
9 Matlab Tricks
that You Probably Want to Know

Wittawat Jitkrittum

Gatsby Tea Talk

17 Dec 2015

1/10



1. Matrix storage is column-major order

Physical memory is linear.

To store a multi-dimensional array, need to arrange it linearly.

Matlab:

A =

(

1 3 5
2 4 6

)

∈ R
r×c is internally stored as (1, 2, 3, 4, 5, 6)⊤

(column-major).

Tricks/Facts:

A(1, 2) == 3. Can also use linear index. A(3) == 3

To flatten A, do A(:) == (1, 2, 3, 4, 5, 6)⊤ . Get a column vector.

Internally, Matlab does A((j − 1)r + i) for A(i, j).

C/C++, Python use row-major order.

2/10



2. Set diagonal elements

Task:

A =





1 4 7
2 5 8
3 6 9



 ∈ R
r×r. Want to set the diagonal to 0.

Don’t want to use (slow)

f o r i =1: r
A( i , i ) = 0 ;

end

Tricks:

Use linear indexing. A(1 : (r + 1) : end) = 0.

“end” == 9.

1 : (r + 1) : end == 1 : 4 : 9 == [1, 5, 9] == indices of the diagonal
elements.

3/10



2. Set diagonal elements

Task:

A =





1 4 7
2 5 8
3 6 9



 ∈ R
r×r. Want to set the diagonal to 0.

Don’t want to use (slow)

f o r i =1: r
A( i , i ) = 0 ;

end

Tricks:

Use linear indexing. A(1 : (r + 1) : end) = 0.

“end” == 9.

1 : (r + 1) : end == 1 : 4 : 9 == [1, 5, 9] == indices of the diagonal
elements.

3/10



3. reshape

reshape(..) is used to change the shape of an array.

Read elements in linear order (column-wise).

A =

(

1 3 5
2 4 6

)

reshape(A, 1, 6) == (1, 2, 3, 4, 5, 6). Row vector.

reshape(A, 3, 2) ==





1 4
2 5
3 6



.

reshape(A, 3, 3). Get an error.

reshape(A, 3, 2) == reshape(A(:), 3, 2)

reshape(..) is computationally very cheap.

4/10



4. Weighted average on a 3D array

Task:

T ∈ R
r×c×d, a 3d array e.g., d images of size r × c.

v ∈ R
d, a weight vector.

Want to multiply to get M =
∑d

i=1 T (:, :, i) ∗ v(i) ∈ R
r×c.

M =

×

v

Rv =

×

Do not want to use a loop.

Tricks

Use reshape

R = reshape(T, r ∗ c, d)

M = reshape(R ∗ v, r, c)

5/10



4. Weighted average on a 3D array

Task:

T ∈ R
r×c×d, a 3d array e.g., d images of size r × c.

v ∈ R
d, a weight vector.

Want to multiply to get M =
∑d

i=1 T (:, :, i) ∗ v(i) ∈ R
r×c.

M =

×

v

Rv =

×

Do not want to use a loop.

Tricks

Use reshape

R = reshape(T, r ∗ c, d)

M = reshape(R ∗ v, r, c)

5/10



5. Minimum element of a multi-dimensional array

Task:

E ∈ R
r×c×d e.g., validation errors of param.1 × param.2 × param.3

Find the minimum error, and the corresponding three parameters.

Problem:

Matlab’s min operates along one dimension.

Tedious to find min three times.

Tricks:

[ m ine r r , i nd ] = min (E ( : ) ) ;
[ p1_ind , p2_ind , p3_ind ] = ind2sub ( s i z e (E) , i nd ) ;

Flatten the array E(:). Find min and its linear index (ind).

Convert the linear index back to the subscript index.

6/10



6. tr(A⊤
B)

Task:

A,B ∈ R
m×n. Want tr(A⊤B).

Inefficient to compute A⊤B and take the trace.

Tricks:

Let A := (a1| · · · |an) and B := (b1| · · · |bn).

tr(A⊤B) = sum(diag(A⊤B))

=

n
∑

j=1

a
⊤

j bj =

n
∑

j=1

m
∑

i=1

aijbij

= sum(sum(A. ∗B))

= A(:)′ ∗B(:) in Matlab

trace(A’*B) costs O(mn2).

• Compute A’*B. Then, throw away off-diagonal entries.

A(:)’*B(:) = sum(sum(A.*B)) costs O(mn).

7/10



7. log-sum-exp trick (not specific to Matlab)

Want r(k) =
∏

D

d=1 p
(k)
d

∑
K

k′=1

∏
D

d=1 p
(k′)
d

where p
(k)
d ∈ (0, 1) and D is big.

Example: Posterior probability of the kth-component of a mixture of
Bernoulli.

Problem:
∏D

d=1 p
(k)
d

leads to numerical underflow. Try prod(rand(1, 1000)).

Tricks:

1 Store log prob. log r(k) =
∑

d log p
(k)
d − log

∑

k′

∏

d p
(k′)
d

2 Introduce c

log
∑

k′

∏

d

p
(k′)
d

= log exp(c) + log exp(−c) + log
∑

k′

exp

(

log
∏

d

p
(k′)
d

)

= c+ log
∑

k′

exp

(

∑

d

log p
(k′)
d

− c

)

,

choose c so that exp
(

∑

d log p
(k′)
d − c

)

> 0.

3 One way is c := maxk′
∑

d log p
(k′)
d < 0.

8/10



7. log-sum-exp trick (not specific to Matlab)

Want r(k) =
∏

D

d=1 p
(k)
d

∑
K

k′=1

∏
D

d=1 p
(k′)
d

where p
(k)
d ∈ (0, 1) and D is big.

Example: Posterior probability of the kth-component of a mixture of
Bernoulli.

Problem:
∏D

d=1 p
(k)
d

leads to numerical underflow. Try prod(rand(1, 1000)).

Tricks:

1 Store log prob. log r(k) =
∑

d log p
(k)
d − log

∑

k′

∏

d p
(k′)
d

2 Introduce c

log
∑

k′

∏

d

p
(k′)
d

= log exp(c) + log exp(−c) + log
∑

k′

exp

(

log
∏

d

p
(k′)
d

)

= c+ log
∑

k′

exp

(

∑

d

log p
(k′)
d

− c

)

,

choose c so that exp
(

∑

d log p
(k′)
d − c

)

> 0.

3 One way is c := maxk′
∑

d log p
(k′)
d < 0.

8/10



8. bsxfun and repmat

Task:

A ∈ R
m×n, v ∈ R

m.

Want B = f(A, v) (f : element-wise) such that Bij = f(Aij , vi).

Example: Subtract mean from each column.

Tricks:

⇒

Trick 1: f( A, repmat(v, [1, n]) )

Trick 2: bsxfun(@f, A, v)

• Same effect as Trick 1 without replicating v. Memory efficient.

bsxfun can only take in simple f

• f ∈ {@plus, @minus, @times, @max, @eq, ...}, not any arbitrary f

See “doc bsxfun”.

bsxfun also works for .

9/10



9. Embarassingly parallel for-loop

Want to run an embarassingly parallel for-loop on multiple machines.
Example: validation_error(θi) for i in a long list.

Tricks:

Download Multicore package (open source).
http://uk.mathworks.com/matlabcentral/fileexchange/13775-multicore-parallel-processing-on-multiple-cores

Master/slave machines need to share temp_dir for passing information.
On slave Matlab’s, run

s t a r t m u l t i c o r e s l a v e ( temp_dir ) ;

On the master,

v_error_func = . . ( some func . o f t h e t a ) . .
t h e t a s = { t1 , t2 , . . . }
r e s u l t C e l l = s t a r tm u l t i c o r em a s t e r ( v_error_func , the ta s , s e t t i n g ) ;

resultCell{i} == validation error of θi.
Master/slave machines can be on the same or different machines. Need to
share the same file system. Work at Gatsby.
Should launch slave Matlab’s through the job queue (slurm).

10/10

http://uk.mathworks.com/matlabcentral/fileexchange/13775-multicore-parallel-processing-on-multiple-cores


References I

11/10


	Appendix

