

But, how to estimate Σ_{p} ? No sample from p !
■ Theorem: Using $\hat{\Sigma}_{q}$ (computed with $\left\{\mathbf{x}_{i}\right\}_{i=1}^{n} \sim q$) still leads to a consistent test.

Bahadur Slope and Bahadur Efficiency

■ Bahadur slope \approx rate of p-value $\rightarrow 0$ under H_{1} as $n \rightarrow \infty$.
■ Measure a test's sensitivity to the departure from H_{0}.
$H_{0}: \theta=0$,
$H_{1}: \theta \neq 0$.

- Typically pval ${ }_{n} \approx \exp \left(-\frac{1}{2} c(\theta) n\right)$ where $c(\theta)>0$ under H_{1}, and
$\square c(\theta)$ higher \Longrightarrow more sensitive. Good.
Bahadur slope

where $F(t)=$ CDF of T_{n} under H_{0}.
- Bahadur efficiency $=$ ratio of slopes

Bahadur Slope and Bahadur Efficiency

■ Bahadur slope \approx rate of p -value $\rightarrow 0$ under H_{1} as $n \rightarrow \infty$.
■ Measure a test's sensitivity to the departure from H_{0}.

$$
\begin{aligned}
& H_{0}: \theta=0, \\
& H_{1}: \theta \neq 0 .
\end{aligned}
$$

- Typically pval ${ }_{n} \approx \exp \left(-\frac{1}{2} c(\theta) n\right)$ where $c(\theta)>0$ under H_{1}, and - $c(\theta)$ higher \Longrightarrow more sensitive. Good.

Bahadur slope

where $F(t)=$ CDF of T_{n} under H_{0}.

Bahadur Slope and Bahadur Efficiency

■ Bahadur slope \approx rate of p -value $\rightarrow 0$ under H_{1} as $n \rightarrow \infty$.
■ Measure a test's sensitivity to the departure from H_{0}.

$$
\begin{aligned}
& H_{0}: \theta=0, \\
& H_{1}: \theta \neq 0 .
\end{aligned}
$$

- Typically pval ${ }_{n} \approx \exp \left(-\frac{1}{2} c(\theta) n\right)$ where $c(\theta)>0$ under H_{1}, and $c(0)=0$ [Bahadur, 1960].
- $c(\theta)$ higher \Longrightarrow more sensitive. Good.

Bahadur Slope and Bahadur Efficiency

■ Bahadur slope \approx rate of p-value $\rightarrow 0$ under H_{1} as $n \rightarrow \infty$.
■ Measure a test's sensitivity to the departure from H_{0}.

$$
\begin{aligned}
& H_{0}: \theta=0, \\
& H_{1}: \theta \neq 0 .
\end{aligned}
$$

- Typically $\operatorname{pval}_{n} \approx \exp \left(-\frac{1}{2} c(\theta) n\right)$ where $c(\theta)>0$ under H_{1}, and $c(0)=0$ [Bahadur, 1960].
- $c(\theta)$ higher \Longrightarrow more sensitive. Good.

Bahadur slope

$$
c(\theta):=-2 \operatorname{plim}_{n \rightarrow \infty} \frac{\log \left(1-F\left(T_{n}\right)\right)}{n},
$$

where $F(t)=\mathrm{CDF}$ of T_{n} under H_{0}.

- Bahadur efficiency $=$ ratio of slopes of two tests.

Gaussian Mean Shift Problem

Consider $p=\mathcal{N}(0,1)$ and $q=\mathcal{N}\left(\mu_{q}, 1\right)$.

- Assume $J=1$ location for $n \widehat{\mathrm{FSSD}^{2}}$. Gaussian kernel (bandwidth $=$ $\left.\sigma_{k}^{2}\right)$

$$
c^{(\mathrm{FSSD})}\left(\mu_{q}, v, \sigma_{k}^{2}\right)=\frac{\sigma_{k}^{2}\left(\sigma_{k}^{2}+2\right)^{3} \mu_{q}^{2} e^{\frac{v^{2}}{\sigma_{k}^{2}+2}-\frac{\left(v-\mu_{q}\right)^{2}}{\sigma_{k}^{2}+1}}}{\sqrt{\frac{2}{\sigma_{k}^{2}}+1}\left(\sigma_{k}^{2}+1\right)\left(\sigma_{k}^{6}+4 \sigma_{k}^{4}+\left(v^{2}+5\right) \sigma_{k}^{2}+2\right)} .
$$

- For LKS, Gaussian kernel (bandwidth $=\kappa^{2}$).

Theorem 2 (FSSD is at least two times more efficient).

Gaussian Mean Shift Problem

Consider $p=\mathcal{N}(0,1)$ and $q=\mathcal{N}\left(\mu_{q}, 1\right)$.

- Assume $J=1$ location for $n \widehat{\mathrm{FSSD}^{2}}$. Gaussian kernel (bandwidth $=$ $\left.\sigma_{k}^{2}\right)$

$$
c^{(\mathrm{FSSD})}\left(\mu_{q}, v, \sigma_{k}^{2}\right)=\frac{\sigma_{k}^{2}\left(\sigma_{k}^{2}+2\right)^{3} \mu_{q}^{2} e^{\frac{v^{2}}{\sigma_{k}^{2}+2}-\frac{\left(v-\mu_{q}\right)^{2}}{\sigma_{k}^{2}+1}}}{\sqrt{\frac{2}{\sigma_{k}^{2}}+1}\left(\sigma_{k}^{2}+1\right)\left(\sigma_{k}^{6}+4 \sigma_{k}^{4}+\left(v^{2}+5\right) \sigma_{k}^{2}+2\right)}
$$

- For LKS, Gaussian kernel (bandwidth $=\kappa^{2}$).

$$
c^{(\mathrm{LKS})}\left(\mu_{q}, \kappa^{2}\right)=\frac{\left(\kappa^{2}\right)^{5 / 2}\left(\kappa^{2}+4\right)^{5 / 2} \mu_{q}^{4}}{2\left(\kappa^{2}+2\right)\left(\kappa^{8}+8 \kappa^{6}+21 \kappa^{4}+20 \kappa^{2}+12\right)} .
$$

Gaussian Mean Shift Problem

Consider $p=\mathcal{N}(0,1)$ and $q=\mathcal{N}\left(\mu_{q}, 1\right)$.

- Assume $J=1$ location for $n \widehat{\mathrm{FSSD}^{2}}$. Gaussian kernel (bandwidth $=$ $\left.\sigma_{k}^{2}\right)$

$$
c^{(\mathrm{FSSD})}\left(\mu_{q}, v, \sigma_{k}^{2}\right)=\frac{\sigma_{k}^{2}\left(\sigma_{k}^{2}+2\right)^{3} \mu_{q}^{2} e^{\frac{v^{2}}{\sigma_{k}^{2}+2}-\frac{\left(v-\mu_{q}\right)^{2}}{\sigma_{k}^{2}+1}}}{\sqrt{\frac{2}{\sigma_{k}^{2}}+1}\left(\sigma_{k}^{2}+1\right)\left(\sigma_{k}^{6}+4 \sigma_{k}^{4}+\left(v^{2}+5\right) \sigma_{k}^{2}+2\right)}
$$

- For LKS, Gaussian kernel (bandwidth $=\kappa^{2}$).

$$
c^{(\mathrm{LKS})}\left(\mu_{q}, \kappa^{2}\right)=\frac{\left(\kappa^{2}\right)^{5 / 2}\left(\kappa^{2}+4\right)^{5 / 2} \mu_{q}^{4}}{2\left(\kappa^{2}+2\right)\left(\kappa^{8}+8 \kappa^{6}+21 \kappa^{4}+20 \kappa^{2}+12\right)} .
$$

Theorem 2 (FSSD is at least two times more efficient).
Fix $\sigma_{k}^{2}=1$ for $n \widehat{\mathrm{FSSD}^{2}}$. Then, $\forall \mu_{q} \neq 0, \exists v \in \mathbb{R}, \forall \kappa^{2}>0$, we have Bahadur efficiency

$$
\frac{c^{(\mathrm{FSSD})}\left(\mu_{q}, v, \sigma_{k}^{2}\right)}{c^{(\mathrm{LKS})}\left(\mu_{q}, \kappa^{2}\right)}>2
$$

Linear-Time Kernel Stein Discrepancy (LKS)

■ [Liu et al., 2016] also proposed a linear version of KSD.
■ For $\left\{\mathbf{x}_{i}\right\}_{i=1}^{n} \sim q$, KSD test statistic is

$$
\frac{2}{n(n-1)} \sum_{i<j} h_{p}\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)
$$

■ LKS test statistic is a "running average"

$$
\frac{2}{n} \sum_{i=1}^{n / 2} h_{p}\left(\mathbf{x}_{2 i-1}, \mathbf{x}_{2 i}\right)
$$

- Both unbiased. LKS has $\mathcal{O}\left(d^{2} n\right)$ runtime.
- \times LKS has high variance. Poor test power.

Bahadur Slopes of FSSD and LKS

Theorem 3.

The Bahadur slope of $n \widehat{\mathrm{FSSD}^{2}}$ is

$$
c^{(\mathrm{FSSD})}:=\mathrm{FSSD}^{2} / \omega_{1}
$$

where ω_{1} is the maximum eigenvalue of $\Sigma_{p}:=\operatorname{cov}_{\mathbf{x} \sim p}[\tau(\mathbf{x})]$.
The Bahadur slope of the linear-time kernel Stein (LKS) statistic $\sqrt{n} \widehat{S_{l}^{2}}$ is

$$
c^{(\mathrm{LKS})}=\frac{1}{2} \frac{\left[\mathbb{E}_{q} h_{p}\left(\mathrm{x}, \mathrm{x}^{\prime}\right)\right]^{2}}{\mathbb{E}_{p}\left[h_{p}^{2}\left(\mathrm{x}, \mathrm{x}^{\prime}\right)\right]},
$$

where h_{p} is the U-statistic kernel of the KSD statistic.

Illustration: Optimization Objective

- Consider $J=1$ location.
- Training objective $\frac{\widetilde{\operatorname{FSSD}}^{2}(\mathrm{v})}{\widehat{\sigma_{H_{1}}}(\mathbf{v})}$ (gray), p in wireframe, $\left\{\mathbf{x}_{i}\right\}_{i=1}^{n} \sim q$ in purple, $\star=$ best \mathbf{v}.

$$
p=\mathcal{N}\left(0,\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)\right) \text { vs. } q=\mathcal{N}\left(0,\left(\begin{array}{ll}
2 & 0 \\
0 & 1
\end{array}\right)\right) .
$$

Illustration: Optimization Objective

- Consider $J=1$ location.
- Training objective $\frac{\widehat{F S S D}^{2}(\mathbf{v})}{\widehat{\sigma_{H_{1}}}(\mathbf{v})}$ (gray), p in wireframe, $\left\{\mathbf{x}_{i}\right\}_{i=1}^{n} \sim q$ in purple, $\star=$ best \mathbf{v}.

$$
p=\mathcal{N}(0, \mathbf{I}) \text { vs. } q=\text { Laplace with same mean \& variance. }
$$

Simulation Settings

■ Gaussian kernel $k(\mathbf{x}, \mathbf{v})=\exp \left(-\frac{\|\mathbf{x}-\mathbf{v}\|_{2}^{2}}{2 \sigma_{k}^{2}}\right)$

	Method	Description
1	FSSD-opt	Proposed. With optimization. $J=5$.
2	FSSD-rand	Proposed. Random test locations.
3	KSD	Quadratic-time kernel Stein discrepancy [Liu et al., 2016, Chwialkowski et al., 2016]
4		Linear-time running average version of KSD.
		MMD two-sample test [Gretton et al., 2012]. With optimization.
6	ME-test	Mean Embeddings two-sample test [Jitkrittum et al., 2016]. With optimization.

■ Two-sample tests need to draw sample from p.

- Tests with optimization use 20% of the data.
- $\alpha=0.05 .200$ trials.

Simulation Settings

■ Gaussian kernel $k(\mathbf{x}, \mathbf{v})=\exp \left(-\frac{\|\mathbf{x}-\mathbf{v}\|_{2}^{2}}{2 \sigma_{k}^{2}}\right)$

	Method	Description
1	FSSD-opt	Proposed. With optimization. $J=5$.
2	FSSD-rand	Proposed. Random test locations.
3	KSD	Quadratic-time kernel Stein discrepancy
4	LKS	[Liu et al., 2016, Chwialkowski et al., 2016]
5	Linear-time running average version of KSD.	
5	MMD-opt	MMD two-sample test [Gretton et al. 2012]. With
6	ME-test	Mean Embeddings two-sample test

■ Two-sample tests need to draw sample from p.

- Tests with optimization use 20% of the data.
- $\alpha=0.05 .200$ trials.

Simulation Settings

- Gaussian kernel $k(\mathbf{x}, \mathrm{v})=\exp \left(-\frac{\|\mathbf{x}-\mathbf{v}\|_{2}^{2}}{2 \sigma_{k}^{2}}\right)$

	Method	Description		
1	FSSD-opt	Proposed. With optimization. $J=5$.		
2	FSSD-rand	Proposed. Random test locations.		
3	KSD	Quadratic-time kernel Stein discrepancy 4		
LKiu et al., 2016, Chwialkowski et al., 2016]			\quad	Linear-time running average version of KSD.
:---				

■ Two-sample tests need to draw sample from p.

- Tests with optimization use 20% of the data.
- $\alpha=0.05 .200$ trials .

Gaussian Vs. Laplace

- $p=$ Gaussian. $q=$ Laplace. Same mean and variance. High-order moments differ.
- Sample size $n=1000$.

-	FSSD-opt
--ヵ--	FSSD-rand
\bigcirc	KSD
---	LKS
	MMD-opt
-	ME-opt

■ Optimization increases the power.

- Two-sample tests can perform well in this case (p, q clearly differ).

Harder RBM Problem

- Perturb only one entry of $\mathbf{B} \in \mathbb{R}^{50 \times 40}$ (in the RBM).
- $B_{1,1} \leftarrow B_{1,1}+\mathcal{N}\left(0, \sigma_{\text {per }}^{2}=0.1^{2}\right)$.

--	FSSD-opt
-	FSSD-rand
--	KSD
--*-	LKS
	MMD-opt
\square	ME-opt

- Two-sample tests fail. Samples from p, q look roughly the same.
- FSSD-opt is comparable to KSD at low n. One order of magnitude faster.

Harder RBM Problem

■ Perturb only one entry of $B \in \mathbb{R}^{50 \times 40}$ (in the $R B M$).
■ $B_{1,1} \leftarrow B_{1,1}+\mathcal{N}\left(0, \sigma_{\text {per }}^{2}=0.1^{2}\right)$.

$\square-$	FSSD-opt
---	FSSD-rand
ϖ	KSD
--	LKS
ϖ	MMD-opt
ϖ	ME-opt

- Two-sample tests fail. Samples from p, q look roughly the same.
- FSSD-opt is comparable to KSD at low n. One order of magnitude faster.

References I

围 Bahadur，R．R．（1960）．
Stochastic comparison of tests．
The Annals of Mathematical Statistics，31（2）：276－295．
围 Chwialkowski，K．，Strathmann，H．，and Gretton，A．（2016）． A kernel test of goodness of fit．
In ICML，pages 2606－2615．
圁 Gretton，A．，Borgwardt，K．M．，Rasch，M．J．，Schölkopf，B．，and Smola，A．（2012）．
A kernel two－sample test．
$J M L R, 13: 723-773$.

References II

(Jitkrittum, W., Szabó, Z., Chwialkowski, K. P., and Gretton, A. (2016).

Interpretable Distribution Features with Maximum Testing Power.
In NIPS, pages 181-189.
围 Liu, Q., Lee, J., and Jordan, M. (2016).
A kernelized Stein discrepancy for goodness-of-fit tests.
In ICML, pages 276-284.

