Feature Selection via ℓ_1 -penalized Squared-loss Mutual Information

Wittawat Jitkrittum (10M38450)

Sugiyama Lab. Department of Computer Science Tokyo Institute of Technology

7 February 2012

Outline

- 2 Two Components of Feature Selection Algorithms
 Optimization Strategy
 Feature Quality Measure
 - _____
- 3 ℓ_1 -LSMI (proposed method)
- 4 Experiments
 - Toy Data
 - Real Data

Outline

1 Introduction to Feature Selection

- Optimization Strategy Feature Quality Measure
- - Toy Data
 - Real Data

- binary classification
- 2 features: (X_1, X_2)
- Linearly separable
- But, X₁ and X₂ are redundant. Let's choose X₁.
- X₁ alone can distinguish the 2 classes.

- binary classification
- 2 features: (X_1, X_2)
- Linearly separable
- But, X₁ and X₂ are redundant. Let's choose X₁.
- X₁ alone can distinguish the 2 classes.

- binary classification
- 2 features: (X_1, X_2)
- Linearly separable
- But, X₁ and X₂ are redundant. Let's choose X₁.
- X₁ alone can distinguish the 2 classes.

- binary classification
- 2 features: (X_1, X_2)
- Linearly separable
- But, X₁ and X₂ are redundant. Let's choose X₁.
- X₁ alone can distinguish the 2 classes.

- binary classification
- 2 features: (X_1, X_2)
- Linearly separable
- But, X₁ and X₂ are redundant. Let's choose X₁.
- X₁ alone can distinguish the 2 classes.

Feature Selection

What :

 \blacksquare Given an input $\mathbf{X} \in \mathbb{R}^{m \times n}$ and $n\text{-dimensional output vector }\mathbf{Y}$

- *m* features (dimensions)
- n observations (sample size)

select k features (k < m) in X which can explain Y well.

Why :

- Reduces data collection cost
- Reduces computation required to train a predictor.
- Facilitates model interpretation

Example : document classification

 Using bag-of-words representation, feature selection can be used to understand which words can explain different categories.

Outline

2 Two Components of Feature Selection Algorithms Optimization Strategy Feature Quality Measure

- 3 ℓ_1 -LSMI (proposed method)
- 4 ExperimentsToy Data
 - Real Data

Outline

2 Two Components of Feature Selection AlgorithmsOptimization Strategy

- Feature Quality Measure
- 3 ℓ_1 -LSMI (proposed method)
- 4 Experiments
 - Toy Data
 - Real Data

Feature Ranking

Definitions

- $X := (X_1, \ldots, X_m)$: input variables
- Y: output variable
- f: feature quality measure e.g., correlation

Procedure :

- **Ranks** $\{X_i\}_{i=1}^m$ in descending order of $f(X_i, Y)$.
- Select top k features.

Advantage :

Simple & fast

Disadvantage :

Not consider feature redundancy

Feature redundancy

Features are redundant if they are similar (previous example).

Forward Search

- \mathcal{X} : set of features
- k: desired number of features

Procedure :

- Start from $\mathcal{X} = \emptyset$.
- Add a feature to \mathcal{X} until $|\mathcal{X}| = k$.

Advantage :

Consider feature redundancy

Disadvantage :

Not consider feature interaction

Feature interaction

Interacting features are individually weak, but strong when combined (e.g. XOR problem).

Backward Search

- X: set of features
- k: desired number of features

Procedure :

- Start from ($\mathcal{X} = all$ features).
- Remove a feature until $|\mathcal{X}| = k$.

Advantages :

- Considers redundancy
- Considers interaction

Disadvantage :

• $O(m^2)$ (m = number of features)

ℓ_1 -penalized Feature Weight Learning

$$\begin{array}{ll} \underset{\pmb{w}}{\text{maximize}} & f(\text{diag}(\pmb{w})\mathbf{X},\mathbf{Y}) \\ \\ \text{subject to} & \|\pmb{w}\|_1 \leq \pmb{z} \end{array}$$

- *f*: feature quality measure
- $\mathbf{X} = (\boldsymbol{x}_1, \dots, \boldsymbol{x}_n) \in \mathbb{R}^{m imes n}$ (m features imes n samples)

diag
$$(\boldsymbol{w})\mathbf{X} = (\operatorname{diag}(\boldsymbol{w})\boldsymbol{x}_1, \dots, \operatorname{diag}(\boldsymbol{w})\boldsymbol{x}_n) \in \mathbb{R}^{m \times n}$$

• diag
$$(\boldsymbol{w})\boldsymbol{x} = (w_1x_1,\ldots,w_mx_m)^T$$

- w_j : weight of the j^{th} feature
- If z > 0 is sufficiently small, obtained \hat{w} becomes sparse [Tibshirani, 1996].
- $\widehat{w}_j = 0 \Rightarrow j^{th}$ feature is not necessary
- A *k*-feature subset can be obtained by tuning *z*.

Comparison of Optimization Strategies

- k: number of desired features
- m: number of total features

	Ranking	Forward	Backward	Exhaustive	ℓ_1
Optimization	discrete	discrete	discrete	discrete	cont.
Search Complexity	m	km	m^2	2^m	m
Consider Redundancy	×	\bigtriangleup	\bigcirc	0	\bigcirc
Consider Interaction	×	×	\bigcirc	0	\bigcirc

Advantages of ℓ_1 :

- Considers all features at the same time
 - considers redundancy and interaction
- Low computational complexity
- We use ℓ_1 as the optimization strategy

Outline

2 Two Components of Feature Selection Algorithms Optimization Strategy Feature Quality Measure

- 3 ℓ_1 -LSMI (proposed method)
- 4 Experiments
 - Toy Data
 - Real Data

Pearson Correlation (PC)

■ For binary or continuous *Y*,

$$\rho(X,Y) = \frac{\operatorname{cov}(X,Y)}{\sigma(X)\sigma(Y)}.$$

■ For categorical Y [Hall, 2000],

$$\rho_c(X, Y) = \sum_{c=1}^{C} p(Y = c) |\rho(X, B_c)|.$$

• $B_c =$ binary variable taking 1 when Y = c

X, Y: univariate random variables

Advantage :

Computationally efficient

Disadvantage :

Detects only linear dependency

Hilbert-Schmidt Independence Criterion (HSIC) [Gretton et al., 2005]

$$\mathsf{HSIC}(X,Y) = \frac{1}{(n-1)^2}\operatorname{tr}(KHLH)$$

•
$$(K)_{i,j} = k(\boldsymbol{x}_i, \boldsymbol{x}_j) = \exp\left(-\frac{\|\boldsymbol{x}_i - \boldsymbol{x}_j\|^2}{2\sigma_{\boldsymbol{x}}^2}\right)$$

$$(L)_{i,j} = l(\boldsymbol{y}_i, \boldsymbol{y}_j) = \exp\left(-\frac{\|\boldsymbol{y}_i - \boldsymbol{y}_j\|^2}{2\sigma_{\boldsymbol{y}}^2}\right)$$

$$\bullet \ H = I - \mathbf{1}\mathbf{1}^T/n$$

- Non-linear extension of Pearson correlation (PC)
- Measures infinite-order moment (kernel tricks)
- $HSIC(X, Y) = 0 \Leftrightarrow X$ and Y are independent.

Advantages

Considers non-linear dependency

Disadvantage

- **No model selection criterion for** σ_x and σ_y
 - Popular heuristic is $\sigma_x = \text{median}(\{\| \mathbf{x}_i \mathbf{x}_j \|\}_{i < j})$

Mutual Information (MI) [Cover and Thomas, 1991]

$$I(X,Y) = \iint \log\left(\frac{p(\boldsymbol{x},\boldsymbol{y})}{p(\boldsymbol{x})p(\boldsymbol{y})}\right) p(\boldsymbol{x},\boldsymbol{y}) \, d\boldsymbol{x} d\boldsymbol{y}$$

Well-known information-theoretic measure

• $I(X,Y) = 0 \Leftrightarrow X$ and Y are independent.

Advantages :

- Considers non-linear dependency
- Model selection e.g., estimator called MLMI (Maximum Likelihood MI) [Suzuki et al., 2008]

Disadvantage

Costly to estimate (due to log)

Squared-loss Mutual Information (SMI) [Suzuki et al., 2009]

$$I_s(X,Y) = \frac{1}{2} \iint \left(\frac{p(\boldsymbol{x},\boldsymbol{y})}{p(\boldsymbol{x})p(\boldsymbol{y})} - 1 \right)^2 p(\boldsymbol{x})p(\boldsymbol{y}) \, d\boldsymbol{x} d\boldsymbol{y}$$

- Same family as MI (f-divergence).
- $I_s(X,Y) = 0 \Leftrightarrow X$ and Y are independent.

Advantages :

- Considers non-linear dependency
- Estimator LSMI (Least-Squares MI) has a model selection criterion.
- LSMI can be computed analytically.

4 Feature Quality Measures

	PC	HSIC	MI	SMI
Non-linear Dependency	×	0	\bigcirc	0
Model Selection	not needed	×	\bigcirc	\bigcirc
Computational Efficiency	0	\bigcirc	×	\bigtriangleup

- **PC**: cannot handle non-linear dependency.
- HSIC : no model selection
- MI : costly to estimate
- SMI : good balance of all properties. (¨)
- We use SMI as the feature quality measure.

Summary of Optimization Strategies and Measures

	Rank.	Forward	Backward	Exhaustive	ℓ_1
PC	0	×	×	Х	×
HSIC	-	\bigcirc	\bigcirc	×	\triangle
MI	0	\bigcirc	\bigcirc	×	-
SMI	0	\bigcirc	\bigcirc	×	-

 \bigcirc, \bigtriangleup method exists , $~\times$ unreasonable, impractical , – not exist

PC: Goodness of a subset
$$\mathcal{X}$$
 is $\sum_{i \in \mathcal{X}} \rho(X_i, Y)$.

Forward, backward and ℓ_1 give the same solution.

- \blacksquare After an extensive research, we propose to use $~\ell_1{+}\mathsf{SMI}$.
 - Referred to as ℓ_1 -LSMI (LSMI = an estimator of SMI).

Outline

Two Components of Feature Selection Algorithms
 Optimization Strategy
 Feature Quality Measure

3 ℓ_1 -LSMI (proposed method)

4 ExperimentsToy DataReal Data

ℓ_1 -LSMI (proposed method)

$$egin{aligned} & \max_{m{w}\in\mathbb{R}^m} & \widehat{I}_s(\operatorname{diag}(m{w})\mathbf{X},\mathbf{Y}) \ & \text{subject to} & \mathbf{1}^Tm{w}\leqm{z} \ & m{w}\geqm{0}, \end{aligned}$$

- $w \ge 0$ is imposed to narrow search space (signs do not matter).
- s(z): number of obtained features using z
- s(z) tends to increase as z increases.
- To find a k-feature subset :

Outline

Two Components of Feature Selection Algorithms Optimization Strategy Feature Quality Measure

3 ℓ_1 -LSMI (proposed method)

4 Experiments

- Toy Data
- Real Data

Outline

Two Components of Feature Selection Algorithms Optimization Strategy Feature Quality Measure

3 ℓ_1 -LSMI (proposed method)

3 Toy Datasets

(1) and-or
$$(k = 4, m = 10)$$

- $\bullet Y = (X_1 \land X_2) \lor (X_3 \land X_4)$
- $X_1, \ldots, X_7 \sim \mathsf{Bernoulli}(0.5)$
- $X_8, \ldots, X_{10} = Y$ with 0.2 chance of bit flip
- Characteristics: feature redundancy, weak interaction

(2) quad
$$(k = 2, m = 10)$$

$$Y = \frac{X_1^2 + X_2}{0.5 + (X_2 + 1.5)^2} + 0.1\epsilon$$

- $X_1, \ldots, X_8, \epsilon \sim \mathcal{N}(0, 1)$
- $X_9 \sim 0.5X_1 + \mathcal{U}(-1,1)$
- $X_{10} \sim 0.5X_2 + \mathcal{U}(-1,1)$
- Characteristic: non-linear dependency

(3) xor
$$(k = 2, m = 10)$$

$$\bullet \quad Y = \operatorname{xor}(X_1, X_2)$$

- $X_1, \ldots, X_5 \sim \mathsf{Bernoulli}(0.5)$
- $X_6, \ldots, X_{10} \sim \mathsf{Bernoulli}(0.75)$
- Characteristic: feature interaction
- $\blacksquare m: \# {\rm total \ features}$
- k: #features to select
- $X \sim \text{Bernoulli}(p) \Rightarrow \text{binary}$ variable with P(X = 1) = p

Results on the 3 Toy Datasets

- 50 trials, *n* = 400
- F-measure (F)

•
$$F = 2PR/(P+R)$$

- $\bullet \ 0 \le F \le 1$
- $F = 1 \Leftrightarrow$ only and all true features are selected.
- PC, F-HSIC, F-LSMI cannot handle interacting features.
 - Simultaneous consideration of features is necessary.
- Inappropriate σ_x (Gaussian width) makes F-HSIC, B-HSIC, ℓ_1 -HSIC fail sometimes in quad problem.
- B-LSMI sometimes greedily keeps some of redundant features in and-or problem.
- ℓ_1 -LSMI works well in all cases.

Outline

Two Components of Feature Selection Algorithms Optimization Strategy Feature Quality Measure

3 ℓ_1 -LSMI (proposed method)

SVC/SVR Test Errors on Medium-Dimensional Real Data

Dataset	m	n	k	PC ℓ_1 -HSIC ℓ		ℓ_1 -LSMI	mRMR	Relief
abalone (R)	8	400	4	1.63 (0.9)	1.65 (0.9)	1.60 (0.8)	1.64 (0.8)	1.58 (0.8)
bcancer (C2)	9	277	4	0.24 (0.0)	0.23 (0.0)	0.23 (0.0)	0.25 (0.0)	0.26 (0.0)
glass (C6)	9	214	4	0.29 (0.0)	0.30 (0.0)	0.30 (0.0)	0.30 (0.0)	0.31 (0.0)
housing (R)	13	400	4	4.03 (0.2)	3.95 (0.2)	3.91 (0.2)	3.97 (0.2)	4.10 (0.2)
vowel (C11)	13	400	4	0.20 (0.0)	0.20 (0.0)	0.21 (0.0)	0.20 (0.0)	0.21 (0.0)
wine (C3)	13	178	4	0.03 (0.0)	0.03 (0.0)	0.03 (0.0)	0.03 (0.0)	0.03 (0.0)
image (C2)	18	400	4	0.10 (0.0)	0.13 (0.0)	0.06 (0.0)	0.14 (0.0)	0.05 (0.0)
segment (C7)	18	400	4	0.19 (0.0)	0.11 (0.0)	0.05 (0.0)	0.05 (0.0)	0.13 (0.0)
vehicle (C4)	18	400	4	0.32 (0.0)	0.34 (0.0)	0.27 (0.0)	0.39 (0.1)	0.32 (0.0)
german (C2)	20	400	4	0.24 (0.0)	0.25 (0.0)	0.25 (0.0)	0.25 (0.0)	0.26 (0.0)
cpuact (R)	21	400	4	0.25 (0.0)	0.54 (0.3)	0.25 (0.2)	0.23 (0.1)	0.37 (0.1)
ionosphere (C2)	33	351	4	0.07 (0.0)	0.07 (0.0)	0.07 (0.0)	0.09 (0.0)	0.07 (0.0)
satimage (C6)	36	400	10	0.22 (0.0)	0.14 (0.0)	0.13 (0.0)	0.14 (0.0)	0.16 (0.0)
spectf (C2)	44	267	10	0.19 (0.0)	0.19 (0.0)	0.17 (0.0)	0.18 (0.0)	0.18 (0.0)
senseval2 (C3)	50	400	10	0.18 (0.0)	0.19 (0.0)	0.18 (0.0)	0.18 (0.0)	0.21 (0.0)
speech (C2)	50	400	10	0.01 (0.0)	0.01 (0.0)	0.01 (0.0)	0.02 (0.0)	0.03 (0.0)
sonar (C2)	60	208	10	0.23 (0.0)	0.21 (0.0)	0.16 (0.0)	0.18 (0.0)	0.19 (0.0)
msd (R)	90	400	10	0.95 (0.1)	0.94 (0.1)	0.93 (0.1)	0.97 (0.1)	0.96 (0.1)
musk1 (C2)	166	400	20	0.19 (0.0)	0.16 (0.0)	0.16 (0.0)	0.15 (0.0)	0.19 (0.0)
musk2 (C2)	166	400	20	0.09 (0.0)	0.09 (0.0)	0.08 (0.0)	0.09 (0.0)	0.09 (0.0)
ctslices (R)	384	400	20	0.82 (0.1)	0.65 (0.0)	0.38 (0.0)	0.45 (0.0)	0.56 (0.0)
isolet (R)	617	400	20	5.92 (0.3)	5.85 (0.4)	5.30 (0.4)	5.39 (0.4)	6.27 (0.3)
Top Count				7	8	17	10	5

classification error/mean squared error (SD)

■ Paired t-test with 5% significance level. 50 trials.

SVC/SVR Test Errors on High-Dimensional Real Data

Dataset	m	n	PC	ℓ_1 -HSIC	ℓ_1 -LSMI	mRMR	Relief
warp. (C10)	2429	210	0.062 (0.00)	0.052 (0.01)	0.031 (0.01)	0.033 (0.00)	0.043 (0.00)
BASE. (C2)	4862	400	0.120 (0.03)	0.082 (0.02)	0.120 (0.03)	0.094 (0.02)	0.270 (0.10)
TOX. (C4)	5748	171	0.370 (0.00)	0.280 (0.02)	0.150 (0.06)	0.260 (0.00)	0.310 (0.00)
CLL. (C3)	11349	111	0.110 (0.00)	0.120 (0.01)	0.130 (0.01)	0.140 (0.00)	0.260 (0.00)
SMK. (C2)	19993	187	0.240 (0.00)	0.200 (0.02)	0.220 (0.01)	0.220 (0.00)	0.250 (0.00)

- 10 trials
- Select k = 20 features

Discussion :

- ℓ_1 -LSMI and ℓ_1 -HSIC perform well.
- Results of Relief and PC suggest high-dimensional data have redundant features i.e., TOX.
- ℓ_1 -LSMI performs well on TOX.

Conclusions

	Ranking	Forward	Backward	Ex	haustive	ℓ_1
Optimization	discrete	discrete	discrete	c	liscrete	cont.
Search Complexity	m	km	m^2		2^m	m
Consider Redundancy	×	\triangle	\bigcirc		0	\bigcirc
Consider Interaction	×	×	\bigcirc		0	\bigcirc
		PC	HSIC	МΙ	SMI	
Non-linear De	Non-linear Dependency Model Selection		0	0	0	
Model Selection			x b	\bigcirc	\bigcirc	
Computationa	I Efficiency	۱	\bigcirc	×	\bigtriangleup	

- Extensively studied combinations of optimizations and measures.
- Proposed ℓ_1 -LSMI = ℓ_1 + SMI.
- \blacksquare Demonstrated that $\ell_1\text{-LSMI}$ works well on real datasets.
- To present at IBISML and submit a journal to IEICE.

LSMI

$$I_s(X,Y) = \frac{1}{2} \iint \left(\frac{p(\boldsymbol{x},\boldsymbol{y})}{p(\boldsymbol{x})p(\boldsymbol{y})} - 1 \right)^2 p(\boldsymbol{x})p(\boldsymbol{y}) \, d\boldsymbol{x} d\boldsymbol{y}$$

Directly model $\frac{p(\boldsymbol{x},\boldsymbol{y})}{p(\boldsymbol{x})p(\boldsymbol{y})}$ with $g(\boldsymbol{x},\boldsymbol{y}) \in \mathcal{G} := \{ \boldsymbol{\alpha}^T \boldsymbol{\varphi}(\boldsymbol{x},\boldsymbol{y}) \mid \boldsymbol{\alpha} = (\alpha_1, \dots, \alpha_b)^T \in \mathbb{R}^b \}$
Find $\boldsymbol{\alpha}$ which minimizes the squared error $J(\boldsymbol{\alpha})$.

$$J(\boldsymbol{\alpha}) = \frac{1}{2} \iint (g(\boldsymbol{x}, \boldsymbol{y}) - g^*(\boldsymbol{x}, \boldsymbol{y}))^2 p(\boldsymbol{x}) p(\boldsymbol{y}) \, d\boldsymbol{x} d\boldsymbol{y}$$

= $\frac{1}{2} \iint g(\boldsymbol{x}, \boldsymbol{y})^2 p(\boldsymbol{x}) p(\boldsymbol{y}) \, d\boldsymbol{x} d\boldsymbol{y} - \iint g(\boldsymbol{x}, \boldsymbol{y}) p(\boldsymbol{x}, \boldsymbol{y}) \, d\boldsymbol{x} d\boldsymbol{y} + C$

$$egin{aligned} J(oldsymbollpha) &pprox \widehat{J}(oldsymbollpha) = rac{1}{2}oldsymbollpha^T \widehat{oldsymbol H}oldsymbollpha - \widehat{oldsymbol h}^Toldsymbollpha \ \widehat{oldsymbol H} &:= rac{1}{n^2}\sum_{i=1}^n\sum_{i'=1}^n arphi(oldsymbol x_i,oldsymbol y_{i'}) arphi(oldsymbol x_i,oldsymbol y_{i'})^T \ \widehat{oldsymbol h} &:= rac{1}{n}\sum_{i=1}^n arphi(oldsymbol x_i,oldsymbol y_i) \end{aligned}$$

30/29

$$\widehat{\boldsymbol{\alpha}} = \operatorname*{argmin}_{\boldsymbol{\alpha}} \frac{1}{2} \boldsymbol{\alpha}^T \widehat{\boldsymbol{H}} \boldsymbol{\alpha} - \widehat{\boldsymbol{h}}^T \boldsymbol{\alpha} + \boldsymbol{\lambda} \boldsymbol{\alpha}^T \boldsymbol{\alpha}$$

 \widehat{lpha} can be solved analytically with

$$\widehat{oldsymbol{lpha}} = \left(\widehat{oldsymbol{H}} + \lambda oldsymbol{I}_{b imes b}
ight)^{-1} \widehat{oldsymbol{h}}$$

 $\widehat{\alpha}$ can be used to estimate the SMI by

$$\widehat{I}_s = \frac{1}{2}\widehat{\boldsymbol{h}}^T\widehat{\boldsymbol{\alpha}} - \frac{1}{2}$$

- \hat{I}_s is called Least-Squares Mutual Information (LSMI)
- Basis functions are defined by the product kernel:

$$\begin{split} \varphi_l(\boldsymbol{x}, \boldsymbol{y}) &= \phi_l^x(\boldsymbol{x}) \phi_l^y(\boldsymbol{y}) \\ &= \exp\left(-\frac{\|\boldsymbol{x} - \boldsymbol{x}_{\boldsymbol{c}(l)}\|^2}{2\sigma^2}\right) \exp\left(-\frac{\|\boldsymbol{y} - \boldsymbol{y}_{\boldsymbol{c}(l)}\|^2}{2\sigma^2}\right) \end{split}$$

where $c \subseteq \{1, \ldots, n\}$ is the list of b indices of observations chosen as Gaussian centers.

Delta Kernel for Classification Task

Delta kernel is used on ${\bf Y}$ for classification task.

 $\phi_l^y(y) = \delta(y, y_{\boldsymbol{c}(l)})$

$$\delta(a,b) = egin{cases} 1 & ext{if } a = b \ 0 & ext{otherwise} \end{cases}$$

So that,

$$\begin{split} \varphi_l(\boldsymbol{x}, y) &= \phi_l^x(\boldsymbol{x}) \phi_l^y(y) \\ &= \exp\left(-\frac{\|\boldsymbol{x} - \boldsymbol{x}_{\boldsymbol{c}(l)}\|^2}{2\sigma^2}\right) \delta(y, y_{\boldsymbol{c}(l)}) \end{split}$$

Model Selection by Cross Validation

Cross validation is available for the SMI estimator for selecting (σ, λ) .

- Divide $\{(\boldsymbol{x}_i, \boldsymbol{y}_i)\}_{i=1}^n$ into K disjoint subsets $\{\mathcal{S}_k\}_{k=1}^K$
- Calculate $\widehat{H}_{\mathcal{S}_k}$ and $\widehat{h}_{\mathcal{S}_k}$ with \mathcal{S}_k
- Calculate $\widehat{\alpha}_{\mathcal{S}_{-k}}$ with $\{\mathcal{S}_j\}_{j \neq k}$
- Choose (σ, λ) which minimizes

$$\widehat{J}^{(K-CV)} := \frac{1}{K} \sum_{k=1}^{K} \left(\frac{1}{2} \widehat{\boldsymbol{\alpha}}_{\mathcal{S}_{-k}}^{T} \widehat{\boldsymbol{H}}_{\mathcal{S}_{k}} \widehat{\boldsymbol{\alpha}}_{\mathcal{S}_{-k}} - \widehat{\boldsymbol{h}}_{\mathcal{S}_{k}}^{T} \widehat{\boldsymbol{\alpha}}_{\mathcal{S}_{-k}} \right)$$

Sample Application: Document Classification

- **X**: term-document matrix.
- Y: document categories
- Use bag-of-words representation

Term \setminus Doc	Doc1	Doc_2	•••
approach	1.0	3.0	• • •
binary	0.0	2.0	•••
block	2.0	0.0	•••
common	0.0	1.0	•••
:	:	:	
Category	sport	science	• • •

• Feature selection can be used to understand which words can explain different categories.

Feature interaction

Features are interacting if they can explain the output in presence of each other, even though each feature may not be explanatory.

X_1	X_2	$Y = \operatorname{xor}(X_1, X_2)$
0	0	0
0	1	1
1	0	1
1	1	0

• $X_1 = 0 \Rightarrow Y$ can be 0 or 1.

•
$$X_1 = 1 \Rightarrow Y$$
 can be 0 or 1.

• Same for X_2 .

- Neither X_1 nor X_2 can explain Y.
- But, X_1 and X_2 together can explain.

Feature interaction

Features are interacting if they can explain the output in presence of each other, even though each feature may not be explanatory.

X_1	X_2	$Y = \operatorname{xor}(X_1, X_2)$
0	0	0
0	1	1
1	0	1
1	1	0

• $X_1 = 0 \Rightarrow Y$ can be 0 or 1.

•
$$X_1 = 1 \Rightarrow Y$$
 can be 0 or 1.

• Same for X_2 .

- Neither X_1 nor X_2 can explain Y.
- But, X_1 and X_2 together can explain.

Feature interaction

Features are interacting if they can explain the output in presence of each other, even though each feature may not be explanatory.

X_1	X_2	$Y = \operatorname{xor}(X_1, X_2)$
0	0	0
0	1	1
1	0	1
1	1	0

• $X_1 = 0 \Rightarrow Y$ can be 0 or 1.

•
$$X_1 = 1 \Rightarrow Y$$
 can be 0 or 1.

• Same for X_2 .

- Neither X_1 nor X_2 can explain Y.
- But, X_1 and X_2 together can explain.

Feature interaction

Features are interacting if they can explain the output in presence of each other, even though each feature may not be explanatory.

X_1	X_2	$Y = \operatorname{xor}(X_1, X_2)$
0	0	0
0	1	1
1	0	1
1	1	0

• $X_1 = 0 \Rightarrow Y$ can be 0 or 1.

•
$$X_1 = 1 \Rightarrow Y$$
 can be 0 or 1.

Same for
$$X_2$$
.

- Neither X_1 nor X_2 can explain Y.
- But, X_1 and X_2 together can explain.

Results on and-or of B-LSMI

and-or (k = 4, m = 10)

- $Y = (X_1 \land X_2) \lor (X_3 \land X_4)$
- $\overline{X_1,\ldots,X_7} \sim \text{Bernoulli}(0.5)$
- $X_8, \ldots, X_{10} = Y$ with 0.2 chance of bit flip

Characteristics: feature redundancy, weak interaction

SVC/SVR CV Errors on Real Data I

SVC/SVR CV Errors on Real Data II

SVC/SVR CV Errors on Real Data III

SVC/SVR CV Errors on Real Data IV

F-measure of the Selected Features

Precision

 $P = (\# \text{ correctly selected features}) \; / \; (\# \text{ selected features} \;)$

Recall

 $R=\left(\# \text{ correctly selected features}\right) / \left(\# \text{ correct features}\right)$

F-measure F = 2PR/(P+R)

0 < F < 1

Gradient Projection Algorithm to Solve ℓ_1 -LSMI

Require: w_0 (initial point), z (ℓ_1 ball's radius)

1: for $t=0 \rightarrow t_{max}-1 \ {\rm do} \ // \ t_{max}$ denotes the maximum number of iterations

2:
$$s \leftarrow 1/\sqrt{t} \; // \; \text{step size}$$

3: $\boldsymbol{w}_{t+1} \leftarrow \pi_z(\boldsymbol{w}_t + s \nabla I_s(\operatorname{diag}(\boldsymbol{w}_t)\mathbf{X}, \mathbf{Y})) // \pi_z$ is a projection operator onto the positive ℓ_1 ball with radius z

4: if
$$\|\boldsymbol{w}_{t+1}\|_0 \leq 1$$

or $\|\nabla \widehat{I}_s(\operatorname{diag}(\boldsymbol{w}_{t+1})\mathbf{X},\mathbf{Y})\|_2 < \tau_{opt}$
or $|\widehat{I}_s(\operatorname{diag}(\boldsymbol{w}_{t+1})\mathbf{X},\mathbf{Y}) - \widehat{I}_s(\operatorname{diag}(\boldsymbol{w}_t)\mathbf{X},\mathbf{Y})| < \tau_{prog}$ then

- 5: break
- 6: end if
- 7: end for
- 8: **return** $m{w}_{t+1}$ // set of selected features \mathcal{X}_z can be determined by inspecting $m{w}_{t+1}$

Minimal Redundancy Maximal Relevance (mRMR)

- Let $X = (X_1, \ldots, X_m)$ denote input variables.
- mRMR [Peng et al., 2005] uses mutual information [Cover and Thomas, 1991] to measure the dependency.

$$I(X,Y) = \iint \log\left(\frac{p(\boldsymbol{x},\boldsymbol{y})}{p(\boldsymbol{x})p(\boldsymbol{y})}\right) p(\boldsymbol{x},\boldsymbol{y}) \, d\boldsymbol{x} d\boldsymbol{y}$$

The optimization problem of mRMR is

Still, mRMR cannot find interacting features since features are considered univariately.

Relief

- Relief [Kira and Rendell, 1992] is an iterative, distance-based, feature ranking algorithm.
- Relief disregards redundancy of features.
- 1: Set feature weights $oldsymbol{w} \leftarrow oldsymbol{0}_m$
- 2: for $i=1 \rightarrow n$ do
- 3: $s \leftarrow \mathsf{Near}\mathsf{-Hit} ext{ of } x_i extsf{ // Nearest instance which has the same class as } x_i$
- 4: $d \leftarrow \mathsf{Near}\mathsf{-Miss} ext{ of } x_i \; // \; \mathtt{Nearest instance which has a}$ different class to x_i
- 5: for j=1
 ightarrow m do // for each feature j

6:
$$w_j \leftarrow w_j - (x_j - s_j)^2 / n + (x_j - d_j)^2 / n$$

- 7: end for
- 8: end for
- 9: Rank features in descending order of w_j .

LSMI Values in Andor Problem

Fo	<u></u>	in in	dicos	ISMI	Fe	atur	re in	dices	LSMI	
					1	4	8	10	0.3354	All possible 35
1	2	3	4	0.4958	1	4	9	10	0.3410	four-feature subsets of
1	2	3	8	0.3654	2	3	4	8	0.3666	$\{X_1,\ldots,X_4\} \cup$
1	2	3	9	0.3806	2	3	4	9	0 3817	$\{X_8, \dots, X_{10}\}$ in
1	2	3	10	0.3571	2	3	4	10	0.3017	andor dataset, and
1	2	4	8	0.3764	2	3	т о	0	0.3303	their corresponding
1	2	4	9	0.3843	2	с С	0	9 10	0.3407	values of I SMI to the
1	2	4	10	0.3724	2	3	ð	10	0.3120	
1	2	8	9	0.3459	2	3	9	10	0.3217	$\begin{array}{l} \text{output } Y = \\ (Y + Y) > ((Y + Y)) \end{array}$
1	2	8	10	0.3302	2	4	8	9	0.3403	$(X_1 \land X_2) \lor (X_3 \land X_4)$
1	2	a	10	0 3355	2	4	8	10	0.3277	
1	2	1	8	0.3333	2	4	9	10	0.3281	
1	2	т 1	0	0.3022	3	4	8	9	0.3556	
1	っ っ	4	9 10	0.3701	3	4	8	10	0.3487	
1	3	4	10	0.3915	3	4	9	10	0.3533	
1	3	8	9	0.3249	1	8	9	10	0.3299	
1	3	8	10	0.3303	2	8	9	10	0.3335	
1	3	9	10	0.3334	3	8	9	10	0.3031	
1	4	8	9	0.3423	4	8	a	10	0 3346	
					-	0	9	10	0.0040	45/29

Toy Dataset: 3clusters

3clusters

- {X₁, X₂} give a perfect separability, and are regarded as the true features
- X₃ is redundant.
- $\bullet X_4, \ldots, X_{10} \sim \mathcal{U}(0, 1)$
- Characteristic: feature redundancy

Summary of Real Datasets

Dataset	m	n	Task	Class balance (%)
BASEHOCK	4862	1993	В	49.9/50.1
CLL_SUB_111	11340	111	M3	9.9/44.1/45.9
SMK_CAN_187	19993	187	В	48.1/51.9
TOX_171	5748	171	M4	26.3/26.3/22.8/24.6
abalone	8	4177	R	-
bcancer	9	277	В	70.8/29.2
cpuact	21	3000	R	-
ctslices	384	53500	R	-
flaresolar	9	1066	В	44.7/55.3
german	20	1000	В	70.0/30.0
glass	9	214	M6	32.7/35.5/7.9/6.1/4.2/13.6
housing	13	506	R	-
image	18	1155	В	42.9/57.1
ionosphere	33	351	В	64.1/35.9
isolet	617	6238	R	-
msd	90	10000	R	-
musk1	166	476	В	56.5/43.5
musk2	166	6598	В	84.6/15.4
satimage	36	6435	M6	23.8/10.9/21.1/9.7/11.0/23.4
segment	18	2310	M7	14.3% per class
senseval2	50	534	M3	33.3% per class
sonar	60	208	В	46.6/53.4
spectf	44	267	В	20.6/79.4
speech	50	400	В	50.0/50.0
vehicle	18	846	M4	25.1/25.7/25.8/23.5
vowel	13	990	M11	9.1% per class
warpPIE10P	2420	210	M10	10% per class
wine	13	178	M3	33.1/39.9/27.0

References I

Cover, T. M. and Thomas, J. A. (1991). *Elements of information theory.* Wiley-Interscience, New York, NY, USA.

 Gretton, A., Bousquet, O., Smola, A. J., and Schölkopf, B. (2005).
 Measuring statistical dependence with hilbert-schmidt norms. In Jain, S., Simon, H.-U., and Tomita, E., editors, *ALT*, volume 3734 of *Lecture Notes in Computer Science*, pages 63–77. Springer.

References II

Hall, M. A. (2000).

Correlation-based feature selection for discrete and numeric class machine learning.

In Proceedings of the Seventeenth International Conference on Machine Learning, ICML '00, pages 359–366, San Francisco, CA, USA. Morgan Kaufmann Publishers Inc.

Kira, K. and Rendell, L. A. (1992).

The feature selection problem: Traditional methods and a new algorithm.

In *AAAI*, pages 129–134, Cambridge, MA, USA. AAAI Press and MIT Press.

References III

Peng, H., Long, F., and Ding, C. (2005).

Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 27:1226–1238.

Suzuki, T., Sugiyama, M., Kanamori, T., and Sese, J. (2009). Mutual information estimation reveals global associations between stimuli and biological processes. BMC Bioinformatics, 10(S-1).

References IV

Suzuki, T., Sugiyama, M., Sese, J., and Kanamori, T. (2008). Approximating mutual information by maximum likelihood density ratio estimation.

In Saeys, Y., Liu, H., Inza, I., Wehenkel, L., and de Peer, Y. V., editors, *Proceedings of ECML-PKDD2008 Workshop on New Challenges for Feature Selection in Data Mining and Knowledge Discovery 2008 (FSDM2008)*, volume 4 of *JMLR Workshop and Conference Proceedings*, pages 5–20, Antwerp, Belgium.

Tibshirani, R. (1996).

Regression shrinkage and selection via the lasso.

Journal of the Royal Statistical Society (Series B), 58:267–288.