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Comparing Distributions
Have: Two collections of samples X;Y from unknown distributions
p and q .
Two goals: using only X;Y : : :

1 Measure the distance between p and q .
2 Are p and q different (not just by chance)?

=) Two-sample testing

2/44



Comparing Distributions
Have: Two collections of samples X;Y from unknown distributions
p and q .
Two goals: using only X;Y : : :

1 Measure the distance between p and q .
2 Are p and q different (not just by chance)?

=) Two-sample testing

2/44



Comparing Distributions
Have: Two collections of samples X;Y from unknown distributions
p and q .
Two goals: using only X;Y : : :

1 Measure the distance between p and q .
2 Are p and q different (not just by chance)?

=) Two-sample testing

2/44



Comparing Distributions
Have: Two collections of samples X;Y from unknown distributions
p and q .
Two goals: using only X;Y : : :

1 Measure the distance between p and q .
2 Are p and q different (not just by chance)?

=) Two-sample testing

2/44



Application 1: Effects of Ads Placement

X = time it takes users to click ads at location 1.
Y = time it takes users to click ads at location 2.
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Application 1: Effects of Ads Placement

Does ads at location 1 have the same effect as ads at location 2?

X = time it takes users to click ads at location 1.
Y = time it takes users to click ads at location 2.
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Application 2: Data Integration
Data from two labs collected under the (supposedly) same setting.
Should we merge the two databases into one? [Gretton et al., 2012a]

Motivating question: differences in brain signals

Theproblem: Do local f eld potential (LFP) signals change
whenmeasured near a spikeburst?
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Data collected from lab 1: X.

Motivating question: differences in brain signals

Theproblem: Do local f eld potential (LFP) signals change
whenmeasured near a spikeburst?
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Data collected from lab 2: Y.

If they have different distributions, do not merge.
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Application 3: Benchmarking Generative Models

Observed MNIST handwritten
digits. X.

Generated images from a
model. Y.

Is Y similar to X?

Distance between distributions can be used to train generative
models.
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1 Background
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4 Further Topics and Conclusion
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Basic Linear Algebra

Let a = (a1; : : : ; ad)>; b and c be vectors in Rd .

Norm (length): kak :=
qPd

i=1 a
2
i :

Inner product (dot product)

a � b = a>b = ha ; bi =
dX

i=1

aibi

= a1b1 + a2b2 + � � �+ adbd :

ha ; bi = similarity between a and b.

An inner product induces a norm: kak = pha ;ai.
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Properties of Inner Product
Three properties:

1 (Linear): h�a + �b; ci = � ha ; ci+ � hb; ci
2 (Symmetric): ha ; bi = hb;ai
3 ha ;ai � 0 and ha ;ai = 0 if and only if a = 0.

For x ; y 2 R, we have (x � y)2 = x 2 � 2xy + y2.
In general: ka � bk2 = ha ;ai � 2 ha ; bi+ hb; bi.

• ka � bk = distance between a and b.

Definition 1 (Hilbert space).
A Hilbert space H is a complete inner product space.

Hilbert space � a space with an inner product defined. Rd is a
Hilbert space.
In general, can be a space of generic objects.

9/44



Properties of Inner Product
Three properties:

1 (Linear): h�a + �b; ci = � ha ; ci+ � hb; ci
2 (Symmetric): ha ; bi = hb;ai
3 ha ;ai � 0 and ha ;ai = 0 if and only if a = 0.

For x ; y 2 R, we have (x � y)2 = x 2 � 2xy + y2.
In general: ka � bk2 = ha ;ai � 2 ha ; bi+ hb; bi.

• ka � bk = distance between a and b.

Definition 1 (Hilbert space).
A Hilbert space H is a complete inner product space.

Hilbert space � a space with an inner product defined. Rd is a
Hilbert space.
In general, can be a space of generic objects.

9/44



Properties of Inner Product
Three properties:

1 (Linear): h�a + �b; ci = � ha ; ci+ � hb; ci
2 (Symmetric): ha ; bi = hb;ai
3 ha ;ai � 0 and ha ;ai = 0 if and only if a = 0.

For x ; y 2 R, we have (x � y)2 = x 2 � 2xy + y2.
In general: ka � bk2 = ha ;ai � 2 ha ; bi+ hb; bi.

• ka � bk = distance between a and b.

Definition 1 (Hilbert space).
A Hilbert space H is a complete inner product space.

Hilbert space � a space with an inner product defined. Rd is a
Hilbert space.
In general, can be a space of generic objects.

9/44



Properties of Inner Product
Three properties:

1 (Linear): h�a + �b; ci = � ha ; ci+ � hb; ci
2 (Symmetric): ha ; bi = hb;ai
3 ha ;ai � 0 and ha ;ai = 0 if and only if a = 0.

For x ; y 2 R, we have (x � y)2 = x 2 � 2xy + y2.
In general: ka � bk2 = ha ;ai � 2 ha ; bi+ hb; bi.

• ka � bk = distance between a and b.

Definition 1 (Hilbert space).
A Hilbert space H is a complete inner product space.

Hilbert space � a space with an inner product defined. Rd is a
Hilbert space.
In general, can be a space of generic objects.

9/44



Outline

1 Background

2 Kernel Methods for Comparing Distributions

3 Nonparametric Two-Sample Testing

4 Further Topics and Conclusion

10/44



Case 1: Simple Mean Shift in 1D

−5 0 5

p

q

Two Gaussian distributions.

Assume no differece in high-order moments.

“Distance” = difference in the means. T-test.
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Case 1: Simple Mean Shift in 1D

0 5

X

Y

Assume no differece in high-order moments.
“Distance” = difference in the means. T-test.

(population) D1(p; q) := jEX�p [X ]� EY�q [Y ]j

(empirical) D̂1(X;Y) =

������
1
n

nX
i=1

xi � 1
n

nX
j=1

yj

������
11/44



Case 2: Same Mean, Different Variances

−5 0 5
X

p

q

D1(p; q) := jEX�p [X ]� EY�q [Y ]j cannot detect the difference.
Why?

Idea: look at difference in means of features �(�) of X and Y .
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Case 2: Same Mean, Different Variances
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Case 2: Same Mean, Different Variances

−5 0 5
X

p

q

0 2 4 6

X2

Y2

D1(p; q) := jEX�p [X ]� EY�q [Y ]j cannot detect the difference.
Why?
Idea: look at difference in means of features �(�) of X and Y .

New “distance”:

D2(p; q) =
EX�p [�(X )]� EY�q [�(X )]

;
where �(x ) = (x ; x 2)>.
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D1(p; q) := jEX�p [X ]� EY�q [Y ]j cannot detect the difference.
Why?
Idea: look at difference in means of features �(�) of X and Y .

D2(p; q) =

 
EX�p [X ]

EX�p [X 2]

!
�
 
EX�q [X ]

EX�q [X 2]
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Case 3: Difference in High-Order Moments

p

q
p = Gaussian distribution,
q = Laplace distribution.

Same mean and variance.

D2 fails.

�(x ) = (x ; x 2; x 4)> works. Difference is in kurtosis (4th moment).

�(x ) = (x ; x 2; x 4; cos x ; ex ; : : :)>. But, when to stop?

Solution: Use an infinite-dimensional feature map �(�) with the
kernel trick.
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The (Kernel) Mean Embedding [Smola et al., 2007]

Given a feature map �(�) mapping to a Hilbert space H,
• represent p with �p := Ex�p [�(x )] (i.e., the mean embedding of p),
• represent q with �q := Ey�q [�(y)].

p

q
}MMD(p, q)

Hilbert space H
Space of distributions Ex∼p[φ(x)]

Ey∼p[φ(y)]

µp

µq

H can be infinite dimensional. Depends on �(�).
• If �(x ) = (x ; x 2)>, then H = R2.

Then, measure the distance in H.
The distance is called the “Maximum Mean Discrepancy” (MMD).
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Maximum Mean Discrepancy (MMD) [Gretton et al., 2012a]

MMD(p; q) :=
Ex�p [�(x )]� Ey�q [�(y)]


H

;

where �(x ) is in the Hilbert space H.

Recall ka � bk2 = ha ;ai � 2 ha ; bi+ hb; bi.

MMD2(p; q) =
Ex�p [�(x )]� Ey�q [�(y)]

2

H

=


Ex�p [�(x )];Ex 0�p [�(x 0)]

�� 2 hEx�p [�(x )];Ey�q [�(y)]i
+


Ey�q [�(y)];Ey 0�q [�(y 0)]

�
= Ex�pEx 0�p



�(x ); �(x 0)

�� 2Ex�pEy�qh�(x ); �(y)i
+ Ey�qEy 0�q



�(y); �(y 0)

�
Depend on only the inner product h�(x ); �(y)i.
Don’t need �(x ) explicitly (could be 1-dimensional!).
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Maximum Mean Discrepancy (MMD) [Gretton et al., 2012a]

Define k(x ; x 0) := h�(x ); �(x 0)iH (kernel).

MMD2
k (p; q) =

Ex�p [�(x )]� Ey�q [�(y)]
2

H

= Ex�pEx 0�pk(x ; x 0)� 2Ex�pEy�qk(x ;y 0)

+ Ey�qEy 0�qk(y ;y 0):

Unbiased estimator:

\MMD2
k (X;Y) =

1
n(n � 1)

nX
i=1

X
j 6=i

k(x i ; x j )� 2
n2

nX
i=1

nX
j=1

k(x i ;y j )

+
1

n(n � 1)

nX
i=1

X
j 6=i

k(y i ;y j ):

k(x ; x 0) � similarity between x and x 0.
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Intuition for the MMD
Dogs � p and fish � q .
Each entry is one of k(dogi ;dogj ), k(dogi ;fishj ), or k(fishi ;fishj )

17/44



Intuition for the MMD

\MMD2
k =

1
n(n � 1)

X
i 6=j

k(dogi ;dogj )�
2
n2

X
i ;j

k(dogi ;fishj )

+
1

n(n � 1)

X
i 6=j

k(fishi ;fishj )
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Positive Definite Kernel

Defining k(x ; x 0) from �(�) is always valid.
Can start directly from k(x ; x 0) without specifying �(�).
What k is valid?

Definition 2 (Positive definite kernel).
A symmetric function k : X �X ! R is called positive definite if, for
any integer n > 0, c1; : : : ; cn 2 R, and x 1; : : : ; xn 2 X , we havePn

i=1
Pn

j=1 cicj k(x i ; x j ) � 0.

Equivalently, the Gram matrix K is a positive semi-definite
matrix where (K )ij = k(x i ; x j ).

x can be anything (e.g., vector, image, tree, string, graph, : : :).
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Positive Definite Kernel () �(�) Exists
Theorem 1 (Moore-Aronszajn).
Assume k(�; �) is positive definite.

1 k is an inner product in some Hilbert space H.
2 There exists �(�) such that k(x ;y) = h�(x ); �(y)iH.

Summary: Pos. def. k automatically defines �(�) (implicitly).

Defining k can be easier than defining �(�). Imagine strings.
To study H, can study k(�; �) instead of �(�).

• Reproducing kernel Hilbert spaces (RKHS).
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Example: Polynomial Kernel
Let X = Rd (domain).

k(x ;y) =
�
x>y

�m
is positive definite, for m 2 f1; 2; : : :g.

Consider d = 2 and m = 3.

k

  
x1

x2

!
;

 
y1

y2

!!
= (x1y1 + x2y2)

3:

Feature map

�

  
x1

x2

!!
=

0
BBB@

x 3
1p

3x 2
1 x2p

3x1x 2
2

x 3
2

1
CCCA =

0
BBB@

�1(x )
�2(x )
�3(x )
�4(x )

1
CCCA

So, H = R4.
Show that k(x ;y) = h�(x ); �(y)iH = �(x )>�(y).
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New Kernels from Old [Shawe-Taylor and Cristianini, 2004, p. 75]

Assume k1; k2 are pos. def. kernels with feature maps �1 and �2.

New kernel k with feature map �.

k(x ;y) features

k1(x ;y) + k2(x ;y) �(x ) = stack of �1(x ) and �2(x )
k1(f (x ); f (x )) �(x ) = �1(f (x ))
k1(x ;y)k2(x ;y) �(x ) = tensor product of �1(x ); �2(x )
exp(k1(x ;y)) � weighted polynomial features of all orders
...

...

k(x ;y) = �k1(x ;y) is NOT valid. Why?
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Non-Injective Mean Embedding
Variance difference revisited : : :

−5 0 5
X

p

q

We used �(x ) = x . So, k(x ; y) = xy (linear kernel).

MMD2
k (p; q) = (EX�p [�(X )]� EY�q [�(X )])2 = 0 but p 6= q .

Why?

k (and thus �) is not powerful enough.

Mathematically, the map p 7! �p is not injective.
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X
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Hilbert space HSpace of distributions
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Characteristic Kernels [Fukumizu et al., 2008]

Definition 3.
A pos. def. kernel k is said to be characteristic if distinct
distributions are embedded to different points in H.

Mathematically, p 7! Ex�p [�(x )] is injective.

p

q

MMD(p, q) = 0

Hilbert space HSpace of distributions
Ex∼p[φ(x)]

Ey∼p[φ(y)]

µp = µqp 6= q

not characteristic

p

q
}MMD(p, q)

Hilbert space H
Space of distributions Ex∼p[φ(x)]

Ey∼p[φ(y)]

µp

µq

characteristic
If k is characteristic, : : :

�p contains all information of p,
MMDk (p; q) = 0 if and only if p = q [Gretton et al., 2012a]. A
proper distance.
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Examples of Characteristic Kernels

Characteristic kernels on X = Rd :

Gaussian kernel:

k(x ;y) = exp

 
�kx � yk2

2�2

!

for � > 0.
Laplace kernel: k(x ;y) = exp

�
�kx�yk

2�

�
for � > 0.

Matérn class of kernels [Rasmussen and Williams, 2006, Sec 4.2.1]

etc. See [Sriperumbudur et al., 2010].

Not characteristic:

Polynomial kernel: k(x ;y) =
�
x>y + c

�d
for

c � 0; d 2 f1; 2; : : :g.

25/44



Examples of Characteristic Kernels

Characteristic kernels on X = Rd :

Gaussian kernel:

k(x ;y) = exp

 
�kx � yk2

2�2

!

for � > 0.
Laplace kernel: k(x ;y) = exp

�
�kx�yk

2�

�
for � > 0.

Matérn class of kernels [Rasmussen and Williams, 2006, Sec 4.2.1]

etc. See [Sriperumbudur et al., 2010].

Not characteristic:

Polynomial kernel: k(x ;y) =
�
x>y + c

�d
for

c � 0; d 2 f1; 2; : : :g.

25/44



Examples of Characteristic Kernels

Characteristic kernels on X = Rd :

Gaussian kernel:

k(x ;y) = exp

 
�kx � yk2

2�2

!

for � > 0.
Laplace kernel: k(x ;y) = exp

�
�kx�yk

2�

�
for � > 0.

Matérn class of kernels [Rasmussen and Williams, 2006, Sec 4.2.1]

etc. See [Sriperumbudur et al., 2010].

Not characteristic:

Polynomial kernel: k(x ;y) =
�
x>y + c

�d
for

c � 0; d 2 f1; 2; : : :g.

25/44



Summary So Far
Only population quantities.

1 Cannot compute 1-dimensional �(�). Can still compute
MMDk (p; q). Kernel trick.

2 Positive definite k(�; �) () �(�) exists.
3 If k is characteristic, Ex�p [�(x )] fully characterizes p.

p

q
}MMD(p, q)

Hilbert space H
Space of distributions Ex∼p[φ(x)]

Ey∼p[φ(y)]

µp

µq

4 Characteristic k implies
MMDk (p; q) = kEx�p [�(x )]� Ey�q [�(y)]k iff p = q .
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Two-Sample Testing with MMD
Have: Two collections of samples X;Y from unknown p and q .
Goal: Test H0 : p = q vs H1 : p 6= q .

1 When p = q , n \MMD2
k (random) is “close to 0.”

2 When p 6= q , n \MMD2
k is “far from 0.”

−2 −1 0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

MMD density

n × M̂MD
2

P
ro

b
.
o
f

n
×

M̂
M

D
2

 

 

P=Q

P≠ Q

False negatives

c
α
 = 1−α  quantile when P=Q
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Reject H0 if
n \MMD2

k > c�
(threshold).

� = significance level.
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Asymptotic Null Distribution of n\MMD2
k

When H0 : p = q , statistic has asymptotic distribution

n \MMD2
k �

1X
l=1

�l

h
Z 2
l � 2

i
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χ
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Empirical PDF

�i i (x 0) =

Z
X

~k(x ;x 0)| {z }
centred

 i (x )p(x ) dx

Zl � N (0; 2) i:i:d:

Main point:

Can simulate to get
threshold c�.
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Asymptotic Distribution Under H1 [Gretton et al., 2012a]

When H1 : p 6= q , statistic is asymptotically normal,
p
n
�
\MMD2

k �MMD2
k (p; q)

�
d�! N (0;Vk (p; q)) ;

Vk (p; q) = variance term.
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Which Kernel to Use?

Gaussian kernel: k(x ;y) = exp
�
�kx�yk2

2�2

�
. Best �2?

Keep false rejection rate at �. Maximize true rejection rate.

Keep P(reject H0jH0 true) � �. Maximize P(reject H0jH1 true).

Test power = P(reject H0 j H1 true)
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MMD Power Criterion [Sutherland et al., 2016]

The test power P(reject H0 j H1 true) =

PH1

�
n \MMD2

k > ĉ�
�
! �

 p
n
MMD2

kp
Vk

� ĉ�p
nVk

!
;

where
• � is the CDF of the standard normal distribution.
• ĉ� is an estimate of the 1� � quantile c� of the null distribution.

Choose the kernel which maximizes

MMD2
kp

Vk
:

Signal-to-noise ratio. Can be estimated with samples.
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Deriving the MMD Power Criterion
Let Z � N (0; 1).
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� ĉ�p
nVk

�
where

� is the CDF of the standard normal distribution.
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�

= PH1

0
@n \MMD2

k � nMMD2
kp

Vk
>
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Properties of the MMD Test

As sample size n !1,

1 If H0 : p = q , then P(reject H0) � �.

2 If k is characteristic and H1 : p 6= q , then P(reject H0)! 1.

(1) and (2) =) a consistent test.
\MMD2

k can be estimated in O(n2) time.
• But, linear-time versions (O(n)) exist

[Gretton et al., 2012a, Zaremba et al., 2013].
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Generate MNIST Handwritten Digits

Observed MNIST handwritten
digits. X.

Generated images from a
model. Y.

Goal: Learn a function which transforms noise into a
handwritten digit.
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Generative Moment Matching Networks [Li et al., 2015]

Generative Moment Matching Networks
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Abstract
We consider the problem of learning deep gener-
ative models from data. We formulate a method
that generates an independent sample via a sin-
gle feedforward pass through a multilayer pre-
ceptron, as in the recently proposed generative
adversarial networks (Goodfellow et al., 2014).
Training a generative adversarial network, how-
ever, requires careful optimization of a difficult
minimax program. Instead, we utilize a tech-
nique from statistical hypothesis testing known
as maximum mean discrepancy (MMD), which
leads to a simple objective that can be interpreted
as matching all orders of statistics between a
dataset and samples from the model, and can be
trained by backpropagation. We further boost
the performance of this approach by combining
our generative network with an auto-encoder net-
work, using MMD to learn to generate codes that
can then be decoded to produce samples. We
show that the combination of these techniques
yields excellent generative models compared to
baseline approaches as measured on MNIST and
the Toronto Face Database.

1. Introduction
The most visible successes in the area of deep learning have
come from the application of deep models to supervised
learning tasks. Models such as convolutional neural net-
works (CNNs), and long short term memory (LSTM) net-
works are now achieving impressive results on a number of
tasks such as object recognition (Krizhevsky et al., 2012;
Sermanet et al., 2014; Szegedy et al., 2014), speech recog-
nition (Graves & Jaitly, 2014; Hinton et al., 2012a), image
caption generation (Vinyals et al., 2014; Fang et al., 2014;

Preliminary work.

Kiros et al., 2014), machine translation (Cho et al., 2014;
Sutskever et al., 2014), and more. Despite their successes,
one of the main bottlenecks of the supervised approach is
the difficulty in obtaining enough data to learn abstract fea-
tures that capture the rich structure of the data. It is well
recognized that a promising avenue is to use unsupervised
learning on unlabelled data, which is far more plentiful and
cheaper to obtain.

A long-standing and inherent problem in unsupervised
learning is defining a good method for evaluation. Gen-
erative models offer the ability to evaluate generalization
in the data space, which can also be qualitatively assessed.
In this work we propose a generative model for unsuper-
vised learning that we call generative moment matching
networks (GMMNs). GMMNs are generative neural net-
works that begin with a simple prior from which it is easy
to draw samples. These are propagated deterministically
through the hidden layers of the network and the output is
a sample from the model. Thus, with GMMNs it is easy
to quickly draw independent random samples, as opposed
to expensive MCMC procedures that are necessary in other
models such as Boltzmann machines (Ackley et al., 1985;
Hinton, 2002; Salakhutdinov & Hinton, 2009). The struc-
ture of a GMMN is most analogous to the recently pro-
posed generative adversarial networks (GANs) (Goodfel-
low et al., 2014), however unlike GANs, whose training in-
volves a difficult minimax optimization problem, GMMNs
are comparatively simple; they are trained to minimize a
straightforward loss function using backpropagation.

The key idea behind GMMNs is the use of a statistical hy-
pothesis testing framework called maximum mean discrep-
ancy (Gretton et al., 2007). Training a GMMN to mini-
mize this discrepancy can be interpreted as matching all
moments of the model distribution to the empirical data dis-
tribution. Using the kernel trick, MMD can be represented
as a simple loss function that we use as the core training
objective for GMMNs. Using minibatch stochastic gradi-
ent descent, training can be kept efficient, even with large
datasets.
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Code: https://github.com/yujiali/gmmn

One of the first to use MMD to train a generative network.
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Generative Moment Matching Networks [Li et al., 2015]

argmin
�

\MMD2
k (X; fg�(z i )gni=1)

X = training sets. x i = one digit (an image with 28� 28 = 784
pixels). 60000 images.
Z = fz igni=1 random noise vectors. Drawn from N (0; I ).
g�(z ) a deep net transforming noise z into an image.
Kernel k : sum of 5 Gaussian kernels of different bandwidths

Network architecture (my own, not [Li et al., 2015]):

4 hidden layers. Total parameters 60,608 (in �).
Training for 15 epochs. � 7 minutes. My laptop without GPU.
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My Results
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Quick Comments Generative Moment Matching Networks

(e) GMMN nearest neighbors for MNIST samples

(a) GMMN MNIST samples (b) GMMN TFD samples (f) GMMN+AE nearest neighbors for MNIST samples

(g) GMMN nearest neighbors for TFD samples

(c) GMMN+AE MNIST samples (d) GMMN+AE TFD samples (h) GMMN+AE nearest neighbors for TFD samples

Figure 2. Independent samples and their nearest neighbors in the training set for the GMMN+AE model trained on MNIST and TFD
datasets. For (e)(f)(g) and (h) the top row are the samples from the model and the bottom row are the corresponding nearest neighbors
from the training set measured by Euclidean distance.

forms the other models. This shows that despite being rel-
atively simple, MMD, especially when combined with an
effective decoder, is a powerful objective for training good
generative models.

Some samples generated from the GMMN models are
shown in Figure 2(a-d). The GMMN+AE produces the
most visually appealing samples, which are reflected in its
Parzen window log-likelihood estimates. The likely expla-
nation is that any perturbations in the code space corre-
spond to smooth transformations along the manifold of the
data space. In that sense, the decoder is able to “correct”
noise in the code space.

To determine whether the models learned to merely copy
the data, we follow the example of (Goodfellow et al.,
2014) and visualize the nearest neighbour of several sam-
ples in terms of Euclidean pixel-wise distance in Figure
2(e-h). By this metric, it appears as though the samples
are not merely data examples.

One of the interesting aspects of a deep generative model
such as the GMMN is that it is possible to directly ex-
plore the data manifold. Using the GMMN+AE model,
we randomly sampled 5 points in the uniform space and
show their corresponding data space projections in Fig-
ure 3. These points are highlighted by red boxes. From left
to right, top to bottom we linearly interpolate between these

points in the uniform space and show their corresponding
projections in data space. The manifold is smooth for the
most part, and almost all of the projections correspond to
realistic looking data. For TFD in particular, these transfor-
mations involve complex attributes, such as the changing of
pose, expression, lighting, gender, and facial hair.

6. Conclusion and Future Work
In this paper we provide a simple and effective framework
for training deep generative models called generative mo-
ment matching networks. Our approach is based off of opti-
mizing maximum mean discrepancy so that samples gener-
ated from the model are indistinguishable from data exam-
ples in terms of their moment statistics. As is standard with
MMD, the use of the kernel trick allows a GMMN to avoid
explicitly computing these moments, resulting in a simple
training objective, and the use of minibatch stochastic gra-
dient descent allows the training to scale to large datasets.

Our second contribution combines MMD with auto-
encoders for learning a generative model of the code layer.
The code samples from the model can then be fed through
the decoder in order to generate samples in the origi-
nal space. The use of auto-encoders makes the gener-
ative model learning a much simpler problem. Com-
bined with MMD, pretrained auto-encoders can be read-

I could have done better. Just had to wait + bigger network.

Key points:
Easy to train. Simple implementation.
Stable training.
Image quality depends on kernel k .
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Further Topics I
“Dual view” : Reproducing Kernel Hilbert Spaces (RKHSs)

Each point in H can be seen as a function:
f 2 H () f (x ) =

Pm
i=1 �ik(x ; x i ) for some f�igmi=1, fx igmi=1.

MMD

Associated with MMD(p; q) is the witness function.

Unit-norm function in H that best distinguishes p and q .
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Further Topics II
Dependence measure

Recall X independent of Y iff pxy(X ;Y ) = px (X )py(Y ).

MMD(pxy ; pxpy) can be used to measure dependence
[Gretton et al., 2005].

Applications: Feature selection, clustering etc.

Others

Linear-time versions of MMD [Gretton et al., 2012b,
Chwialkowski et al., 2015, Jitkrittum et al., 2016].
Goodness-of-fit test by distance(model , data)
[Liu et al., 2016, Chwialkowski et al., 2016, Jitkrittum et al., 2017].

Gaussian process regression/classification
[Rasmussen and Williams, 2006] .
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Conclusion

p

q
}MMD(p, q)

Hilbert space H
Space of distributions Ex∼p[φ(x)]

Ey∼p[φ(y)]

µp

µq

Maximum Mean Discrepancy (MMD) = distance between two
distributions

• “Mean embed” distributions to a high-dimensional space H.
• Measure the distance in H.

Characteristic kernel (e.g., Gaussian kernel)
=) MMD(p; q) = 0 iff p = q .
Two-sample testing with MMD. Consistent test.
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Questions?

Thank you

Wittawat Jitkrittum

wittawat.com

wittawatj@gmail.com

45/44

wittawat.com
wittawatj@gmail.com


References I
Chwialkowski, K., Ramdas, A., Sejdinovic, D., and Gretton, A.
(2015).
Fast two-sample testing with analytic representations of
probability measures.
In NIPS, pages 1972–1980.

Chwialkowski, K., Strathmann, H., and Gretton, A. (2016).
A kernel test of goodness of fit.
In ICML, pages 2606–2615.

Fukumizu, K., Gretton, A., Sun, X., and Schölkopf, B. (2008).
Kernel measures of conditional dependence.
In NIPS, pages 489–496.

46/44



References II
Gretton, A., Borgwardt, K., Rasch, M., Schölkopf, B., and
Smola, A. (2012a).
A kernel two-sample test.
Journal of Machine Learning Research, 13:723–773.

Gretton, A., Herbrich, R., Smola, A., Bousquet, O., and
Schölkopf, B. (2005).
Kernel methods for measuring independence.
Journal of Machine Learning Research, 6:2075–2129.

Gretton, A., Sejdinovic, D., Strathmann, H., Balakrishnan, S.,
Pontil, M., Fukumizu, K., and Sriperumbudur, B. K. (2012b).
Optimal kernel choice for large-scale two-sample tests.
In NIPS, pages 1205–1213.

47/44



References III
Jitkrittum, W., Szabó, Z., Chwialkowski, K. P., and Gretton, A.
(2016).
Interpretable Distribution Features with Maximum Testing
Power.
In NIPS, pages 181–189.

Jitkrittum, W., Xu, W., Szabo, Z., Fukumizu, K., and Gretton,
A. (2017).
A linear-time kernel goodness-of-fit test.

Li, Y., Swersky, K., and Zemel, R. (2015).
Generative moment matching networks.
In ICML, pages 1718–1727.

48/44



References IV
Liu, Q., Lee, J., and Jordan, M. (2016).
A kernelized Stein discrepancy for goodness-of-fit tests.
In ICML, pages 276–284.

Rasmussen, C. E. and Williams, C. K. I. (2006).
Gaussian Processes for Machine Learning.
MIT Press, Cambridge, MA.

Shawe-Taylor, J. and Cristianini, N. (2004).
Kernel methods for pattern analysis.
Cambridge university press.

Smola, A., Gretton, A., Song, L., and Schölkopf, B. (2007).
A Hilbert space embedding for distributions.
In International Conference on Algorithmic Learning Theory
(ALT), pages 13–31.

49/44



References V
Sriperumbudur, B., Gretton, A., Fukumizu, K., Schoelkopf, B.,
and Lanckriet, G. (2010).
Hilbert space embeddings and metrics on probability measures.
Journal of Machine Learning Research, 11:1517–1561.

Sutherland, D. J., Tung, H.-Y., Strathmann, H., De, S., Ramdas,
A., Smola, A., and Gretton, A. (2016).
Generative Models and Model Criticism via Optimized
Maximum Mean Discrepancy.
arXiv: 1611.04488.

Zaremba, W., Gretton, A., and Blaschko, M. (2013).
B-test: A non-parametric, low variance kernel two-sample test.
In NIPS, pages 755–763.

50/44


	Background
	Kernel Methods for Comparing Distributions
	Nonparametric Two-Sample Testing
	Further Topics and Conclusion
	Appendix

