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Example of Feature Selection

binary classification
2 features: (X7, X2)
Linearly separable

But, X7 and X5 are
redundant. Let's choose X .

X1 alone can distinguish the
2 classes.
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Feature Selection

What :
m Given an input X € R™*™ and n-dimensional output vector Y

m m features (dimensions)
m n observations (sample size)

select k features (kK < m) in X which can explain Y well.
Why :
m Reduces data collection cost
m Reduces computation required to train a predictor.
m Facilitates model interpretation
Example : document classification

m Using bag-of-words representation, feature selection can be used
to understand which words can explain different categories.
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Outline

Two Components of Feature Selection Algorithms
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Feature Ranking

Definitions
m X :=(Xy,...,X,,): input variables
m Y: output variable
m f: feature quality measure e.g., correlation
Procedure :
m Ranks {X;}", in descending order of f(X;,Y).
m Select top k features.
Advantage :
m Simple & fast
Disadvantage :

m Not consider feature redundancy

Feature redundancy

Features are redundant if they are similar (previous example).
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Forward Search

m X': set of features

° m k: desired number of features
Procedure :
o 0 @ m Start from X = 0.
"‘ m Add a feature to X" until |X| = k.
@‘@}@ Advantage :
(222D

m Consider feature redundancy

Disadvantage :
m Not consider feature interaction

Feature interaction

Interacting features are individually weak, but strong when combined
(e.g. XOR problem).
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Backward Search

m X: set of features
m k: desired number of features

@ Procedure :
m Start from (X = all features).
@ @ @ m Remove a feature until |X| = k.
Advantages :

Disadvantage :

@ @ @ m Considers redundancy
m Considers interaction
m O(m?) (m = number of features)
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(1-penalized Feature Weight Learning

maximize f(diag(w)X,Y)

subject to  |wl|; < =

m f: feature quality measure

B X =(x,...,x,) € R (1m features x n samples )
m diag(w)X = (diag(w)z1, ..., diag(w)xz,) € R™*"

m diag(w)x = (w121, . .., WnTm)T

w;: weight of the j feature

m If 2 > 0 is sufficiently small, obtained w becomes sparse
[Tibshirani, 1996].

mw;=0= 4 feature is not necessary

m A k-feature subset can be obtained by tuning z.
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Comparison of Optimization Strategies

® k: number of desired features

m m: number of total features

‘Ranking Forward Backward Exhaustive 2

Optimization discrete  discrete discrete discrete cont.
Search Complexity m km m? 2m m
Consider Redundancy X A O © O
Consider Interaction X X O © O

Advantages of /; :

m Considers all features at the same time
m considers redundancy and interaction

m Low computational complexity

m We use ¢; as the optimization strategy
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Two Components of Feature Selection Algorithms

m Feature Quality Measure
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Pearson Correlation (PC)
m For binary or continuous Y,

cov(X,Y)

PXY) = X )e¥)

m For categorical Y [Hall, 2000],

Zp o)|p(X, Be)l.

m B, = binary variable taking 1 when Y =¢

X,Y: univariate random variables

Advantage :
m Computationally efficient
Disadvantage :
m Detects only linear dependency
14/29



Hilbert-Schmidt Independence Criterion (HSIC) [Gretton et al., 2005]

HSIC(X, ) = — E tr(KHLH)

(n—1

x;—; |2
u (K)Z,j = k($z,$j) = exp (_%>

lyi—y, 12
()i = Uyry;) = exp (- 12240 )
m H=1-11"/n

Non-linear extension of Pearson correlation (PC)
Measures infinite-order moment (kernel tricks)
HSIC(X,Y) =0« X and Y are independent.

Advantages
m Considers non-linear dependency
Disadvantage

m No model selection criterion for o, and o
m Popular heuristic is 0, = median({|lx; — x| }i<;)
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Mutual Information (MI) [Cover and Thomas, 1991]

e ffos (52 i

m Well-known information-theoretic measure
m [(X,Y)=0<%« X and Y are independent.

Advantages :
m Considers non-linear dependency

m Model selection e.g., estimator called MLMI (Maximum
Likelihood MI) [Suzuki et al., 2008]

Disadvantage

m Costly to estimate (due to log)
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Squared-loss Mutual Information (SMI) [Suzuki et al., 2009]

Lixy) =4[] (220 1Y paypiy) dady

p(@)p(y)

m Same family as Ml (f-divergence).
m [,(X,Y)=0<« X and Y are independent.

Advantages :
m Considers non-linear dependency

m Estimator LSMI (Least-Squares MI) has a model selection
criterion.

m LSMI can be computed analytically.
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4 Feature Quality Measures

| PC HSIC Ml sSMI
Non-linear Dependency X O O O
Model Selection not needed X O O
Computational Efficiency © O A

m PC: cannot handle non-linear dependency.
m HSIC: no model selection

m MI: costly to estimate

m SMI : good balance of all properties. ()

m We use SMI as the feature quality measure.

18/29



Summary of Optimization Strategies and Measures

‘Rank. Forward Backward Exhaustive /3

PC O X X X X
HSIC - O O X A
Ml O O O X -
SMI O O O X -
(O, A method exists, X unreasonable, impractical , - not exist

m PC: Goodness of a subset X' is >, » p(X;,Y) .
m Forward, backward and ¢; give the same solution.

m After an extensive research, we propose to use ¢;+SMI .

m Referred to as ¢1-LSMI (LSMI = an estimator of SMI) .
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¢1-LSMI (proposed method)

~

maximize I (diag(w)X,Y)

weR™
subject to 17w < =
w >0,

m w > 0 is imposed to narrow search space (signs do not matter).
m s(z): number of obtained features using z

m s(z) tends to increase as z increases.
m To find a k-feature subset :
z < small value
Repeat until s(z) > k
Iz 2z
i Solve £1-LSMI's problem with gradient projection
i if s(z) = k return obtained features
Zn — 2
z1 < 2p/2
Find z € (21, zx) with a binary search so that s(z) =k .

m Repeat with different initial w. 21/29
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3 Toy Datasets
(1) and-or (k=4,m =10) (3) xor (k=2,m=10)
m Y = (X1 AXe)V (X3 A Xy) Y = xor(X1, Xa)
m Xi,..., X7 ~ Bernoulli(0.5) Xi,...,X5 ~ Bernoulli(0.5)

B Xg,...,X50=Y with 0.2 m Xg,...,X0~ Bernoulli(0.75)
chance of bit flip

Characteristic: feature
m Characteristics: feature interaction
redundancy, weak interaction

(2) quad (k=2,m = 10)

m: Fttotal features

X34, k: ftfeatures to select
0B+ (4157 T 0.1e
Xl,...,XB’ENN(O’l)
X9 ~0.5X; +U(—1,1)
X190~ 05Xy +U(—1,1)
Characteristic: non-linear
dependency o

Y=

X ~ Bernoulli(p) = binary
variable with P(X =1) =p



Results on the 3 Toy Datasets

F-measure

F-measure on artificial datasets: n=400
1.2

50 trials, n = 400
F-measure (F)

F =2PR/(P+R)
0<F<L1

F=1<% only and
all true features are
selected.

(redundant) (non-linear) (interact)

and-or quad xor

m PC, F-HSIC, F-LSMI cannot handle interacting features.

m Simultaneous consideration of features is necessary.
m Inappropriate o, (Gaussian width) makes F-HSIC, ,
fail sometimes in quad problem.
u sometimes greedily keeps some of redundant features
in and-or problem.
m /;-LSMI works well in all cases.
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SVC/SVR Test Errors on Medium-Dimensional Real Data

Dataset [m o k]PC 0-HSIC  4-LSMI mRMR Relief

abalone (R) 8 400 4 |1.63(0.9) 1.65(0.9) 1.60(0.8) 1.64 (0.8) 1.58 (0.8)
bcancer (C2) 9 277 4 |0.24(0.0) 0.23 (0.0) 0.23 (0.0) 0.25(0.0) 0.26 (0.0)
glass (C6) 9 214 4 |0.29 (0.0) 0.30(0.0) 0.30(0.0) 0.30(0.0) 0.31(0.0)
housing (R) 13 400 4 |4.03(0.2) 3.95(0.2) 3.91(0.2) 3.97 (0.2) 4.10(0.2)
vowel (C11) 13 400 4 | 0.20 (0.0) 0.20 (0.0) 0.21(0.0) 0.20 (0.0) 0.21(0.0)
wine (C3) 13 178 4 | 0.03(0.0) 0.03 (0.0) 0.03 (0.0) 0.03 (0.0) 0.03(0.0)
image (C2) 18 400 4 |0.10(0.0) 0.13(0.0) 0.6 (0.0) 0.14 (0.0) 0.05 (0.0)
segment (C7) 18 400 4 |0.19(0.0) 0.11(0.0) 0.05(0.0) 0.05(0.0) 0.13(0.0)
vehicle (C4) 18 400 4 |0.32(0.0) 0.34(0.0) 0.27 (0.0) 0.39(0.1) 0.32(0.0)
german (C2) 20 400 4 |0.24 (0.0) 0.25(0.0) 0.25 (0.0) 0.25(0.0) 0.26 (0.0)
cpuact (R) 21 400 4 |0.25(0.0) 0.54(0.3) 0.25(0.2) 0.23 (0.1) 0.37 (0.1)
ionosphere (C2) | 33 351 4 |0.07(0.0) 0.07(0.0) 0.07 (0.0) 0.09(0.0) 0.07 (0.0)
satimage (C6) | 36 400 10 | 0.22 (0.0) 0.14 (0.0) 0.13 (0.0) 0.14 (0.0) 0.16 (0.0)
spectf (C2) 44 267 10| 0.19 (0.0) 0.19(0.0) 0.17 (0.0) 0.18 (0.0) 0.18 (0.0)
senseval2 (C3) 50 400 10 | 0.18 (0.0) 0.19 (0.0) 0.18 (0.0) 0.18 (0.0) 0.21 (0.0)
speech (C2) 50 400 10 | 0.01(0.0) 0.01 (0.0) 0.01(0.0) 0.02(0.0) 0.03(0.0)
sonar (C2) 60 208 10| 0.23(0.0) 0.21(0.0) 0.16 (0.0) 0.18 (0.0) 0.19 (0.0)
msd (R) 90 400 10| 0.95 (0.1) 0.94 (0.1) 0.93 (0.1) 0.97 (0.1) 0.96 (0.1)
muskl (C2) 166 400 20 | 0.19 (0.0) 0.16 (0.0) 0.16 (0.0) 0.15 (0.0) 0.19 (0.0)
musk2 (C2) 166 400 20 | 0.09 (0.0) 0.09 (0.0) 0.08 (0.0) 0.09 (0.0) 0.09 (0.0)
ctslices (R) 384 400 20| 0.82(0.1) 0.65(0.0) 0.38 (0.0) 0.45 (0.0) 0.56 (0.0)
isolet (R) 617 400 20 |5.92(03) 585(04) 5.30(0.4) 5.39(0.4) 6.27 (0.3)
Top Count | 7 8 17 10 5

m classification error/mean squared error (SD)

m Paired t-test with 5% significance level. 50 trials. s



SVC/SVR Test Errors on High-Dimensional Real Data

Datasst | m n | PC £4,-HSIC 4-LSMI mRMR Relief

warp. (C10) [ 2429 210 [ 0.062 (0.00) 0.052 (0.01) 0.031 (0.01) 0.033 (0.00) 0.043 (0.00)
BASE. (C2) | 4862 400 | 0.120 (0.03) 0.082 (0.02) 0.120 (0.03) 0.094 (0.02) 0.270 (0.10)
TOX. (C4) | 5748 171 | 0.370 (0.00) 0.280 (0.02) 0.150 (0.06) 0.260 (0.00) 0.310 (0.00)
CLL.(C3) | 11349 111 |0.110 (0.00) 0.120 (0.01) 0.130 (0.01) 0.140 (0.00) 0.260 (0.00)
SMK. (C2) | 19993 187 | 0.240 (0.00) 0.200 (0.02) 0.220 (0.01) 0.220 (0.00) 0.250 (0.00)

m 10 trials
m Select £ = 20 features
Discussion :
m /1-LSMI and #¢1-HSIC perform well.

m Results of Relief and PC suggest high-dimensional data have
redundant features i.e., TOX.

m /1-LSMI performs well on TOX.
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Conclusions

Ranking Forward Backward Exhaustive /;

Optimization discrete  discrete discrete discrete cont.
Search Complexity m km m? 2m m
Consider Redundancy X A O © O
Consider Interaction X X O © O

PC HSIC MI SMI

Non-linear Dependency X O O O
Model Selection not needed X O O
Computational Efficiency © O X A

m Extensively studied combinations of optimizations and measures.
m Proposed ¢1-LSMI = ¢; + SMI.

m Demonstrated that £1-LSMI works well on real datasets.
m To present at IBISML and submit a journal to IEICE.
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LSMI

2
s LOGY) = 3T (254 - 1) p(@)p(y) dedy
= Directly model -2&¥)_ \ith

p(z)p(y)
9(@,y) € G ={a"p(x,y) | a=(a,...,0)" R’}
m Find o which minimizes the squared error J(c).

// z,y) — 9" (x,y)) p()p(y) dedy

// x,y)? (y) dedy — // z,y)p(x,y) dedy + C

1
J(o) = J(a) = iaTHa h

QZZLP i, yi) (@i, yi)"

=1 =1

1 n
P Z p(i, y;) 30/29
=1

3



~ N = ~T
a = argmin §aTHa —h a+ ) la
(6%

« can be solved analytically with

— 1
&= (H n AIM) h

a can be used to estimate the SMI by
~ 1l~7__ 1
Is=-h a— -
2 2

m I, is called Least-Squares Mutual Information (LSMI)
m Basis functions are defined by the product kernel:

oi(x,y) = ¢ (x) ] (y)

_ |z — zc)ll? 1y — Yel?
TP T2 P T e

where ¢ C {1,...,n} is the list of b indices of observations
chosen as Gaussian centers. 31/29



Delta Kernel for Classification Task

Delta kernel is used on Y for classification task.

d);/(y) = 5(y7 yc(l))

5(a,b):{1 ifa=b

0 otherwise

So that,
oi(x,y) = of ()87 (y)

|z — el
= €xp <_2026() 5(y7yc(l))
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Model Selection by Cross Validation

Cross validation is available for the SMI estimator
for selecting (o, \) .

= Divide {(z;,y,)}", into K disjoint subsets {S}X ,
m Calculate f—I\Sk and /f;,gk with S
m Calculate as , with {S;};k

m Choose (o, A) which minimizes

K
~T
K-CV) 2 : =
/\( ( aS ngkag k hskas_k>
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Sample Application: Document Classification

m X: term-document matrix.

m Y: document categories

m Use bag-of-words representation

Term \ Doc \ Doc;  Docy
approach 1.0 3.0

binary 0.0 2.0
block 2.0 0.0
common 0.0 1.0

Category sport science

m Feature selection can be used to understand which words can
explain different categories.
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Feature Interaction

Feature interaction

Features are interacting if they can explain the output in presence of
each other, even though each feature may not be explanatory.

0 0 0
0 1 1
1 0 1
1 1 0

m All features need to be considered simultaneously.
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Feature Interaction

Feature interaction

Features are interacting if they can explain the output in presence of
each other, even though each feature may not be explanatory.

Xi X |V = xor(X1, Xo) m X1 =0= Y can be O or 1.
mXi=1=Y can beOor 1.

0 0 0

0 1 1 m Same for Xs.

1 0 1 m Neither X; nor X5 can explain Y.

1 1 0 m But, X; and X5 together can

explain.

m All features need to be considered simultaneously.
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Results on and-or of B-LSMI

1:
2
3
4:
5
6

7

Y=
IX17..4
I/YV&..A7

Iter.

LSMI
0.3623
0.3625
0.3630
0.3739
0.4162
0.4190

0.3893

X1 Xo Xz Xy X5 X X7 Xs Xo Xio

and-or (k=4,m =10)

(Xl AN Xz) V (Xg A\ X4)
, X7 ~ Bernoulli(0.5)
X10 =Y with 0.2 chance of bit flip

m Characteristics: feature redundancy, weak interaction

Redundant Xg is kept.
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SVC/SVR CV Errors on Real Data |
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i
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SVC/SVR CV Errors on Real Data |l

- Relief

o
Q
"r’
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SVC/SVR CV Errors on Real Data Il
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[8) o ~PC
0.25

5) 0.5 a _Ll—HSIC

©0.45 ©

< IS
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SVC/SVR CV Errors on Real Data IV

e
o
o)

Averaged test error of SVC
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senseval2 (m=50, n=400, task=3 classes)
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F-measure of the Selected Features
Precision

P = (# correctly selected features) / (# selected features )

Recall
R = (# correctly selected features) / (# correct features )

F-measure
F =2PR/(P+ R)

Correct Correc Selected

features G features

E0<F<1

Set of all features
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Gradient Projection Algorithm to Solve ¢;-LSMI

Require: wy (initial point), z (¢; ball's radius)
1. fort =0 — tygs — 1 do // t4, denotes the maximum
number of iterations
. s+ 1/y/t ]/ step size
30wy + m(wy + sVIg(diag(wy)X,Y)) // 7. is a
projection operator onto the positive ¢; ball with
radius z
4. if ||wti1|]0 < 1
or ||AVIS(diag(wt+1)X,Y)||/g < Topt
or I (diag(w+1)X,Y) — I (diag(w) X, Y)| < Tprog then
break
end if
end for
return w;;; // set of selected features A, can be
determined by inspecting w;yq

@ N oo
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Minimal Redundancy Maximal Relevance (mRMR)

m Let X = (Xy,...,X,,) denote input variables.
m mRMR [Peng et al., 2005] uses mutual information
[Cover and Thomas, 1991] to measure the dependency.

I(X,)Y) = // log (%)p(m,y) dxdy

m The optimization problem of mRMR is

relevance part pairwise redundancy constraint
maximize —E I(X;,Y)— 72 E E IXZ,X
IcA{1,...

subject to |Z| = k.

m Still, mMRMR cannot find interacting features since features are
considered univariately.
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Relief

m Relief [Kira and Rendell, 1992] is an iterative, distance-based,
feature ranking algorithm.

m Relief disregards redundancy of features.

sy

. Set feature weights w < 0,,

2: fori=1—ndo

3: s < Near-Hit of &; // Nearest instance which has the
same class as x;

4: d < Near-Miss of x; // Nearest instance which has a
different class to x;

5. forj=1—mdo // for each feature j

6wy wj— (v —5;)*/n+ (w5 —d;)?/n

7. end for

8: end for

9: Rank features in descending order of w;.
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LSMI Values in Andor Problem
Feature indices ‘ LM Feature indices ‘ LSMI

All ible 35
1 2 3 4 104958 1 4 8 10 | 0.3354 possible
1 2 3 8 | 0.3654 1 4 9 10 | 0.3410 four-feature subsets of
1 2 3 10 0'3571 2 3 4 9 |03817 {Xs,....,Xi0}in
' 2 3 4 10 | 03903 andor dataset, and
1 2 4 8 |0.3764 . _

2 3 8 9 |0.3407 their corresponding
po24 90384 2 3 8 10 | 03120 values of LSMI to the
1 2 4 10 | 0.3724 -

1 2 8 9 | 03459 2 3 9 10 | 03217 outputY =
' 2 4 8 9 03403 (X1AXo)V(X3AXy)
1 2 8 10 | 0.3302

2 4 8 10 |0.3277
1 2 9 10 | 0.3355

2 4 9 10 | 0.3281
1 3 4 8 |0.3822

3 4 8 9 |0.3556
1 3 4 9 | 03761

3 4 8 10 |0.3487
1 3 4 10 | 0.3915

3 4 9 10 |0.3533
1 3 8 9 | 03249

1 8 9 10 |0.3299
1 3 8 10 | 0.3303

2 8 9 10 |0.3335
1 3 9 10 | 03334
1 48 9o | 0313 389 1003031
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Toy Dataset: 3clusters

3clusters

m {X;, X2} give a perfect
separability, and are
regarded as the true
features

m X3 is redundant.

u X4,...,X10 NU(O,l)

m Characteristic: feature
redundancy
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Summary of Real Datasets

Dataset ‘ m Task ‘ Class balance (%)
BASEHOCK 4862 1993 B 49.9/50.1
CLL.SUB_111 11340 111 M3 9.9/44.1/45.9
SMK_CAN_187 | 19993 187 B 48.1/51.9

TOX 171 5748 171 M4 26.3/26.3/22.8/24.6
abalone 8 4177 R -

bcancer 9 277 B 70.8/29.2

cpuact 21 3000 R -

ctslices 384 53500 R -

flaresolar 9 1066 B 44.7/55.3

german 20 1000 B 70.0/30.0

glass 9 214 M6 |327/35.5/7.9/6.1/4.2/13.6
housing 13 506 R -

image 18 1155 B 42.9/57.1
ionosphere 33 351 B 64.1/35.9

isolet 617 6238 R -

msd 90 10000 R -

muskl 166 476 B 56.5/43.5

musk2 166 6598 B 84.6/15.4

satimage 36 6435 M6 | 23.8/10.9/21.1/9.7/11.0/23.4
segment 18 2310 M7 | 14.3% per class
senseval2 50 534 M3 33.3% per class
sonar 60 208 B 46.6/53.4

spectf 44 267 B 20.6/79.4

speech 50 400 B 50.0/50.0

vehicle 18 846 M4 25.1/25.7/25.8/23.5
vowel 13 990 M11 | 9.1% per class
warpPIE10P 2420 210 M10 | 10% per class

wine 13 178 M3 |33.1/39.9/27.0
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