9 Matlab Tricks
that You Probably Want to Know

Wittawat Jitkrittum

Gatsby Tea Talk

17 Dec 2015

1/10

1. Matrix storage is column-major order

m Physical memory is linear.

m To store a multi-dimensional array, need to arrange it linearly.

Matlab:

mA= < L35) € R™*¢ is internally stored as (1,2,3,4,5,6)"

2 46
(column-major).

Tricks/Facts:
m A(1,2) == 3. Can also use linear index. A(3) ==:

m To flatten A4, do A(:) == (1,2,3,4,5,6)". Get a column vector.

m Internally, Matlab does A((j — 1)r +4) for A(3, j).
m C/C++, Python use row-major order.

2/10

2. Set diagonal elements

Task:
1 4 7
mA=| 2 5 8 | € R"™*". Want to set the diagonal to 0.
3 6 9
m Don't want to use (slow)
for i=1:r
A(i, i) =0;
end

3/10

2. Set diagonal elements

Task:
1 4 7
mA=| 2 5 8 | € R"™*". Want to set the diagonal to 0.
3 6 9
m Don't want to use (slow)
for i=1l:r
A(i, i) =0;
end
Tricks:
m Use linear indexing. A(1: (r+1):end) = 0.
m ‘end’ ==
ml:(r+1):end==1:4:9==][1,5,9] == indices of the diagonal
elements.

3/10

3. reshape

reshape(..) is used to change the shape of an array.

m Read elements in linear order (column-wise).

135
'A_<2 4 6)

m reshape(A, 1, 6) == (1,2,3,4,5,6). Row vector.
1 4

m reshape(A, 3,2)==1| 2 5
3 6

m reshape(A, 3, 3). Get an error.
m reshape(A, 3, 2) == reshape(A(:), 3, 2)

m reshape(..) is computationally very cheap.

4/10

4. Weighted average on a 3D array
Task:

m T c R"™*¢%4 3 3d array e.g., d images of size r x c.

m v € RY a weight vector.
m Want to multiply to get M = ZZ (T,) € R™*<.

e |

m Do not want to use a loop.

5/10

4. Weighted average on a 3D array
Task:

m T c R"™*¢%4 3 3d array e.g., d images of size r x c.

m v € RY a weight vector.
m Want to multiply to get M = ZZ ACEN)) € R"™¢,

1 || |

m Do not want to use a loop.
Tricks

m Use reshape
m R = reshape(T, r *x ¢, d)
m M = reshape(R v, r, ¢)

5/10

5. Minimum element of a multi-dimensional array

Task:

m E € R™**? ¢ g validation errors of param.1 x param.2 x param.3
m Find the minimum error, and the corresponding three parameters.

Problem:

m Matlab’s min operates along one dimension.
m Tedious to find min three times.
Tricks:

[minerr, ind] = min(E(:));
[pl_ind, p2_ind, p3 _ind] = ind2sub(size(E), ind);

m Flatten the array E(:). Find min and its linear index (ind).

m Convert the linear index back to the subscript index.

6/10

6. tr(A' B)
Task:

m A, BcR™" Want tr(AT B).
m Inefficient to compute AT B and take the trace.

Tricks:
m Let A:= (a1]---|ay) and B := (by]--- |by).

tr(A" B) = sum(diag(A' B))

= Za}rbj = ZZaijsz
j=1

j=1i=1
= sum(sum(A. x B))
= A(:)" * B(:) in Matlab

m trace(A'*B) costs O(mn?).
Compute A'*B. Then, throw away off-diagonal entries.

m A(:)*B(:) = sum(sum(A.*B)) costs O(mn).

7/10

7. log-sum-exp trick (not specific to Matlab)

D (k)
m Want r(¥) = Kn"l:—led(k,) where pl(f) € (0,1) and D is big.
2pr=1 [la=1Pg
m Example: Posterior probability of the k*-component of a mixture of
Bernoulli.
Problem:

] Hle pl(f) leads to numerical underflow. Try prod(rand(1, 1000)).

8/10

7. log-sum-exp trick (not specific to Matlab)

(k)
m Want r(¥) = Hd—lpd(k, where pl(f) € (0,1) and D is big.
Zk/ 1Hd 1p
m Example: Posterior probability of the k*-component of a mixture of
Bernoulli.
Problem:
] Hd 1pd) leads to numerical underflow. Try prod(rand(1, 1000)).

Tricks:

1 Store log prob. logr®) =3 logpd —log >, H(,pd
2 Introduce ¢

logz de k) = log exp(c) + log exp(—c) + log Z exp <longd ’))
K d
=c+log Z exp <Z logpgk/) — c) ,
k! d

choose ¢ so that exp (Zd logpflk,) - c) > 0.

3 One way is ¢ := maxy » logp((ikl) < 0.

8. bsxfun and repmat

Task:

mAecR™™" peR™
m Want B = f(A,v) (f: element-wise) such that B;; = f(A;;,v;).
m Example: Subtract mean from each column.

Tricks:

N §

m Trick 1: f(A, repmat(v, [1, n]))
m Trick 2: bsxfun(®©f, A, v)

Same effect as Trick 1 without replicating v. Memory efficient.

m bsxfun can only take in simple f

f € {@plus, @minus, @times, @max, Qeq, ...}, not any arbitrary f

m See “doc bsxfun’.

m bsxfun also works for

9/10

9. Embarassingly parallel for-loop

m Want to run an embarassingly parallel for-loop on multiple machines.
m Example: validation error(6;) for i in a long list.

Tricks:
m Download Multicore package (open source).

http://uk.mathworks.com/matlabcentral/fileexchange/13775-multicore-parallel-processing-on-multiple-cores
m Master/slave machines need to share temp dir for passing information.
m On slave Matlab’s, run

startmulticoreslave (temp dir);

m On the master,

v_error_func = .. (some func. of theta)

thetas = {t1, t2, ...}

resultCell = startmulticoremaster(v_error_func, thetas, setting);
m resultCell{i} == validation error of 6;.

m Master/slave machines can be on the same or different machines. Need to
share the same file system. Work at Gatsby.

m Should launch slave Matlab's through the job queue (slurm).
10/10

http://uk.mathworks.com/matlabcentral/fileexchange/13775-multicore-parallel-processing-on-multiple-cores

References |

11/10

	Appendix

