
Feature Selection via `1-penalized
Squared-loss Mutual Information

Wittawat Jitkrittum
(10M38450)

Sugiyama Lab.
Department of Computer Science
Tokyo Institute of Technology

7 February 2012

1/29



Outline

1 Introduction to Feature Selection

2 Two Components of Feature Selection Algorithms
Optimization Strategy
Feature Quality Measure

3 `1-LSMI (proposed method)

4 Experiments
Toy Data
Real Data

2/29



Outline

1 Introduction to Feature Selection

2 Two Components of Feature Selection Algorithms
Optimization Strategy
Feature Quality Measure

3 `1-LSMI (proposed method)

4 Experiments
Toy Data
Real Data

3/29



Example of Feature Selection

X1

X2

binary classification

2 features: (X1, X2)

Linearly separable

But, X1 and X2 are
redundant. Let’s choose X1 .

X1 alone can distinguish the
2 classes.

4/29



Example of Feature Selection

X1

X2

binary classification

2 features: (X1, X2)

Linearly separable

But, X1 and X2 are
redundant. Let’s choose X1 .

X1 alone can distinguish the
2 classes.

4/29



Example of Feature Selection

X1

X2

binary classification

2 features: (X1, X2)

Linearly separable

But, X1 and X2 are
redundant. Let’s choose X1 .

X1 alone can distinguish the
2 classes.

4/29



Example of Feature Selection

X1

X2

binary classification

2 features: (X1, X2)

Linearly separable

But, X1 and X2 are
redundant. Let’s choose X1 .

X1 alone can distinguish the
2 classes.

4/29



Example of Feature Selection

X1

X2

binary classification

2 features: (X1, X2)

Linearly separable

But, X1 and X2 are
redundant. Let’s choose X1 .

X1 alone can distinguish the
2 classes.

4/29



Feature Selection

What :

Given an input X ∈ Rm×n and n-dimensional output vector Y

m features (dimensions)
n observations (sample size)

select k features (k < m) in X which can explain Y well.

Why :

Reduces data collection cost

Reduces computation required to train a predictor.

Facilitates model interpretation

Example : document classification

Using bag-of-words representation, feature selection can be used
to understand which words can explain different categories.
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Feature Ranking

Definitions

X := (X1, . . . , Xm): input variables

Y : output variable

f : feature quality measure e.g., correlation

Procedure :

Ranks {Xi}mi=1 in descending order of f(Xi, Y ).
Select top k features.

Advantage :

Simple & fast

Disadvantage :

Not consider feature redundancy

Feature redundancy

Features are redundant if they are similar (previous example).
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Forward Search

{ }

{ 1 } { 2 } { 3 }

{ 1 , 2 } { 1 , 3 } { 2 , 3 }

{ 1 , 2 , 3 }

X : set of features

k: desired number of features

Procedure :

Start from X = ∅.
Add a feature to X until |X | = k.

Advantage :

Consider feature redundancy

Disadvantage :

Not consider feature interaction

Feature interaction

Interacting features are individually weak, but strong when combined
(e.g. XOR problem).
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Backward Search

{ }

{ 1 } { 2 } { 3 }

{ 1 , 2 } { 1 , 3 } { 2 , 3 }

{ 1 , 2 , 3 }

X : set of features

k: desired number of features

Procedure :

Start from (X = all features).

Remove a feature until |X | = k.

Advantages :

Considers redundancy

Considers interaction

Disadvantage :

O(m2) (m = number of features)
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`1-penalized Feature Weight Learning

maximize
w

f(diag(w)X,Y)

subject to ‖w‖1 ≤ z

f : feature quality measure

X = (x1, . . . ,xn) ∈ Rm×n ( m features × n samples )

diag(w)X = (diag(w)x1, . . . ,diag(w)xn) ∈ Rm×n

diag(w)x = (w1x1, . . . , wmxm)
T

wj : weight of the jth feature

If z > 0 is sufficiently small, obtained ŵ becomes sparse
[Tibshirani, 1996].

ŵj = 0⇒ jth feature is not necessary

A k-feature subset can be obtained by tuning z.
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Comparison of Optimization Strategies

k: number of desired features

m: number of total features

Ranking Forward Backward Exhaustive `1

Optimization discrete discrete discrete discrete cont.
Search Complexity m km m2 2m m
Consider Redundancy × 4 © } ©
Consider Interaction × × © } ©

Advantages of `1 :

Considers all features at the same time

considers redundancy and interaction

Low computational complexity

We use `1 as the optimization strategy
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Pearson Correlation (PC)
For binary or continuous Y ,

ρ(X,Y ) =
cov(X,Y )

σ(X)σ(Y )
.

For categorical Y [Hall, 2000],

ρc(X,Y ) =

C∑
c=1

p(Y = c)|ρ(X,Bc)|.

Bc = binary variable taking 1 when Y = c

X,Y : univariate random variables

Advantage :

Computationally efficient

Disadvantage :

Detects only linear dependency
14/29



Hilbert-Schmidt Independence Criterion (HSIC) [Gretton et al., 2005]

HSIC(X,Y ) =
1

(n− 1)2
tr(KHLH)

(K)i,j = k(xi,xj) = exp
(
−‖xi−xj‖2

2σx2

)
(L)i,j = l(yi,yj) = exp

(
−‖yi−yj‖

2

2σy2

)
H = I − 11T /n

Non-linear extension of Pearson correlation (PC)
Measures infinite-order moment (kernel tricks)

HSIC(X,Y ) = 0⇔ X and Y are independent.

Advantages

Considers non-linear dependency

Disadvantage

No model selection criterion for σx and σy
Popular heuristic is σx = median({‖xi − xj‖}i<j) 15/29



Mutual Information (MI) [Cover and Thomas, 1991]

I(X,Y ) =

∫∫
log

(
p(x,y)

p(x)p(y)

)
p(x,y) dxdy

Well-known information-theoretic measure

I(X,Y ) = 0⇔ X and Y are independent.

Advantages :

Considers non-linear dependency

Model selection e.g., estimator called MLMI (Maximum
Likelihood MI) [Suzuki et al., 2008]

Disadvantage

Costly to estimate (due to log)
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Squared-loss Mutual Information (SMI) [Suzuki et al., 2009]

Is(X,Y ) =
1

2

∫∫ (
p(x,y)

p(x)p(y)
− 1

)2

p(x)p(y) dxdy

Same family as MI (f-divergence).

Is(X,Y ) = 0⇔ X and Y are independent.

Advantages :

Considers non-linear dependency

Estimator LSMI (Least-Squares MI) has a model selection
criterion.

LSMI can be computed analytically.
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4 Feature Quality Measures

PC HSIC MI SMI

Non-linear Dependency × © © ©
Model Selection not needed × © ©
Computational Efficiency } © × 4

PC : cannot handle non-linear dependency.

HSIC : no model selection

MI : costly to estimate

SMI : good balance of all properties. ( ¨̂ )

We use SMI as the feature quality measure.
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Summary of Optimization Strategies and Measures

Rank. Forward Backward Exhaustive `1

PC © × × × ×
HSIC - © © × 4

MI © © © × -

SMI © © © × -

©,4 method exists , × unreasonable, impractical , - not exist

PC : Goodness of a subset X is
∑

i∈X ρ(Xi, Y ) .

Forward, backward and `1 give the same solution.

After an extensive research, we propose to use `1+SMI .

Referred to as `1-LSMI (LSMI = an estimator of SMI) .
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`1-LSMI (proposed method)

maximize
w∈Rm

Îs(diag(w)X,Y)

subject to 1Tw ≤ z
w ≥ 0,

w ≥ 0 is imposed to narrow search space (signs do not matter).

s(z): number of obtained features using z

s(z) tends to increase as z increases.
To find a k-feature subset :

1 z ← small value
2 Repeat until s(z) > k

i z ← 2z
ii Solve `1-LSMI’s problem with gradient projection
iii if s(z) = k return obtained features

3 zh ← z
4 zl ← zh/2
5 Find z ∈ (zl, zh) with a binary search so that s(z) = k .

Repeat with different initial w. 21/29
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3 Toy Datasets
(1) and-or (k = 4,m = 10)

Y = (X1 ∧X2) ∨ (X3 ∧X4)

X1, . . . , X7 ∼ Bernoulli(0.5)

X8, . . . , X10 = Y with 0.2
chance of bit flip

Characteristics: feature
redundancy, weak interaction

(2) quad (k = 2,m = 10)

Y =
X2

1+X2

0.5+(X2+1.5)2
+ 0.1ε

X1, . . . , X8, ε ∼ N (0, 1)

X9 ∼ 0.5X1 + U(−1, 1)
X10 ∼ 0.5X2 + U(−1, 1)
Characteristic: non-linear

dependency

(3) xor (k = 2,m = 10)

Y = xor(X1, X2)

X1, . . . , X5 ∼ Bernoulli(0.5)

X6, . . . , X10 ∼ Bernoulli(0.75)

Characteristic: feature
interaction

m: #total features

k: #features to select

X ∼ Bernoulli(p)⇒ binary
variable with P (X = 1) = p
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Results on the 3 Toy Datasets

and−or quad xor
0

0.2

0.4

0.6

0.8

1

1.2

F
−

m
ea

su
re

F−measure on artificial datasets: n=400

 

 

PC

F−HSIC

F−LSMI

B−HSIC

B−LSMI
L

1
−HSIC

L
1
−LSMI

(redundant) (non-linear) (interact)

50 trials, n = 400

F-measure (F )

F = 2PR/(P +R)

0 ≤ F ≤ 1

F = 1⇔ only and
all true features are
selected.

PC , F-HSIC , F-LSMI cannot handle interacting features.
Simultaneous consideration of features is necessary.

Inappropriate σx (Gaussian width) makes F-HSIC , B-HSIC ,

`1-HSIC fail sometimes in quad problem.

B-LSMI sometimes greedily keeps some of redundant features
in and-or problem.
`1-LSMI works well in all cases.
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SVC/SVR Test Errors on Medium-Dimensional Real Data
Dataset m n k PC `1-HSIC `1-LSMI mRMR Relief

abalone (R) 8 400 4 1.63 (0.9) 1.65 (0.9) 1.60 (0.8) 1.64 (0.8) 1.58 (0.8)
bcancer (C2) 9 277 4 0.24 (0.0) 0.23 (0.0) 0.23 (0.0) 0.25 (0.0) 0.26 (0.0)
glass (C6) 9 214 4 0.29 (0.0) 0.30 (0.0) 0.30 (0.0) 0.30 (0.0) 0.31 (0.0)
housing (R) 13 400 4 4.03 (0.2) 3.95 (0.2) 3.91 (0.2) 3.97 (0.2) 4.10 (0.2)
vowel (C11) 13 400 4 0.20 (0.0) 0.20 (0.0) 0.21 (0.0) 0.20 (0.0) 0.21 (0.0)
wine (C3) 13 178 4 0.03 (0.0) 0.03 (0.0) 0.03 (0.0) 0.03 (0.0) 0.03 (0.0)
image (C2) 18 400 4 0.10 (0.0) 0.13 (0.0) 0.06 (0.0) 0.14 (0.0) 0.05 (0.0)
segment (C7) 18 400 4 0.19 (0.0) 0.11 (0.0) 0.05 (0.0) 0.05 (0.0) 0.13 (0.0)
vehicle (C4) 18 400 4 0.32 (0.0) 0.34 (0.0) 0.27 (0.0) 0.39 (0.1) 0.32 (0.0)
german (C2) 20 400 4 0.24 (0.0) 0.25 (0.0) 0.25 (0.0) 0.25 (0.0) 0.26 (0.0)
cpuact (R) 21 400 4 0.25 (0.0) 0.54 (0.3) 0.25 (0.2) 0.23 (0.1) 0.37 (0.1)
ionosphere (C2) 33 351 4 0.07 (0.0) 0.07 (0.0) 0.07 (0.0) 0.09 (0.0) 0.07 (0.0)
satimage (C6) 36 400 10 0.22 (0.0) 0.14 (0.0) 0.13 (0.0) 0.14 (0.0) 0.16 (0.0)
spectf (C2) 44 267 10 0.19 (0.0) 0.19 (0.0) 0.17 (0.0) 0.18 (0.0) 0.18 (0.0)
senseval2 (C3) 50 400 10 0.18 (0.0) 0.19 (0.0) 0.18 (0.0) 0.18 (0.0) 0.21 (0.0)
speech (C2) 50 400 10 0.01 (0.0) 0.01 (0.0) 0.01 (0.0) 0.02 (0.0) 0.03 (0.0)
sonar (C2) 60 208 10 0.23 (0.0) 0.21 (0.0) 0.16 (0.0) 0.18 (0.0) 0.19 (0.0)
msd (R) 90 400 10 0.95 (0.1) 0.94 (0.1) 0.93 (0.1) 0.97 (0.1) 0.96 (0.1)
musk1 (C2) 166 400 20 0.19 (0.0) 0.16 (0.0) 0.16 (0.0) 0.15 (0.0) 0.19 (0.0)
musk2 (C2) 166 400 20 0.09 (0.0) 0.09 (0.0) 0.08 (0.0) 0.09 (0.0) 0.09 (0.0)
ctslices (R) 384 400 20 0.82 (0.1) 0.65 (0.0) 0.38 (0.0) 0.45 (0.0) 0.56 (0.0)
isolet (R) 617 400 20 5.92 (0.3) 5.85 (0.4) 5.30 (0.4) 5.39 (0.4) 6.27 (0.3)

Top Count 7 8 17 10 5

classification error/mean squared error (SD)
Paired t-test with 5% significance level. 50 trials.
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SVC/SVR Test Errors on High-Dimensional Real Data

Dataset m n PC `1-HSIC `1-LSMI mRMR Relief

warp. (C10) 2429 210 0.062 (0.00) 0.052 (0.01) 0.031 (0.01) 0.033 (0.00) 0.043 (0.00)
BASE. (C2) 4862 400 0.120 (0.03) 0.082 (0.02) 0.120 (0.03) 0.094 (0.02) 0.270 (0.10)
TOX. (C4) 5748 171 0.370 (0.00) 0.280 (0.02) 0.150 (0.06) 0.260 (0.00) 0.310 (0.00)
CLL. (C3) 11349 111 0.110 (0.00) 0.120 (0.01) 0.130 (0.01) 0.140 (0.00) 0.260 (0.00)
SMK. (C2) 19993 187 0.240 (0.00) 0.200 (0.02) 0.220 (0.01) 0.220 (0.00) 0.250 (0.00)

10 trials

Select k = 20 features

Discussion :

`1-LSMI and `1-HSIC perform well.

Results of Relief and PC suggest high-dimensional data have
redundant features i.e., TOX.

`1-LSMI performs well on TOX.
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Conclusions

Ranking Forward Backward Exhaustive `1

Optimization discrete discrete discrete discrete cont.
Search Complexity m km m2 2m m
Consider Redundancy × 4 © } ©
Consider Interaction × × © } ©

PC HSIC MI SMI

Non-linear Dependency × © © ©
Model Selection not needed × © ©
Computational Efficiency } © × 4

Extensively studied combinations of optimizations and measures.

Proposed `1-LSMI = `1 + SMI.

Demonstrated that `1-LSMI works well on real datasets.

To present at IBISML and submit a journal to IEICE.
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LSMI

Is(X,Y ) = 1
2

∫∫ ( p(x,y)
p(x)p(y) − 1

)2
p(x)p(y) dxdy

Directly model p(x,y)
p(x)p(y) with

g(x,y) ∈ G := {αTϕ(x,y) | α = (α1, . . . , αb)
T ∈ Rb}

Find α which minimizes the squared error J(α).

J(α) =
1

2

∫∫
(g(x,y)− g∗(x,y))2 p(x)p(y) dxdy

=
1

2

∫∫
g(x,y)2p(x)p(y) dxdy −

∫∫
g(x,y)p(x,y) dxdy + C

J(α) ≈ Ĵ(α) = 1

2
αT Ĥα− ĥ

T
α

Ĥ :=
1

n2

n∑
i=1

n∑
i′=1

ϕ(xi,yi′)ϕ(xi,yi′)
T

ĥ :=
1

n

n∑
i=1

ϕ(xi,yi) 30/29



α̂ = argmin
α

1

2
αT Ĥα− ĥ

T
α+ λαTα

α̂ can be solved analytically with

α̂ =
(
Ĥ + λIb×b

)−1
ĥ

α̂ can be used to estimate the SMI by

Îs =
1

2
ĥ
T
α̂− 1

2

Îs is called Least-Squares Mutual Information (LSMI)
Basis functions are defined by the product kernel:

ϕl(x,y) = φxl (x)φ
y
l (y)

= exp

(
−
‖x− xc(l)‖2

2σ2

)
exp

(
−
‖y − yc(l)‖2

2σ2

)
where c ⊆ {1, . . . , n} is the list of b indices of observations
chosen as Gaussian centers. 31/29



Delta Kernel for Classification Task

Delta kernel is used on Y for classification task.

φyl (y) = δ(y, yc(l))

δ(a, b) =

{
1 if a = b

0 otherwise

So that,

ϕl(x, y) = φxl (x)φ
y
l (y)

= exp

(
−
‖x− xc(l)‖2

2σ2

)
δ(y, yc(l))
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Model Selection by Cross Validation

Cross validation is available for the SMI estimator
for selecting (σ, λ) .

Divide {(xi,yi)}ni=1 into K disjoint subsets {Sk}Kk=1

Calculate ĤSk and ĥSk with Sk
Calculate α̂S−k

with {Sj}j 6=k
Choose (σ, λ) which minimizes

Ĵ (K−CV ) :=
1

K

K∑
k=1

(
1

2
α̂TS−k

ĤSkα̂S−k
− ĥ

T

Skα̂S−k

)
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Sample Application: Document Classification

X: term-document matrix.

Y: document categories

Use bag-of-words representation

Term \ Doc Doc1 Doc2 · · ·
approach 1.0 3.0 · · ·

binary 0.0 2.0 · · ·
block 2.0 0.0 · · ·

common 0.0 1.0 · · ·
...

...
...

. . .

Category sport science · · ·

Feature selection can be used to understand which words can
explain different categories.
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Feature Interaction

Feature interaction

Features are interacting if they can explain the output in presence of
each other, even though each feature may not be explanatory.

X1 X2 Y = xor(X1, X2)

0 0 0
0 1 1
1 0 1
1 1 0

X1 = 0⇒ Y can be 0 or 1.

X1 = 1⇒ Y can be 0 or 1.

Same for X2.

Neither X1 nor X2 can explain Y .

But, X1 and X2 together can
explain.

All features need to be considered simultaneously.
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Results on and-or of B-LSMI

Iter. LSMI X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

1: 0.3623 a a a a a a a a a a

2: 0.3625 a a a a a a a a a a

3: 0.3630 a a a a a a a a a a

4: 0.3739 a a a a a a a a a a

5: 0.4162 a a a a a a a a a a

6: 0.4190 a a a a a a a a a a

7: 0.3893 a a a a a a a a a a

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣ Redundant X8 is kept.

and-or (k = 4,m = 10)

Y = (X1 ∧X2) ∨ (X3 ∧X4)

X1, . . . , X7 ∼ Bernoulli(0.5)
X8, . . . , X10 = Y with 0.2 chance of bit flip
Characteristics: feature redundancy, weak interaction
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SVC/SVR CV Errors on Real Data I
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SVC/SVR CV Errors on Real Data II

3 4 5 6 7 8

0.02

0.04

0.06

0.08

Number of features

A
ve

ra
ge

d 
te

st
 e

rr
or

 o
f S

V
C

wine (m=13, n=178, task=3 classes)

 

 

PC
L

1
−HSIC

L
1
−LSMI

mRMR
Relief

3 4 5 6 7 8

0.05

0.1

0.15

0.2

Number of features

A
ve

ra
ge

d 
te

st
 e

rr
or

 o
f S

V
C

segment (m=18, n=400, task=7 classes)

 

 

PC
L

1
−HSIC

L
1
−LSMI

mRMR
Relief

30 40 50 60 70 80

0.65

0.7

0.75

0.8

Number of features

A
ve

ra
ge

d 
te

st
 e

rr
or

 o
f S

V
R

isolet (m=617, n=400, task=regression)

 

 

2 3 4 5 6
0.3

0.35

0.4

0.45

0.5

0.55

Number of features

A
ve

ra
ge

d 
te

st
 e

rr
or

 o
f S

V
C

flaresolar (m=9, n=400, task=2 classes)

 

 

PC
L

1
−HSIC

L
1
−LSMI

mRMR
Relief

38/29



SVC/SVR CV Errors on Real Data III
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SVC/SVR CV Errors on Real Data IV
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F-measure of the Selected Features

Precision

P = (# correctly selected features) / (# selected features )

Recall

R = (# correctly selected features) / (# correct features )

F-measure

F = 2PR/(P +R)

0 ≤ F ≤ 1
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Gradient Projection Algorithm to Solve `1-LSMI

Require: w0 (initial point), z (`1 ball’s radius)
1: for t = 0→ tmax − 1 do // tmax denotes the maximum

number of iterations

2: s← 1/
√
t // step size

3: wt+1 ← πz(wt + s∇Îs(diag(wt)X,Y)) // πz is a

projection operator onto the positive `1 ball with

radius z
4: if ‖wt+1‖0 ≤ 1

or ‖∇Îs(diag(wt+1)X,Y)‖2 < τopt
or |Îs(diag(wt+1)X,Y)− Îs(diag(wt)X,Y)| < τprog then

5: break
6: end if
7: end for
8: return wt+1 // set of selected features Xz can be

determined by inspecting wt+1
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Minimal Redundancy Maximal Relevance (mRMR)

Let X = (X1, . . . , Xm) denote input variables.

mRMR [Peng et al., 2005] uses mutual information
[Cover and Thomas, 1991] to measure the dependency.

I(X,Y ) =

∫∫
log

(
p(x,y)

p(x)p(y)

)
p(x,y) dxdy

The optimization problem of mRMR is

maximize
I⊂{1,...,m}

relevance part︷ ︸︸ ︷
1

k

∑
i∈I

I(Xi, Y )−

pairwise redundancy constraint︷ ︸︸ ︷
1

k2

∑
i∈I

∑
j∈I

I(Xi, Xj)

subject to |I| = k.

Still, mRMR cannot find interacting features since features are
considered univariately.
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Relief

Relief [Kira and Rendell, 1992] is an iterative, distance-based,
feature ranking algorithm.

Relief disregards redundancy of features.

1: Set feature weights w ← 0m
2: for i = 1→ n do
3: s← Near-Hit of xi // Nearest instance which has the

same class as xi
4: d← Near-Miss of xi // Nearest instance which has a

different class to xi
5: for j = 1→ m do // for each feature j
6: wj ← wj − (xj − sj)2/n+ (xj − dj)2/n
7: end for
8: end for
9: Rank features in descending order of wj .
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LSMI Values in Andor Problem
Feature indices LSMI

1 2 3 4 0.4958
1 2 3 8 0.3654
1 2 3 9 0.3806
1 2 3 10 0.3571
1 2 4 8 0.3764
1 2 4 9 0.3843
1 2 4 10 0.3724
1 2 8 9 0.3459
1 2 8 10 0.3302
1 2 9 10 0.3355
1 3 4 8 0.3822
1 3 4 9 0.3761
1 3 4 10 0.3915
1 3 8 9 0.3249
1 3 8 10 0.3303
1 3 9 10 0.3334
1 4 8 9 0.3423

Feature indices LSMI

1 4 8 10 0.3354
1 4 9 10 0.3410
2 3 4 8 0.3666
2 3 4 9 0.3817
2 3 4 10 0.3903
2 3 8 9 0.3407
2 3 8 10 0.3120
2 3 9 10 0.3217
2 4 8 9 0.3403
2 4 8 10 0.3277
2 4 9 10 0.3281
3 4 8 9 0.3556
3 4 8 10 0.3487
3 4 9 10 0.3533

1 8 9 10 0.3299
2 8 9 10 0.3335
3 8 9 10 0.3031
4 8 9 10 0.3346

All possible 35
four-feature subsets of
{X1, . . . , X4} ∪
{X8, . . . , X10} in
andor dataset, and
their corresponding
values of LSMI to the
output Y =
(X1 ∧X2)∨ (X3 ∧X4)
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Illustration of the Search for a k-feature Subset
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Illustration of the Search for a k-feature Subset
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Illustration of the Search for a k-feature Subset
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Illustration of the Search for a k-feature Subset
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Illustration of the Search for a k-feature Subset

z

|Xz|

k

z5

|Xz5 | > k ⇒ set upper bound zh
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Illustration of the Search for a k-feature Subset

z

|Xz|
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zh

Set lower bound zl as zh/2

46/29



Illustration of the Search for a k-feature Subset
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Illustration of the Search for a k-feature Subset

z

|Xz|

k

zhzl zm = (zh + zl)/2

|Xzm | > k ⇒ move zh
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Illustration of the Search for a k-feature Subset
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Illustration of the Search for a k-feature Subset

z

|Xz|

k

zl zhzm

k-feature subset found
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Toy Dataset: 3clusters

3clusters

{X1, X2} give a perfect
separability, and are
regarded as the true
features
X3 is redundant.
X4, . . . , X10 ∼ U(0, 1)
Characteristic: feature

redundancy
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Summary of Real Datasets
Dataset m n Task Class balance (%)

BASEHOCK 4862 1993 B 49.9/50.1
CLL SUB 111 11340 111 M3 9.9/44.1/45.9
SMK CAN 187 19993 187 B 48.1/51.9
TOX 171 5748 171 M4 26.3/26.3/22.8/24.6
abalone 8 4177 R -
bcancer 9 277 B 70.8/29.2
cpuact 21 3000 R -
ctslices 384 53500 R -
flaresolar 9 1066 B 44.7/55.3
german 20 1000 B 70.0/30.0
glass 9 214 M6 32.7/35.5/7.9/6.1/4.2/13.6
housing 13 506 R -
image 18 1155 B 42.9/57.1
ionosphere 33 351 B 64.1/35.9
isolet 617 6238 R -
msd 90 10000 R -
musk1 166 476 B 56.5/43.5
musk2 166 6598 B 84.6/15.4
satimage 36 6435 M6 23.8/10.9/21.1/9.7/11.0/23.4
segment 18 2310 M7 14.3% per class
senseval2 50 534 M3 33.3% per class
sonar 60 208 B 46.6/53.4
spectf 44 267 B 20.6/79.4
speech 50 400 B 50.0/50.0
vehicle 18 846 M4 25.1/25.7/25.8/23.5
vowel 13 990 M11 9.1% per class
warpPIE10P 2420 210 M10 10% per class
wine 13 178 M3 33.1/39.9/27.0 48/29
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