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Overview

Landmarking Manifolds with Gaussian Processes

Dawen Liang, John Paisley

ICML 2015.

Goal: Find a few points characterizing the structure of the manifold

• Documents: bag-of-word landmarks = topics
• Faces: landmarks = distinct facial features

Idea:

1 Gaussian process
2 xn+1 ← argmaxx predictive variance(x | x1, . . . , xn). x not from a finite set.
3 Repeat

Based on active learning idea

A new landmark is “repelled” by those already selected
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Example: Manifold Landmarking

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

1

2

3

4

5

6

7

8

9

10

11
12

13

14

15

(b) Manifold landmarking
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Gaussian Process (GP)

Paired data: Dn = {(xi, yi)}ni=1
where xi ∈ R

d and yi ∈ R.

Let Kn be the kernel matrix on {xi}ni=1
i.e., (Kn)ij = k(xi, xj).

Let Y := (y1| · · · |yn)⊤.
Given Dn, y(x) at a new test point:

y(x) | Y ∼ N (ξ(x),Σ(x)),

predictive mean: ξ(x) = k(x,Dn)K
−1
n Y,

predictive variance: Σ(x) = k(x, x)− k(x,Dn)K
−1
n k(x,Dn)

⊤,

where k(x,Dn) := (k(x, x1), . . . , k(x, xn)).
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Active Learning with GP

Find the next xn+1 ∈ D (finite set) to query yn+1 by

xn+1 = argmax
x∈D

Σ(x),

predictive variance: Σ(x) = k(x, x)− k(x,Dn)K
−1
n k(x,Dn)

⊤,

Note Σ(x) does not depend on Y .

Choose from a finite set D. Drawbacks:

• High-dimensional data are not usually densely sampled.
• Perhaps a landmark should not correspond to an observation e.g., landmark

= local average of faces.

Proposal: Find xn+1 = argmaxxΣ(x) by gradient ascent.
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Kernel k

Low-dimensional manifoldM in an ambient space S

µ,N := distributions on S. Support of µ is M.

N : a zero mean noise process.

Assume the observed data point x = x̂+ ǫ ∈ S where x̂
i.i.d.∼ µ and ǫ

i.i.d.∼ N .

Kernel for t, t′ ∈ S:

k(t, t′) =

ˆ

x̂∈S

φx̂(t)φx̂(t
′) dµ(x̂),

φx̂(t) = exp
(

−‖t− x̂‖2/η
)

.

We do not have µ or x̂ ∼ µ. Approximate with observations {xi}Ni=1:

k(t, t′) ≈ 1

N

N
∑

i=1

φxi
(t)φxi

(t′) :=
1

N
~φ(t)⊤~φ(t′),

where ~φ(t) := (φxi
(t), . . . , φxN

(t))⊤.
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Finding Landmarks with Stochastic Gradient

Given n selected landmarks Tn = {t1, . . . , tn},
tn+1 = argmax

t∈S
k(t, t)− k(t,Tn)K−1

n k(t,Tn)⊤

≈ argmax
t∈S

~φ(t)⊤~φ(t)− ~φ(t)⊤Φ(Φ⊤Φ)−1Φ⊤~φ(t) := argmax
t∈S

fn(t),

where Φ =
[

~φ(t1)| · · · |~φ(tn)
]

∈ R
N×n.

Rewrite fn(t):

fn(t) =
N
∑

i=1

N
∑

j=1

Mijφxi
(t)φxj

(t),

Mij = δij −
(

Φ(Φ⊤Φ)−1Φ⊤

)

ij
,

∇tfn(t) = −
N
∑

i=1

N
∑

j=1

4Mij

η

[

t− xi + xj
2

]

φxi
(t)φxj

(t).

To handle large N , use stochastic gradient.

7/17



Finding Landmarks with Stochastic Gradient

Given n selected landmarks Tn = {t1, . . . , tn},
tn+1 = argmax

t∈S
k(t, t)− k(t,Tn)K−1

n k(t,Tn)⊤

≈ argmax
t∈S

~φ(t)⊤~φ(t)− ~φ(t)⊤Φ(Φ⊤Φ)−1Φ⊤~φ(t) := argmax
t∈S

fn(t),

where Φ =
[

~φ(t1)| · · · |~φ(tn)
]

∈ R
N×n.

Rewrite fn(t):

fn(t) =
N
∑

i=1

N
∑

j=1

Mijφxi
(t)φxj

(t),

Mij = δij −
(

Φ(Φ⊤Φ)−1Φ⊤

)

ij
,

∇tfn(t) = −
N
∑

i=1

N
∑

j=1

4Mij

η

[

t− xi + xj
2

]

φxi
(t)φxj

(t).

To handle large N , use stochastic gradient.

7/17



Algorithm (projected gradient)

Algorithm 1 Manifold landmarking with GPs

1: To find landmark tn+1 given t1, . . . , tn, initialize t
(1)
n+1

and do the following:

2: for s = 1, . . . S do

3: Randomly subsample a set Bs of observations x ∈ D.

4: For each tk, construct ~φs(tk) using x ∈ Bs and the

function φx(tk) = exp(−‖x− tk‖
2/η).

5: Define the matrix Φ = [~φs(t1), . . . , ~φs(tn)] and set

M = I − Φ(ΦTΦ)−1ΦT .

6: Let fn(t, Bs) =
∑

xi,xj∈Bs
Mijφxi

(t)φxj
(t).

7: Calculate γ = t
(s)
n+1 + ρs∇tfn(t, Bs)|t(s)

n+1
using

Equation (10) and step size ρs.

8: Project γ onto S ⊆ R
d to obtain t

(s+1)
n+1 .

9: end for

Subsample
Bs ⊂ {x1, . . . , xN} := D.

Step size ρs such that
∑

s |ρs| =∞ and
∑

s ρ
2
s <∞.

Eq. 10 = ∇tfn(t).
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Experiments

Images, text and music data

Step size: ρs = (10 + s)−0.51

1000 gradient steps for each landmark

Batch size: |Bs| = 1000

Kernel width: η =
∑

i σ̂
2
i

• σ̂2
i

is the variance of the ith dimension.
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Yale Face Dataset

Yale faces database. 2475 images of size 42× 48.

165 images of various illuminations for 15 people.

Figure 2. The first eight landmarks from the Yale faces dataset.

Does not correspond to any single person in the dataset.
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PIE Faces Dataset

11,554 images of size 64× 64. 68 people.
2D embedding of 1000 random images by t-SNE.
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Documents: New York Times, 20 Newsgroup

dth document:

xd(j) =
√

(#occurrences of word j)/nd,

nd := #words in document d.

Without
√

, xd is a discrete distribution over words.

Landmark t is in the same space.

• Can be interpreted as a topic (distribution over words) as in LDA.

Data

New York Times: 1.8 million documents. Vocab. size: 8000.

20 Newsgroup vocab. size: 1545.
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New York Times, 20 Newsgroup Results

Table 1. (top) The “most probable” words for the first 11 landmarks learned on the 1.8 million document New York Times dataset.

(bottom) The first 12 landmarks from the 20 Newsgroup dataset.

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11

percent inc beloved street treasury republican minutes mrs game percent film
going net notice sunday bills house add daughter season market life

national share paid music rate bush oil graduated team stock man
public reports deaths avenue bonds senate salt married games billion story

life earns wife theater bond political cup son play yesterday book
ago qtr loving art notes government pepper father second prices movie

house earnings mother museum municipal democrats tblspoon yesterday left quarter love

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12

good windows team turkish encryption god ftp car israel nasa scsi gun
make dos game turks key jesus file good israeli gov drive guns

ve card year armenia technology bible pub cars jews space ide weapons
work mb games soviet government christ mail price arab long mb crime
back system season today chip christians program buy state orbit hard control

Showing top 5,7 highest coordinates of ti.

Landmarks correspond to thematically meaningful concepts.
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MNIST Classification with Landmarks

Quantitatively evaluate the landmarks on handwritten digit classification
problem (MNIST).
Given landmarks Tn = {ti}ni=1

, compute feature for image xd:

~w(xd) = [φt1(xd), . . . , φtn(xd)]
⊤ .

ℓ2-regularized logistic regression.
Train/validate/test sizes = 50,000/10,000/10,000.
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Rand: random n data points as landmarks.
Act5K: GP active learning with the same kernel. Subsample data to 5000
images.
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Automatic Music Tagging

audio content 7→ semantic tags (e.g., classic, slow)

Million Song Dataset. 561 tags. Train/test: 371,209/2,757.

Feature construction:

1 Echo Nest’s timbre features (similar to MFCC). Multiple vectors per song.

2 k-means on all the vectors with J clusters (codewords).

3 For each song, assign each feature vector to the closest cluster. Song xd =
histogram of cluster identities (J bins).

Each tag is treated as a binary classification task. ℓ2-regularized logistic
regression.

Use ~w(xd) as before.
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Annotation and Retrieval

Use F-score to measure ability to annotate song. F-score computed from
average per-tag precision, recall.

Retrieval: given a query tag, provide a list of related songs.

• Rank each song by the predicted probability.
• Compute AROC and Mean Average Precision.
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Music Tagging Results
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Red line = logistic regression on raw VQ features.
NMF = Non-negative matrix factorization.
k-means = treat centroids as landmarks.
High codebook size (J) does not improve the performance.
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