# Introduction to Kernel Methods for Comparing Distributions 

Wittawat Jitkrittum

Max Planck Institute for Intelligent Systems, Germany wittawatj@gmail.com

Bangkok Machine Learning Meetup<br>7 March 2018

## Comparing Distributions

Have: Two collections of samples $X, Y$ from unknown distributions $p$ and $q$.

Two goals: using only $\mathrm{X}, \mathrm{Y}$
Measure the distance between $p$ and $q$. Are $p$ and $q$ different (not just by chance)? $\Longrightarrow$ Two-sample testing

## Comparing Distributions

Have: Two collections of samples $X, Y$ from unknown distributions $p$ and $q$.
Two goals: using only $\mathrm{X}, \mathrm{Y} \ldots$
Measure the distance between $p$ and $q$.
Are $p$ and $q$ different (not just by chance)?
$\Longrightarrow$ Two-sample testing

## Comparing Distributions

Have: Two collections of samples $\mathrm{X}, \mathrm{Y}$ from unknown distributions $p$ and $q$.
Two goals: using only $\mathrm{X}, \mathrm{Y} \ldots$
1 Measure the distance between $p$ and $q$.
2 Are $p$ and $q$ different (not just by chance)? $\Longrightarrow$ Two-sample testing


## Comparing Distributions

Have: Two collections of samples $\mathrm{X}, \mathrm{Y}$ from unknown distributions $p$ and $q$.
Two goals: using only $\mathrm{X}, \mathrm{Y} \ldots$
1 Measure the distance between $p$ and $q$.
2 Are $p$ and $q$ different (not just by chance)?
$\Longrightarrow$ Two-sample testing


## Application 1: Effects of Ads Placement

## meetup

## Wednesday, March 7, 2018

## "Meta-Learning" and "Kernel Methods for Comparing Distribution"

Hosted by James, Sorawit and 3 others
From BKK Machine Learning

You're going 156 people going


## Details

Bangkok Machine Learning meetup is back!

This time we will learn about two interesting topics in machine learning from two very special guests, Sam Witterveen and Wittawat Jitkrittum.

Sam is a Google Developer Expert in Machine Learning. He regularly shares his knowledge at events and trainings across Asia and is coorganiser of the Singapore TensorFlow and Deep Learning groupWednesday, March 7, 2018 6:00 PM to 8:30 PM
Add to calendar

- Room 206, 2nd Floor, 50 Years Anusorn Building (BBA Building),
Chulalongkorn Business
School
อาคารอนุสรณ์ 50 ปี .
Bangkok
Close to MRT Sam Yan
Station


## Application 1: Effects of Ads Placement

## meetup

Wednesday, March 7, 2018

## "Meta-Learning" and "Kernel Methods for Comparing Distribution"

Hosted by James, Sorawit and 3 others
From BKK Machine Learning

## Details

Bangkok Machine Learning meetup is back!

This time we will learn about two interesting topics in machine learning from two very special guests, Sam Witterveen and Wittawat Jitkrittum.

Sam is a Google Developer Expert in Machine Learning. He regularly shares his knowledge at events and trainings across Asia and is coorganiser of the Singapore TensorFlow and Deep Learning group

## Ads at location 1

Wednesday, March 7, 2018 6:00 PM to 8:30 PMAdd to calendarRoom 206, 2nd Floor, 50 Years Anusorn Building (BBA Building),
Chulalongkorn Business
School
อาคารอนุสรณ์ 50 ปี
Bangkok
Close to MRT Sam Yan
Station

## Application 1: Effects of Ads Placement

## meetup

Wednesday, March 7, 2018

## "Meta-Learning" and "Kernel Methods for Comparing Distribution"

Hosted by James, Sorawit and 3 others
From BKK Machine Learning

## Details

## Bangkok Machine Learning meetup is back!

This time we will learn about two interesting topics in machine learning from two very special guests, Sam Witterveen and Wittawat Jitkrittum.

> Sam is a Google Developer Expert in Machine Learning. He regularly shares his knowledge at events and trainings across Asia and is coorganiser of the Singapore TensorFlow and Deep Learning group

You're going 156 people going


Ads at location 2

อาคารอนุสรณ 50 ปี
Bangkok
Close to MRT Sam Yan
Station

## Application 1: Effects of Ads Placement

Does ads at location 1 have the same effect as ads at location 2 ?

## Application 1: Effects of Ads Placement

Does ads at location 1 have the same effect as ads at location 2 ?
■ $X=$ time it takes users to click ads at location 1.

- $Y=$ time it takes users to click ads at location 2.


## Application 1: Effects of Ads Placement

Does ads at location 1 have the same effect as ads at location 2 ?
■ $X=$ time it takes users to click ads at location 1.
■ $Y=$ time it takes users to click ads at location 2.


## Application 2: Data Integration

■ Data from two labs collected under the (supposedly) same setting.

- Should we merge the two databases into one? [Gretton et al., 2012a]


Data collected from lab 1: X.


Data collected from lab 2: Y.

■ If they have different distributions, do not merge.

## Application 3: Benchmarking Generative Models



Observed MNIST handwritten digits. X .

| 3 | 0 | 7 | 5 | 4 | 9 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 5 | 3 | 0 | 5 | 7 | 5 |
| 5 | 2 | 4 | 9 | 4 | 5 |
| 0 | 4 | 1 | 0 | 8 | 1 |

Generated images from a model. Y.

Is $Y$ similar to $X$ ?

■ Distance between distributions can be used to train generative models.

## Outline

1 Background

2 Kernel Methods for Comparing Distributions

3 Nonparametric Two-Sample Testing

4 Further Topics and Conclusion

## Outline

1 Background

2 Kernel Methods for Comparing Distributions

3 Nonparametric Two-Sample Testing

4 Further Topics and Conclusion

## Basic Linear Algebra

$\square$ Let $a=\left(a_{1}, \ldots, a_{d}\right)^{\top}, b$ and $c$ be vectors in $\mathbb{R}^{d}$.

- Norm (length): $\|a\|:=\sqrt{\sum_{i=1}^{d} a_{i}^{2}}$.

Inner product (dot product)
$a \cdot b=a^{\top} b=\langle a, b\rangle=\sum_{i=1}^{d} a_{i} b_{i}$
$=a_{1} b_{1}+a_{2} b_{2}+\cdots+a_{d} b_{d}$.

- $\langle a, b\rangle=$ similarity between $a$ and $b$.
- An inner product induces a norm: $\|a\|=\sqrt{\langle a, a\rangle}$.


## Basic Linear Algebra

■ Let $a=\left(a_{1}, \ldots, a_{d}\right)^{\top}, b$ and $c$ be vectors in $\mathbb{R}^{d}$.

- Norm (length): $\|a\|:=\sqrt{\sum_{i=1}^{d} a_{i}^{2}}$.

Inner product (dot product)
$a \cdot b=a^{\top} b=\langle a, b\rangle=\sum_{i=1}^{d} a_{i} b_{i}$
$=a_{1} b_{1}+a_{2} b_{2}+\cdots+a_{d} b_{d}$.
$\square\langle a, b\rangle=$ similarity between $a$ and $b$.

- An inner product induces a norm: $\|a\|=\sqrt{\langle a, a\rangle}$.


## Basic Linear Algebra

$\square$ Let $a=\left(a_{1}, \ldots, a_{d}\right)^{\top}, b$ and $c$ be vectors in $\mathbb{R}^{d}$.

- Norm (length): $\|a\|:=\sqrt{\sum_{i=1}^{d} a_{i}^{2}}$.

Inner product (dot product)

$$
\begin{aligned}
& \boldsymbol{a} \cdot \boldsymbol{b}=\boldsymbol{a}^{\top} \boldsymbol{b}=\langle\boldsymbol{a}, \boldsymbol{b}\rangle=\sum_{i=1}^{d} a_{i} b_{i} \\
& =a_{1} b_{1}+a_{2} b_{2}+\cdots+a_{d} b_{d} .
\end{aligned}
$$


$a \cdot b$
$\square\langle a, b\rangle=$ similarity between $\boldsymbol{a}$ and $\boldsymbol{b}$.

- An inner product induces a norm: $\|a\|=\sqrt{ }\langle a, a\rangle$


## Basic Linear Algebra

■ Let $a=\left(a_{1}, \ldots, a_{d}\right)^{\top}, b$ and $c$ be vectors in $\mathbb{R}^{d}$.

- Norm (length): $\|a\|:=\sqrt{\sum_{i=1}^{d} a_{i}^{2}}$.

Inner product (dot product)

$$
\begin{aligned}
& \boldsymbol{a} \cdot \boldsymbol{b}=\boldsymbol{a}^{\top} \boldsymbol{b}=\langle\boldsymbol{a}, \boldsymbol{b}\rangle=\sum_{i=1}^{d} a_{i} b_{i} \\
& =a_{1} b_{1}+a_{2} b_{2}+\cdots+a_{d} b_{d}
\end{aligned}
$$


$a \cdot b$

- $\langle\boldsymbol{a}, \boldsymbol{b}\rangle=$ similarity between $\boldsymbol{a}$ and $\boldsymbol{b}$.
- An inner product induces a norm: $\|a\|=\sqrt{\langle a, a\rangle}$.


## Properties of Inner Product

Three properties:
1 (Linear): $\langle\alpha a+\beta b, c\rangle=\alpha\langle a, c\rangle+\beta\langle b, c\rangle$
2 (Symmetric): $\langle a, b\rangle=\langle b, a\rangle$
$3\langle\boldsymbol{a}, \boldsymbol{a}\rangle \geq 0$ and $\langle\boldsymbol{a}, \boldsymbol{a}\rangle=0$ if and only if $\boldsymbol{a}=\mathbf{0}$.

- For $x, y \in \mathbb{R}$, we have $(x-y)^{2}=x^{2}-2 x y+y^{2}$.

$\|a-b\|=$ distance between $a$ and $b$.
Definition 1 (Hilbert space).
A Hilbert space $\mathcal{H}$ is a complete inner product space.
- Hilbert space $\approx$ a space with an inner product defined. $\mathbb{R}^{d}$ is a Hilbert space.
- In general, can be a space of generic objects.


## Properties of Inner Product

Three properties:
1 (Linear): $\langle\alpha a+\beta b, c\rangle=\alpha\langle a, c\rangle+\beta\langle b, c\rangle$
2 (Symmetric): $\langle a, b\rangle=\langle b, a\rangle$
$3\langle\boldsymbol{a}, \boldsymbol{a}\rangle \geq 0$ and $\langle\boldsymbol{a}, \boldsymbol{a}\rangle=0$ if and only if $\boldsymbol{a}=\mathbf{0}$.
■ For $x, y \in \mathbb{R}$, we have $(x-y)^{2}=x^{2}-2 x y+y^{2}$.
■ In general: $\|\boldsymbol{a}-\boldsymbol{b}\|^{2}=\langle\boldsymbol{a}, \boldsymbol{a}\rangle-2\langle\boldsymbol{a}, \boldsymbol{b}\rangle+\langle\boldsymbol{b}, \boldsymbol{b}\rangle$.

- $\|\boldsymbol{a}-\boldsymbol{b}\|=$ distance between $\boldsymbol{a}$ and $\boldsymbol{b}$.

Definition 1 (Hilbert space).
A Hilbert space $\mathcal{H}$ is a complete inner product space.

- Hilbert space $\approx$ a space with an inner product defined. $\mathbb{R}^{d}$ is a Hilbert space.
- In general, can be a space of generic objects.


## Properties of Inner Product

Three properties:
1 (Linear): $\langle\alpha a+\beta b, c\rangle=\alpha\langle a, c\rangle+\beta\langle b, c\rangle$
2 (Symmetric): $\langle a, b\rangle=\langle b, a\rangle$
$3\langle\boldsymbol{a}, \boldsymbol{a}\rangle \geq 0$ and $\langle\boldsymbol{a}, \boldsymbol{a}\rangle=0$ if and only if $\boldsymbol{a}=\mathbf{0}$.

- For $x, y \in \mathbb{R}$, we have $(x-y)^{2}=x^{2}-2 x y+y^{2}$.

■ In general: $\|\boldsymbol{a}-\boldsymbol{b}\|^{2}=\langle\boldsymbol{a}, \boldsymbol{a}\rangle-2\langle\boldsymbol{a}, \boldsymbol{b}\rangle+\langle\boldsymbol{b}, \boldsymbol{b}\rangle$.

- $\|\boldsymbol{a}-\boldsymbol{b}\|=$ distance between $\boldsymbol{a}$ and $\boldsymbol{b}$.


## Definition 1 (Hilbert space).

A Hilbert space $\mathcal{H}$ is a complete inner product space.
■ Hilbert space $\approx$ a space with an inner product defined. $\mathbb{R}^{d}$ is a Hilbert space.

- In general, can be a space of generic objects.


## Properties of Inner Product

Three properties:
1 (Linear): $\langle\alpha a+\beta b, c\rangle=\alpha\langle a, c\rangle+\beta\langle b, c\rangle$
2 (Symmetric): $\langle a, b\rangle=\langle b, a\rangle$
$3\langle\boldsymbol{a}, \boldsymbol{a}\rangle \geq 0$ and $\langle\boldsymbol{a}, \boldsymbol{a}\rangle=0$ if and only if $\boldsymbol{a}=\mathbf{0}$.

- For $x, y \in \mathbb{R}$, we have $(x-y)^{2}=x^{2}-2 x y+y^{2}$.

■ In general: $\|\boldsymbol{a}-\boldsymbol{b}\|^{2}=\langle\boldsymbol{a}, \boldsymbol{a}\rangle-2\langle\boldsymbol{a}, \boldsymbol{b}\rangle+\langle\boldsymbol{b}, \boldsymbol{b}\rangle$.

- $\|\boldsymbol{a}-\boldsymbol{b}\|=$ distance between $\boldsymbol{a}$ and $\boldsymbol{b}$.


## Definition 1 (Hilbert space).

A Hilbert space $\mathcal{H}$ is a complete inner product space.
■ Hilbert space $\approx$ a space with an inner product defined. $\mathbb{R}^{d}$ is a Hilbert space.
■ In general, can be a space of generic objects.

## Outline

1 Background

2 Kernel Methods for Comparing Distributions

3 Nonparametric Two-Sample Testing

4 Further Topics and Conclusion

## Case 1: Simple Mean Shift in 1D



- Two Gaussian distributions.


## Case 1: Simple Mean Shift in 1D



- We have only samples $\mathrm{X} \sim p$ and $\mathrm{Y} \sim q$.
$■ X=\left\{x_{1}, \ldots, x_{n}\right\}$ and $Y=\left\{y_{1}, \ldots, y_{n}\right\}$. Sets of numbers.


## Case 1: Simple Mean Shift in 1D



■ We have only samples $\mathrm{X} \sim p$ and $\mathrm{Y} \sim q$.
$\square \mathrm{X}=\left\{x_{1}, \ldots, x_{n}\right\}$ and $\mathrm{Y}=\left\{y_{1}, \ldots, y_{n}\right\}$. Sets of numbers.

## Case 1: Simple Mean Shift in 1D



- Assume no differece in high-order moments.

■ "Distance" = difference in the means. T-test.

$$
\begin{aligned}
\text { (population) } D_{1}(p, q) & :=\left|\mathbb{E}_{X \sim p}[X]-\mathbb{E}_{Y \sim q}[Y]\right| \\
\text { (empirical) } \hat{D}_{1}(X, Y) & =\left|\frac{1}{n} \sum_{i=1}^{n} x_{i}-\frac{1}{n} \sum_{j=1}^{n} y_{j}\right|
\end{aligned}
$$

## Case 2: Same Mean, Different Variances



■ $D_{1}(p, q):=\left|\mathbb{E}_{X \sim p}[X]-\mathbb{E}_{Y \sim q}[Y]\right|$ cannot detect the difference. Why?

## Case 2: Same Mean, Different Variances



■ $D_{1}(p, q):=\left|\mathbb{E}_{X \sim p}[X]-\mathbb{E}_{Y \sim q}[Y]\right|$ cannot detect the difference. Why?
■ Idea: look at difference in means of features $\phi(\cdot)$ of $X$ and $Y$.

## Case 2: Same Mean, Different Variances



■ $D_{1}(p, q):=\left|\mathbb{E}_{X \sim p}[X]-\mathbb{E}_{Y \sim q}[Y]\right|$ cannot detect the difference. Why?

- Idea: look at difference in means of features $\phi(\cdot)$ of $X$ and $Y$.


## Case 2: Same Mean, Different Variances



■ $D_{1}(p, q):=\left|\mathbb{E}_{X \sim p}[X]-\mathbb{E}_{Y \sim q}[Y]\right|$ cannot detect the difference. Why?
■ Idea: look at difference in means of features $\phi(\cdot)$ of $X$ and $Y$.

## Case 2: Same Mean, Different Variances



■ $D_{1}(p, q):=\left|\mathbb{E}_{X \sim p}[X]-\mathbb{E}_{Y \sim q}[Y]\right|$ cannot detect the difference. Why?
■ Idea: look at difference in means of features $\phi(\cdot)$ of $X$ and $Y$.
■ New "distance":

$$
D_{2}(p, q)=\left\|\mathbb{E}_{X \sim p}[\phi(X)]-\mathbb{E}_{Y \sim q}[\phi(X)]\right\|
$$

where $\phi(x)=\left(x, x^{2}\right)^{\top}$.

## Case 2: Same Mean, Different Variances



■ $D_{1}(p, q):=\left|\mathbb{E}_{X \sim p}[X]-\mathbb{E}_{Y \sim q}[Y]\right|$ cannot detect the difference. Why?
■ Idea: look at difference in means of features $\phi(\cdot)$ of $X$ and $Y$.

$$
D_{2}(p, q)=\left\|\binom{\mathbb{E}_{X \sim p}[X]}{\mathbb{E}_{X \sim p}\left[X^{2}\right]}-\binom{\mathbb{E}_{X \sim q}[X]}{\mathbb{E}_{X \sim q}\left[X^{2}\right]}\right\| .
$$

## Case 3: Difference in High-Order Moments



■ $p=$ Gaussian distribution, $q=$ Laplace distribution.

- Same mean and variance.
- $D_{2}$ fails. kernel trick.


## Case 3: Difference in High-Order Moments



■ $p=$ Gaussian distribution, $q=$ Laplace distribution.

- Same mean and variance.
- $D_{2}$ fails.
- $\phi(x)=\left(x, x^{2}, x^{4}\right)^{\top}$ works. Difference is in kurtosis ( $4^{\text {th }}$ moment).
- Solution: Use an infinite-dimensional feature map $\phi(\cdot)$ with the kernel trick.


## Case 3: Difference in High-Order Moments



■ $p=$ Gaussian distribution, $q=$ Laplace distribution.

- Same mean and variance.
- $D_{2}$ fails.
- $\phi(x)=\left(x, x^{2}, x^{4}\right)^{\top}$ works. Difference is in kurtosis ( $4^{\text {th }}$ moment).

■ $\phi(x)=\left(x, x^{2}, x^{4}, \cos x, e^{x}, \ldots\right)^{\top}$. But, when to stop?

## Case 3: Difference in High-Order Moments



■ $p=$ Gaussian distribution, $q=$ Laplace distribution.

- Same mean and variance.
- $D_{2}$ fails.
- $\phi(x)=\left(x, x^{2}, x^{4}\right)^{\top}$ works. Difference is in kurtosis ( $4^{\text {th }}$ moment).
$\square \phi(x)=\left(x, x^{2}, x^{4}, \cos x, e^{x}, \ldots\right)^{\top}$. But, when to stop?
- Solution: Use an infinite-dimensional feature map $\phi(\cdot)$ with the kernel trick.

The (Kernel) Mean Embedding [Smola et al., 2007]
■ Given a feature map $\phi(\cdot)$ mapping to a Hilbert space $\mathcal{H}$, - represent $p$ with $\mu_{p}:=\mathbb{E}_{x \sim p}[\phi(x)]$ (i.e., the mean embedding of $p$ ), - represent $q$ with $\mu_{q}:=\mathbb{E}_{y \sim q}[\phi(y)]$.

■ Given a feature map $\phi(\cdot)$ mapping to a Hilbert space $\mathcal{H}$,

- represent $p$ with $\mu_{p}:=\mathbb{E}_{\boldsymbol{x} \sim p}[\phi(\boldsymbol{x})]$ (i.e., the mean embedding of $p$ ),
- represent $q$ with $\mu_{q}:=\mathbb{E}_{\boldsymbol{y} \sim q}[\phi(\boldsymbol{y})]$.


## The (Kernel) Mean Embedding [Smola et al., 2007]

■ Given a feature map $\phi(\cdot)$ mapping to a Hilbert space $\mathcal{H}$,

- represent $p$ with $\mu_{p}:=\mathbb{E}_{\boldsymbol{x} \sim p}[\phi(\boldsymbol{x})]$ (i.e., the mean embedding of $p$ ),
- represent $q$ with $\mu_{q}:=\mathbb{E}_{\boldsymbol{y} \sim q}[\phi(\boldsymbol{y})]$.

- $\mathcal{H}$ can be infinite dimensional. Depends on $\phi(\cdot)$.
- If $\phi(x)=\left(x, x^{2}\right)^{\top}$, then $\mathcal{H}=\mathbb{R}^{2}$.
- Then, measure the distance in $\mathcal{H}$.

■ The distance is called the "Maximum Mean Discrepancy" (MMD).

Maximum Mean Discrepancy (MMD) [Gretton et al., 2012a]

$$
\operatorname{MMD}(p, q):=\left\|\mathbb{E}_{\boldsymbol{x} \sim p}[\phi(\boldsymbol{x})]-\mathbb{E}_{\boldsymbol{y} \sim q}[\phi(\boldsymbol{y})]\right\|_{\mathcal{H}}
$$

where $\phi(x)$ is in the Hilbert space $\mathcal{H}$.


Maximum Mean Discrepancy (MMD) [Gretton et al., 2012a]

$$
\operatorname{MMD}(p, q):=\left\|\mathbb{E}_{\boldsymbol{x} \sim p}[\phi(\boldsymbol{x})]-\mathbb{E}_{\boldsymbol{y} \sim q}[\phi(\boldsymbol{y})]\right\|_{\mathcal{H}},
$$

where $\phi(x)$ is in the Hilbert space $\mathcal{H}$.
■ Recall $\|\boldsymbol{a}-\boldsymbol{b}\|^{2}=\langle\boldsymbol{a}, \boldsymbol{a}\rangle-2\langle\boldsymbol{a}, \boldsymbol{b}\rangle+\langle\boldsymbol{b}, \boldsymbol{b}\rangle$.

Maximum Mean Discrepancy (MMD) [Gretton et al., 2012a]

$$
\operatorname{MMD}(p, q):=\left\|\mathbb{E}_{\boldsymbol{x} \sim p}[\phi(\boldsymbol{x})]-\mathbb{E}_{\boldsymbol{y} \sim q}[\phi(\boldsymbol{y})]\right\|_{\mathcal{H}}
$$

where $\phi(x)$ is in the Hilbert space $\mathcal{H}$.
■ Recall $\|\boldsymbol{a}-\boldsymbol{b}\|^{2}=\langle\boldsymbol{a}, \boldsymbol{a}\rangle-2\langle\boldsymbol{a}, \boldsymbol{b}\rangle+\langle\boldsymbol{b}, \boldsymbol{b}\rangle$.

$$
\operatorname{MMD}^{2}(p, q)=\left\|\mathbb{E}_{\boldsymbol{x} \sim p}[\phi(\boldsymbol{x})]-\mathbb{E}_{\boldsymbol{y} \sim q}[\phi(\boldsymbol{y})]\right\|_{\mathcal{H}}^{2}
$$



## Maximum Mean Discrepancy (MMD) [Gretton et al., 2012a]

$$
\operatorname{MMD}(p, q):=\left\|\mathbb{E}_{\boldsymbol{x} \sim p}[\phi(\boldsymbol{x})]-\mathbb{E}_{\boldsymbol{y} \sim q}[\phi(\boldsymbol{y})]\right\|_{\mathcal{H}}
$$

where $\phi(x)$ is in the Hilbert space $\mathcal{H}$.
■ Recall $\|\boldsymbol{a}-\boldsymbol{b}\|^{2}=\langle\boldsymbol{a}, \boldsymbol{a}\rangle-2\langle\boldsymbol{a}, \boldsymbol{b}\rangle+\langle\boldsymbol{b}, \boldsymbol{b}\rangle$.

$$
\begin{aligned}
& \operatorname{MMD}^{2}(p, q)=\left\|\mathbb{E}_{\boldsymbol{x} \sim p}[\phi(\boldsymbol{x})]-\mathbb{E}_{\boldsymbol{y} \sim q}[\phi(\boldsymbol{y})]\right\|_{\mathcal{H}}^{2} \\
& =\left\langle\mathbb{E}_{\boldsymbol{x} \sim p}[\phi(\boldsymbol{x})], \mathbb{E}_{\boldsymbol{x}^{\prime} \sim p}\left[\phi\left(\boldsymbol{x}^{\prime}\right)\right]\right\rangle-2\left\langle\mathbb{E}_{\boldsymbol{x} \sim p}[\phi(\boldsymbol{x})], \mathbb{E}_{\boldsymbol{y} \sim q}[\phi(\boldsymbol{y})]\right\rangle \\
& \quad+\left\langle\mathbb{E}_{\boldsymbol{y} \sim q}[\phi(\boldsymbol{y})], \mathbb{E}_{\boldsymbol{y}^{\prime} \sim q}\left[\phi\left(\boldsymbol{y}^{\prime}\right)\right]\right\rangle
\end{aligned}
$$

## Maximum Mean Discrepancy (MMD) [Gretton et al., 2012a]

$$
\operatorname{MMD}(p, q):=\left\|\mathbb{E}_{\boldsymbol{x} \sim p}[\phi(\boldsymbol{x})]-\mathbb{E}_{\boldsymbol{y} \sim q}[\phi(\boldsymbol{y})]\right\|_{\mathcal{H}}
$$

where $\phi(x)$ is in the Hilbert space $\mathcal{H}$.
■ Recall $\|\boldsymbol{a}-\boldsymbol{b}\|^{2}=\langle\boldsymbol{a}, \boldsymbol{a}\rangle-2\langle\boldsymbol{a}, \boldsymbol{b}\rangle+\langle\boldsymbol{b}, \boldsymbol{b}\rangle$.

$$
\begin{aligned}
& \operatorname{MMD}^{2}(p, q)=\left\|\mathbb{E}_{\boldsymbol{x} \sim p}[\phi(\boldsymbol{x})]-\mathbb{E}_{\boldsymbol{y} \sim q}[\phi(\boldsymbol{y})]\right\|_{\mathcal{H}}^{2} \\
& =\left\langle\mathbb{E}_{\boldsymbol{x} \sim p}[\phi(\boldsymbol{x})], \mathbb{E}_{\boldsymbol{x}^{\prime} \sim p}\left[\phi\left(\boldsymbol{x}^{\prime}\right)\right]\right\rangle-2\left\langle\mathbb{E}_{\boldsymbol{x} \sim p}[\phi(\boldsymbol{x})], \mathbb{E}_{\boldsymbol{y} \sim q}[\boldsymbol{\phi}(\boldsymbol{y})]\right\rangle \\
& \quad+\left\langle\mathbb{E}_{\boldsymbol{y} \sim q}[\phi(\boldsymbol{y})], \mathbb{E}_{\boldsymbol{y}^{\prime} \sim q}\left[\phi\left(\boldsymbol{y}^{\prime}\right)\right]\right\rangle \\
& =\mathbb{E}_{\boldsymbol{x} \sim p} \mathbb{E}_{\boldsymbol{x}^{\prime} \sim p}\left\langle\phi(\boldsymbol{x}), \phi\left(\boldsymbol{x}^{\prime}\right)\right\rangle-2 \mathbb{E}_{\boldsymbol{x} \sim p} \mathbb{E}_{\boldsymbol{y} \sim q}\langle\phi(\boldsymbol{x}), \phi(\boldsymbol{y})\rangle \\
& \quad+\mathbb{E}_{\boldsymbol{y} \sim q} \mathbb{E}_{\boldsymbol{y}^{\prime} \sim q}\left\langle\phi(\boldsymbol{y}), \phi\left(\boldsymbol{y}^{\prime}\right)\right\rangle
\end{aligned}
$$

## Maximum Mean Discrepancy (MMD) [Gretton et al., 2012a]

$$
\operatorname{MMD}(p, q):=\left\|\mathbb{E}_{\boldsymbol{x} \sim p}[\phi(\boldsymbol{x})]-\mathbb{E}_{\boldsymbol{y} \sim q}[\phi(\boldsymbol{y})]\right\|_{\mathcal{H}}
$$

where $\phi(x)$ is in the Hilbert space $\mathcal{H}$.
■ Recall $\|\boldsymbol{a}-\boldsymbol{b}\|^{2}=\langle\boldsymbol{a}, \boldsymbol{a}\rangle-2\langle\boldsymbol{a}, \boldsymbol{b}\rangle+\langle\boldsymbol{b}, \boldsymbol{b}\rangle$.

$$
\begin{aligned}
& \operatorname{MMD}^{2}(p, q)=\left\|\mathbb{E}_{\boldsymbol{x} \sim p}[\phi(\boldsymbol{x})]-\mathbb{E}_{\boldsymbol{y} \sim q}[\phi(\boldsymbol{y})]\right\|_{\mathcal{H}}^{2} \\
& =\left\langle\mathbb{E}_{\boldsymbol{x} \sim p}[\phi(\boldsymbol{x})], \mathbb{E}_{\boldsymbol{x}^{\prime} \sim p}\left[\phi\left(\boldsymbol{x}^{\prime}\right)\right]\right\rangle-2\left\langle\mathbb{E}_{\boldsymbol{x} \sim p}[\phi(\boldsymbol{x})], \mathbb{E}_{\boldsymbol{y} \sim q}[\boldsymbol{\phi}(\boldsymbol{y})]\right\rangle \\
& \quad+\left\langle\mathbb{E}_{\boldsymbol{y} \sim q}[\phi(\boldsymbol{y})], \mathbb{E}_{\boldsymbol{y}^{\prime} \sim q}\left[\phi\left(\boldsymbol{y}^{\prime}\right)\right]\right\rangle \\
& =\mathbb{E}_{\boldsymbol{x} \sim p} \mathbb{E}_{\boldsymbol{x}^{\prime} \sim p}\left\langle\phi(\boldsymbol{x}), \phi\left(\boldsymbol{x}^{\prime}\right)\right\rangle-2 \mathbb{E}_{\boldsymbol{x} \sim p} \mathbb{E}_{\boldsymbol{y} \sim q}\langle\phi(\boldsymbol{x}), \phi(\boldsymbol{y})\rangle \\
& \quad+\mathbb{E}_{\boldsymbol{y} \sim q} \mathbb{E}_{\boldsymbol{y}^{\prime} \sim q}\left\langle\phi(\boldsymbol{y}), \phi\left(\boldsymbol{y}^{\prime}\right)\right\rangle
\end{aligned}
$$

- Depend on only the inner product $\langle\phi(\boldsymbol{x}), \phi(\boldsymbol{y})\rangle$.
- Don't need $\phi(x)$ explicitly (could be $\infty$-dimensional!).


## Maximum Mean Discrepancy (MMD) [Gretton et al., 2012a]

$■$ Define $k\left(x, x^{\prime}\right):=\left\langle\phi(x), \phi\left(x^{\prime}\right)\right\rangle_{\mathcal{H}}$ (kernel).

$$
\begin{aligned}
\operatorname{MMD}_{k}^{2}(p, q)= & \left\|\mathbb{E}_{\boldsymbol{x} \sim p}[\phi(\boldsymbol{x})]-\mathbb{E}_{\boldsymbol{y} \sim q}[\phi(\boldsymbol{y})]\right\|_{\mathcal{H}}^{2} \\
= & \mathbb{E}_{\boldsymbol{x} \sim p} \mathbb{E}_{\boldsymbol{x}^{\prime} \sim p} k\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)-2 \mathbb{E}_{\boldsymbol{x} \sim p} \mathbb{E}_{\boldsymbol{y} \sim q} k\left(\boldsymbol{x}, \boldsymbol{y}^{\prime}\right) \\
& +\mathbb{E}_{\boldsymbol{y} \sim q} \mathbb{E}_{\boldsymbol{y}^{\prime} \sim q} k\left(\boldsymbol{y}, \boldsymbol{y}^{\prime}\right) .
\end{aligned}
$$

- Unbiased estimator:



## Maximum Mean Discrepancy (MMD) [Gretton et al., 2012a]

$■$ Define $k\left(x, x^{\prime}\right):=\left\langle\phi(x), \phi\left(x^{\prime}\right)\right\rangle_{\mathcal{H}}$ (kernel).

$$
\begin{aligned}
\operatorname{MMD}_{k}^{2}(p, q)= & \left\|\mathbb{E}_{\boldsymbol{x} \sim p}[\phi(\boldsymbol{x})]-\mathbb{E}_{\boldsymbol{y} \sim q}[\phi(\boldsymbol{y})]\right\|_{\mathcal{H}}^{2} \\
= & \mathbb{E}_{\boldsymbol{x} \sim p} \mathbb{E}_{\boldsymbol{x}^{\prime} \sim p} k\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)-2 \mathbb{E}_{\boldsymbol{x} \sim p} \mathbb{E}_{\boldsymbol{y} \sim q} k\left(\boldsymbol{x}, \boldsymbol{y}^{\prime}\right) \\
& +\mathbb{E}_{\boldsymbol{y} \sim q} \mathbb{E}_{\boldsymbol{y}^{\prime} \sim q} k\left(\boldsymbol{y}, \boldsymbol{y}^{\prime}\right) .
\end{aligned}
$$

- Unbiased estimator:

$$
\begin{aligned}
\widehat{\mathrm{MMD}_{k}^{2}}(\mathrm{X}, \mathrm{Y})= & \frac{1}{n(n-1)} \sum_{i=1}^{n} \sum_{j \neq i} k\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right)-\frac{2}{n^{2}} \sum_{i=1}^{n} \sum_{j=1}^{n} k\left(\boldsymbol{x}_{i}, \boldsymbol{y}_{j}\right) \\
& +\frac{1}{n(n-1)} \sum_{i=1}^{n} \sum_{j \neq i} k\left(\boldsymbol{y}_{i}, \boldsymbol{y}_{j}\right) .
\end{aligned}
$$

$\square k\left(x, x^{\prime}\right) \approx$ similarity between $x$ and $x^{\prime}$.

## Intuition for the MMD

- Dogs $\sim p$ and fish $\sim q$.

■ Each entry is one of $k\left(\operatorname{dog}_{i}, \operatorname{dog}_{j}\right), k\left(\operatorname{dog}_{i}\right.$, fish $\left._{j}\right)$, or $k\left(\right.$ fish $\left._{i}, \mathrm{fish}_{j}\right)$


## Intuition for the MMD

$$
\begin{gathered}
\widehat{\mathrm{MMD}_{k}^{2}}=\frac{1}{n(n-1)} \sum_{i \neq j} k\left(\operatorname{dog}_{i}, \operatorname{dog}_{j}\right)-\frac{2}{n^{2}} \sum_{i, j} k\left(\operatorname{dog}_{i}, \mathrm{fish}_{j}\right) \\
+\frac{1}{n(n-1)} \sum_{i \neq j} k\left(\mathrm{fish}_{i}, \mathrm{fish}_{j}\right)
\end{gathered}
$$



## Positive Definite Kernel

- Defining $k\left(x, x^{\prime}\right)$ from $\phi(\cdot)$ is always valid.
- Can start directly from $k\left(x, x^{\prime}\right)$ without specifying $\phi(\cdot)$.

■ What $k$ is valid?
Definition 2 (Positive definite kernel).
A symmetric function $k: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$ is called positive definite if, for any integer $n>0, c_{1}, \ldots, c_{n} \in \mathbb{R}$, and $x_{1}, \ldots, x_{n} \in \mathcal{X}$, we have $\sum_{i=1}^{n} \sum_{j=1}^{n} c_{i} c_{j} k\left(x_{i}, x_{j}\right) \geq 0$.

■ Equivalently, the Gram matrix $K$ is a positive semi-definite matrix where $(\boldsymbol{K})_{i j}=k\left(x_{i}, x_{j}\right)$.

- $x$ can be anything (e.g., vector, image, tree, string, graph, ...)


## Positive Definite Kernel

- Defining $k\left(x, x^{\prime}\right)$ from $\phi(\cdot)$ is always valid.

■ Can start directly from $k\left(x, x^{\prime}\right)$ without specifying $\phi(\cdot)$.
■ What $k$ is valid?
Definition 2 (Positive definite kernel).
A symmetric function $k: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$ is called nositive definite if, for any integer $n>0, c_{1}, \ldots, c_{n} \in \mathbb{R}$, and $x_{1}, \ldots, x_{n} \in \mathcal{X}$, we have $\sum_{i=1}^{n} \sum_{j=1}^{n} c_{i} c_{j} k\left(x_{i}, x_{j}\right) \geq 0$.

■ Equivalently, the Gram matrix $K$ is a positive semi-definite matrix where $(\boldsymbol{K})_{i j}=k\left(x_{i}, x_{j}\right)$.

- $x$ can be anything (e.g., vector, image, tree, string, graph, ...)


## Positive Definite Kernel

- Defining $k\left(x, x^{\prime}\right)$ from $\phi(\cdot)$ is always valid.
- Can start directly from $k\left(x, x^{\prime}\right)$ without specifying $\phi(\cdot)$.

■ What $k$ is valid?

## Definition 2 (Positive definite kernel).

A symmetric function $k: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$ is called positive definite if, for any integer $n>0, c_{1}, \ldots, c_{n} \in \mathbb{R}$, and $x_{1}, \ldots, x_{n} \in \mathcal{X}$, we have $\sum_{i=1}^{n} \sum_{j=1}^{n} c_{i} c_{j} k\left(x_{i}, x_{j}\right) \geq 0$.

- Equivalently, the Gram matrix $K$ is a positive semi-definite matrix where $(\boldsymbol{K})_{i j}=k\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right)$.


## Positive Definite Kernel

- Defining $k\left(x, x^{\prime}\right)$ from $\phi(\cdot)$ is always valid.
- Can start directly from $k\left(x, x^{\prime}\right)$ without specifying $\phi(\cdot)$.

■ What $k$ is valid?

## Definition 2 (Positive definite kernel).

A symmetric function $k: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$ is called positive definite if, for any integer $n>0, c_{1}, \ldots, c_{n} \in \mathbb{R}$, and $x_{1}, \ldots, x_{n} \in \mathcal{X}$, we have $\sum_{i=1}^{n} \sum_{j=1}^{n} c_{i} c_{j} k\left(x_{i}, x_{j}\right) \geq 0$.

■ Equivalently, the Gram matrix $\boldsymbol{K}$ is a positive semi-definite matrix where $(\boldsymbol{K})_{i j}=k\left(x_{i}, x_{j}\right)$.
■ $x$ can be anything (e.g., vector, image, tree, string, graph, ...).

## Positive Definite Kernel $\Longleftrightarrow \phi(\cdot)$ Exists

Theorem 1 (Moore-Aronszajn).
Assume $k(\cdot, \cdot)$ is positive definite.
$1 k$ is an inner product in some Hilbert space $\mathcal{H}$.
2 There exists $\phi(\cdot)$ such that $k(x, y)=\langle\phi(x), \phi(y)\rangle_{\mathcal{H}}$.

## Summary: Pos. def. $k$ automatically defines $\phi(\cdot)$ (implicitly).

$\square$ Defining $k$ can be easier than defining $\phi(\cdot)$. Imagine strings. - To study $\mathcal{H}$, can study $k(\cdot, \cdot)$ instead of $\phi(\cdot)$

## Positive Definite Kernel $\Longleftrightarrow \phi(\cdot)$ Exists

Theorem 1 (Moore-Aronszajn).
Assume $k(\cdot, \cdot)$ is positive definite.
$1 k$ is an inner product in some Hilbert space $\mathcal{H}$.
2 There exists $\phi(\cdot)$ such that $k(x, y)=\langle\phi(x), \phi(y)\rangle_{\mathcal{H}}$.

Summary: Pos. def. $k$ automatically defines $\phi(\cdot)$ (implicitly).

- Defining $k$ can be easier than defining $\phi(\cdot)$. Imagine strings. - To study $\mathcal{H}$, can study $k(\cdot, \cdot)$ instead of $\phi(\cdot)$ Reproducing kernel Hilbert spaces (RKHS).


## Positive Definite Kernel $\Longleftrightarrow \phi(\cdot)$ Exists

Theorem 1 (Moore-Aronszajn).
Assume $k(\cdot, \cdot)$ is positive definite.
$1 k$ is an inner product in some Hilbert space $\mathcal{H}$.
2 There exists $\phi(\cdot)$ such that $k(x, y)=\langle\phi(x), \phi(y)\rangle_{\mathcal{H}}$.

Summary: Pos. def. $k$ automatically defines $\phi(\cdot)$ (implicitly).

■ Defining $k$ can be easier than defining $\phi(\cdot)$. Imagine strings.
$\square$
Reproducing kernel Hilbert spaces (RKHS).

## Positive Definite Kernel $\Longleftrightarrow \phi(\cdot)$ Exists

Theorem 1 (Moore-Aronszajn).
Assume $k(\cdot, \cdot)$ is positive definite.
$1 k$ is an inner product in some Hilbert space $\mathcal{H}$.
2 There exists $\phi(\cdot)$ such that $k(x, y)=\langle\phi(x), \phi(y)\rangle_{\mathcal{H}}$.

Summary: Pos. def. $k$ automatically defines $\phi(\cdot)$ (implicitly).

■ Defining $k$ can be easier than defining $\phi(\cdot)$. Imagine strings.

- To study $\mathcal{H}$, can study $k(\cdot, \cdot)$ instead of $\phi(\cdot)$.
- Reproducing kernel Hilbert spaces (RKHS).


## Example: Polynomial Kernel

Let $\mathcal{X}=\mathbb{R}^{d}$ (domain).

$$
k(x, y)=\left(\boldsymbol{x}^{\top} \boldsymbol{y}\right)^{m}
$$

is positive definite, for $m \in\{1,2, \ldots\}$.

- Consider $d=2$ and $m=3$.


■ Feature map


So, $\mathcal{H}=\mathbb{R}^{4}$.

- Show that $k(x, y)=\langle\phi(x), \phi(y)\rangle_{\mathcal{H}}=\phi(x)^{\top} \phi(y)$


## Example: Polynomial Kernel

Let $\mathcal{X}=\mathbb{R}^{d}$ (domain).

$$
k(x, y)=\left(x^{\top} y\right)^{m}
$$

is positive definite, for $m \in\{1,2, \ldots\}$.

- Consider $d=2$ and $m=3$.

$$
k\left(\binom{x_{1}}{x_{2}},\binom{y_{1}}{y_{2}}\right)=\left(x_{1} y_{1}+x_{2} y_{2}\right)^{3} .
$$

■ Feature map


So, $\mathcal{H}=\mathbb{R}^{4}$.

- Show that $k(x, y)=\langle\phi(x), \phi(y)\rangle_{\mathcal{H}}=\phi(x) \phi(y)$


## Example: Polynomial Kernel

Let $\mathcal{X}=\mathbb{R}^{d}$ (domain).

$$
k(\boldsymbol{x}, \boldsymbol{y})=\left(\boldsymbol{x}^{\top} \boldsymbol{y}\right)^{m}
$$

is positive definite, for $m \in\{1,2, \ldots\}$.

- Consider $d=2$ and $m=3$.

$$
k\left(\binom{x_{1}}{x_{2}},\binom{y_{1}}{y_{2}}\right)=\left(x_{1} y_{1}+x_{2} y_{2}\right)^{3} .
$$

- Feature map

$$
\phi\left(\binom{x_{1}}{x_{2}}\right)=\left(\begin{array}{c}
x_{1}^{3} \\
\sqrt{3} x_{1}^{2} x_{2} \\
\sqrt{3} x_{1} x_{2}^{2} \\
x_{2}^{3}
\end{array}\right)=\left(\begin{array}{l}
\phi_{1}(x) \\
\phi_{2}(x) \\
\phi_{3}(x) \\
\phi_{4}(x)
\end{array}\right)
$$

So, $\mathcal{H}=\mathbb{R}^{4}$.

## Example: Polynomial Kernel

Let $\mathcal{X}=\mathbb{R}^{d}$ (domain).

$$
k(\boldsymbol{x}, \boldsymbol{y})=\left(\boldsymbol{x}^{\top} \boldsymbol{y}\right)^{m}
$$

is positive definite, for $m \in\{1,2, \ldots\}$.

- Consider $d=2$ and $m=3$.

$$
k\left(\binom{x_{1}}{x_{2}},\binom{y_{1}}{y_{2}}\right)=\left(x_{1} y_{1}+x_{2} y_{2}\right)^{3} .
$$

- Feature map

$$
\phi\left(\binom{x_{1}}{x_{2}}\right)=\left(\begin{array}{c}
x_{1}^{3} \\
\sqrt{3} x_{1}^{2} x_{2} \\
\sqrt{3} x_{1} x_{2}^{2} \\
x_{2}^{3}
\end{array}\right)=\left(\begin{array}{l}
\phi_{1}(x) \\
\phi_{2}(x) \\
\phi_{3}(x) \\
\phi_{4}(x)
\end{array}\right)
$$

So, $\mathcal{H}=\mathbb{R}^{4}$.
$■$ Show that $k(x, y)=\langle\phi(x), \phi(y)\rangle_{\mathcal{H}}=\phi(x)^{\top} \phi(y)$.

New Kernels from Old [Shawe-Taylor and Cristianini, 2004, p. 75]

■ Assume $k_{1}, k_{2}$ are pos. def. kernels with feature maps $\phi_{1}$ and $\phi_{2}$.
■ New kernel $k$ with feature map $\phi$.


- $k(x, y)=-k_{1}(x, y)$ is NOT valid. Why?

New Kernels from Old [Shawe-Taylor and Cristianini, 2004, p. 75]

■ Assume $k_{1}, k_{2}$ are pos. def. kernels with feature maps $\phi_{1}$ and $\phi_{2}$.
■ New kernel $k$ with feature map $\phi$.


New Kernels from Old [Shawe-Taylor and Cristianini, 2004, p. 75]

■ Assume $k_{1}, k_{2}$ are pos. def. kernels with feature maps $\phi_{1}$ and $\phi_{2}$.
■ New kernel $k$ with feature map $\phi$.

| $k(x, y)$ | features |
| :--- | :--- |
| $k_{1}(x, y)+k_{2}(x, y)$ | $\phi(x)=$ stack of $\phi_{1}(x)$ and $\phi_{2}(x)$ |
| $k_{1}(f(x), f(x))$ | $\phi(x)=\phi_{1}(f(x))$ |
| $k_{1}(x, y) k_{2}(x, y)$ | $\phi(x)=$ tensor product of $\phi_{1}(x), \phi_{2}(x)$ |
| $\exp \left(k_{1}(x, y)\right)$ | $\approx$ weighted polynomial features of all orders |

## New Kernels from Old [Shawe-Taylor and Cristianini, 2004, p. 75]

- Assume $k_{1}, k_{2}$ are pos. def. kernels with feature maps $\phi_{1}$ and $\phi_{2}$.

■ New kernel $k$ with feature map $\phi$.

| $k(x, y)$ | features |
| :--- | :--- |
| $k_{1}(x, y)+k_{2}(x, y)$ | $\phi(x)=$ stack of $\phi_{1}(x)$ and $\phi_{2}(x)$ |
| $k_{1}(f(x), f(x))$ | $\phi(x)=\phi_{1}(f(x))$ |
| $k_{1}(x, y) k_{2}(x, y)$ | $\phi(x)=$ tensor product of $\phi_{1}(x), \phi_{2}(x)$ |

## New Kernels from Old [Shawe-Taylor and Cristianini, 2004, p. 75]

■ Assume $k_{1}, k_{2}$ are pos. def. kernels with feature maps $\phi_{1}$ and $\phi_{2}$.
■ New kernel $k$ with feature map $\phi$.

| $k(x, y)$ | features |
| :--- | :--- |
| $k_{1}(x, y)+k_{2}(x, y)$ | $\phi(x)=$ stack of $\phi_{1}(x)$ and $\phi_{2}(x)$ |
| $k_{1}(f(x), f(x))$ | $\phi(x)=\phi_{1}(f(x))$ |
| $k_{1}(x, y) k_{2}(x, y)$ | $\phi(x)=$ tensor product of $\phi_{1}(x), \phi_{2}(x)$ |
| $\exp \left(k_{1}(x, y)\right)$ | $\approx$ weighted polynomial features of all orders |
| $\vdots$ | $\vdots$ |

## New Kernels from Old [Shawe-Taylor and Cristianini, 2004, p. 75]

■ Assume $k_{1}, k_{2}$ are pos. def. kernels with feature maps $\phi_{1}$ and $\phi_{2}$.
■ New kernel $k$ with feature map $\phi$.

| $k(x, y)$ | features |
| :--- | :--- |
| $k_{1}(x, y)+k_{2}(x, y)$ | $\phi(x)=$ stack of $\phi_{1}(x)$ and $\phi_{2}(x)$ |
| $k_{1}(f(x), f(x))$ | $\phi(x)=\phi_{1}(f(x))$ |
| $k_{1}(x, y) k_{2}(x, y)$ | $\phi(x)=$ tensor product of $\phi_{1}(x), \phi_{2}(x)$ |
| $\exp \left(k_{1}(x, y)\right)$ | $\approx$ weighted polynomial features of all orders |

■ $k(x, y)=-k_{1}(x, y)$ is NOT valid. Why?

## Non-Injective Mean Embedding

Variance difference revisited ...


■ We used $\phi(x)=x$. So, $k(x, y)=x y$ (linear kernel).
$\square^{-M_{M D}^{2}}(p, q)=\left(\mathbb{E}_{X \sim p}[\phi(X)]-\mathbb{E}_{Y \sim q}[\phi(X)]\right)^{2}=0$ but $p \neq q$.

- $k$ (and thus $\phi$ ) is not powerful enough.
- Mathematically, the map $p \mapsto \mu_{p}$ is not injective.


## Non-Injective Mean Embedding

Variance difference revisited ...


- We used $\phi(x)=x$. So, $k(x, y)=x y$ (linear kernel).

■ $\operatorname{MMD}_{k}^{2}(p, q)=\left(\mathbb{E}_{X \sim p}[\phi(X)]-\mathbb{E}_{Y \sim q}[\phi(X)]\right)^{2}=0$ but $p \neq q$.

- $k$ (and thus $\phi$ ) is not powerful enough.
- Mathematically, the man $p \mapsto \mu_{p}$ is not injective.


## Non-Injective Mean Embedding

Variance difference revisited ...


- We used $\phi(x)=x$. So, $k(x, y)=x y$ (linear kernel).

■ $\operatorname{MMD}_{k}^{2}(p, q)=\left(\mathbb{E}_{X \sim p}[\phi(X)]-\mathbb{E}_{Y \sim q}[\phi(X)]\right)^{2}=0$ but $p \neq q$.
Why?

- $k$ (and thus $\phi$ ) is not powerful enough.

■ Mathematically, the map $p \mapsto \mu_{p}$ is not injective.

## Characteristic Kernels [Fukumizu et al., 2008]

## Definition 3.

A pos. def. kernel $k$ is said to be characteristic if distinct distributions are embedded to different points in $\mathcal{H}$.

■ Mathematically, $p \mapsto \mathbb{E}_{\boldsymbol{x} \sim p}[\phi(x)]$ is injective.

not characteristic

characteristic

If $k$ is characteristic,

- $\mu_{p}$ contains all information of $p$,
$=\operatorname{MMD}_{1}(p, q)=0$ if and only if $p=q$ [Gretton et al., 2012a]. A proper distance.


## Characteristic Kernels [Fukumizu et al., 2008]

## Definition 3.

A pos. def. kernel $k$ is said to be characteristic if distinct distributions are embedded to different points in $\mathcal{H}$.

- Mathematically, $p \mapsto \mathbb{E}_{\boldsymbol{x} \sim p}[\phi(x)]$ is injective.

not characteristic

characteristic

If $k$ is characteristic, ...

- $\mu_{p}$ contains all information of $p$,
$\square \mathrm{MMD}_{k}(p, q)=0$ if and only if $p=q$ [Gretton et al., 2012a]. A proper distance.


## Examples of Characteristic Kernels

Characteristic kernels on $\mathcal{X}=\mathbb{R}^{d}$ :
■ Gaussian kernel:

$$
k(x, y)=\exp \left(-\frac{\|\boldsymbol{x}-\boldsymbol{y}\|^{2}}{2 \sigma^{2}}\right)
$$

for $\sigma>0$.

- Laplace kernel: $k(x, y)=\exp \left(-\frac{|x-y|}{2 \sigma}\right)$ for $\sigma>0$.

■ Matérn class of kernels [Rasmussen and Williams, 2006, Sec 4.2.1]
■ etc. See [Sriperumbudur et al., 2010].

Not characteristic:

- Dolynomial kernel: $h(x, y)=\left(x^{\top} y+c\right)^{d}$ for $c \geq 0, d \in\{1,2, \ldots\}$.


## Examples of Characteristic Kernels

Characteristic kernels on $\mathcal{X}=\mathbb{R}^{d}$ :
■ Gaussian kernel:

$$
k(x, y)=\exp \left(-\frac{\|x-y\|^{2}}{2 \sigma^{2}}\right)
$$

for $\sigma>0$.
■ Laplace kernel: $k(x, y)=\exp \left(-\frac{\|x-y\|}{2 \sigma}\right)$ for $\sigma>0$.
■ Matérn class of kernels [Rasmussen and Williams, 2006, Sec 4.2.1]

- etc. See [Sriperumbudur et al., 2010].
- Polynomial kernel: $k(x, y)=\left(x^{\top} y+c\right)^{d}$ for


## Examples of Characteristic Kernels

Characteristic kernels on $\mathcal{X}=\mathbb{R}^{d}$ :
■ Gaussian kernel:

$$
k(x, y)=\exp \left(-\frac{\|x-y\|^{2}}{2 \sigma^{2}}\right)
$$

for $\sigma>0$.
■ Laplace kernel: $k(x, y)=\exp \left(-\frac{\|x-y\|}{2 \sigma}\right)$ for $\sigma>0$.
■ Matérn class of kernels [Rasmussen and Williams, 2006, Sec 4.2.1]
$■$ etc. See [Sriperumbudur et al., 2010].

Not characteristic:

- Polynomial kernel: $k(x, y)=\left(\boldsymbol{x}^{\top} \boldsymbol{y}+c\right)^{d}$ for

$$
c \geq 0, d \in\{1,2, \ldots\}
$$

## Summary So Far

Only population quantities.
1 Cannot compute $\infty$-dimensional $\phi(\cdot)$. Can still compute $\mathrm{MMD}_{k}(p, q)$. Kernel trick.
2 Positive definite $k(\cdot, \cdot) \Longleftrightarrow \phi(\cdot)$ exists.
3 If $k$ is characteristic, $\mathbb{E}_{x \sim p}[\phi(x)]$ fully characterizes $p$.

4 Characteristic $k$ implies
$\operatorname{MMD}_{k}(p, q)=\left\|\mathbb{E}_{\boldsymbol{x} \sim p}[\phi(x)]-\mathbb{E}_{y \sim q}[\phi(y)]\right\|$ iff $p=q$.

## Summary So Far

Only population quantities.
1 Cannot compute $\infty$-dimensional $\phi(\cdot)$. Can still compute $\mathrm{MMD}_{k}(p, q)$. Kernel trick.
2 Positive definite $k(\cdot, \cdot) \Longleftrightarrow \phi(\cdot)$ exists.
3 If $k$ is characteristic, $\mathbb{E}_{\boldsymbol{x} \sim p}[\phi(x)]$ fully characterizes $p$.


4 Characteristic $k$ implies
$\operatorname{MMD}_{k}(p, q)=\left\|\mathbb{E}_{\boldsymbol{x} \sim p}[\phi(\boldsymbol{x})]-\mathbb{E}_{\boldsymbol{y} \sim q}[\phi(\boldsymbol{y})]\right\|$ iff $p=q$.

## Summary So Far

Only population quantities.
1 Cannot compute $\infty$-dimensional $\phi(\cdot)$. Can still compute $\mathrm{MMD}_{k}(p, q)$. Kernel trick.
2 Positive definite $k(\cdot, \cdot) \Longleftrightarrow \phi(\cdot)$ exists.
3 If $k$ is characteristic, $\mathbb{E}_{\boldsymbol{x} \sim p}[\phi(x)]$ fully characterizes $p$.


4 Characteristic $k$ implies $\operatorname{MMD}_{k}(p, q)=\left\|\mathbb{E}_{\boldsymbol{x} \sim p}[\phi(\boldsymbol{x})]-\mathbb{E}_{\boldsymbol{y} \sim q}[\phi(\boldsymbol{y})]\right\|$ iff $p=q$.

## Summary So Far

Only population quantities.
1 Cannot compute $\infty$-dimensional $\phi(\cdot)$. Can still compute $\mathrm{MMD}_{k}(p, q)$. Kernel trick.
2 Positive definite $k(\cdot, \cdot) \Longleftrightarrow \phi(\cdot)$ exists.
3 If $k$ is characteristic, $\mathbb{E}_{\boldsymbol{x} \sim p}[\phi(x)]$ fully characterizes $p$.


4 Characteristic $k$ implies $\operatorname{MMD}_{k}(p, q)=\left\|\mathbb{E}_{\boldsymbol{x} \sim p}[\phi(\boldsymbol{x})]-\mathbb{E}_{\boldsymbol{y} \sim q}[\phi(\boldsymbol{y})]\right\|$ iff $p=q$.

## Outline

## 1 Background

2 Kernel Methods for Comparing Distributions

3 Nonparametric Two-Sample Testing

4 Further Topics and Conclusion

## Two-Sample Testing with MMD

Have: Two collections of samples $\mathrm{X}, \mathrm{Y}$ from unknown $p$ and $q$. Goal: Test $H_{0}: p=q$ vs $H_{1}: p \neq q$.

When $p=q, n \mathrm{MMD}_{k}^{2}$ (random) is "close to $0 . "$ 2 When $n \neq q, n M M D^{2}$ is "far from 0 "

## Two-Sample Testing with MMD

Have: Two collections of samples $\mathrm{X}, \mathrm{Y}$ from unknown $p$ and $q$.
Goal: Test $H_{0}: p=q$ vs $H_{1}: p \neq q$.

## When $p=q, n \mathrm{MMD}_{k}^{2}$ (random) is "close to 0. ." 2 When $p \neq q, n \mathrm{MMD}_{k}^{2}$ is "far from 0."

## Two-Sample Testing with MMD

Have: Two collections of samples $\mathrm{X}, \mathrm{Y}$ from unknown $p$ and $q$.
Goal: Test $H_{0}: p=q$ vs $H_{1}: p \neq q$.
1 When $p=q, n \mathrm{MMD}_{k}^{2}$ (random) is "close to 0 ."
2 When $p \neq q, n \widehat{\mathrm{MMD}_{k}^{2}}$ is "far from 0."

## Two-Sample Testing with MMD

Have: Two collections of samples $\mathrm{X}, \mathrm{Y}$ from unknown $p$ and $q$.
Goal: Test $H_{0}: p=q$ vs $H_{1}: p \neq q$.
1 When $p=q, n \widehat{\mathrm{MMD}_{k}^{2}}$ (random) is "close to 0 ."
2 When $p \neq q, n \mathrm{MMD}_{k}^{2}$ is "far from 0."
MMD density under H0


## Two-Sample Testing with MMD

Have: Two collections of samples $\mathrm{X}, \mathrm{Y}$ from unknown $p$ and $q$.
Goal: Test $H_{0}: p=q$ vs $H_{1}: p \neq q$.
1 When $p=q, n \widehat{\mathrm{MMD}_{k}^{2}}$ (random) is "close to 0 ."
2 When $p \neq q, n \widehat{\mathrm{MMD}_{k}^{2}}$ is "far from 0."
MMD density


■ Reject $H_{0}$ if $n \widehat{\mathrm{MMD}_{k}^{2}}>c_{\alpha}$ (threshold).

- $\alpha=$ significance level.


## Asymptotic Null Distribution of $n \widehat{\mathrm{MMD}_{k}^{2}}$

When $H_{0}: p=q$, statistic has asymptotic distribution

$$
n \widehat{\mathrm{MMD}_{k}^{2}} \sim \sum_{l=1}^{\infty} \lambda_{l}\left[Z_{l}^{2}-2\right]
$$



## Asymptotic Distribution Under $H_{1}$ [Gretton et al., 2012a]

■ When $H_{1}: p \neq q$, statistic is asymptotically normal,

$$
\sqrt{n}\left(\widehat{\mathrm{MMD}_{k}^{2}}-\operatorname{MMD}_{k}^{2}(p, q)\right) \xrightarrow{d} \mathcal{N}\left(0, V_{k}(p, q)\right)
$$

$V_{k}(p, q)=$ variance term.


## Which Kernel to Use?

■ Gaussian kernel: $k(x, y)=\exp \left(-\frac{\|\boldsymbol{x}-\boldsymbol{y}\|^{2}}{2 \sigma^{2}}\right)$. Best $\sigma^{2}$ ?

## ■ Keep false rejection rate at $\alpha$. Maximize true rejection rate.

 - Keep $\mathbb{P}\left(\right.$ reject $H_{0} \mid H_{0}$ true $) \leq \alpha$. Maximize $\mathbb{P}\left(\right.$ reject $H_{0} \mid H_{1}$ true $)$.
## Which Kernel to Use?

■ Gaussian kernel: $k(x, y)=\exp \left(-\frac{\|x-y\|^{2}}{2 \sigma^{2}}\right)$. Best $\sigma^{2}$ ?

■ Keep false rejection rate at $\alpha$. Maximize true rejection rate.
$■$ Keep $\mathbb{P}\left(\right.$ reject $H_{0} \mid H_{0}$ true $) \leq \alpha$. Maximize $\mathbb{P}\left(\right.$ reject $H_{0} \mid H_{1}$ true $)$.

## Which Kernel to Use?

$■$ Gaussian kernel: $k(x, y)=\exp \left(-\frac{\|x-y\|^{2}}{2 \sigma^{2}}\right)$. Best $\sigma^{2}$ ?
■ Keep false rejection rate at $\alpha$. Maximize true rejection rate.

- Keep $\mathbb{P}\left(\right.$ reject $H_{0} \mid H_{0}$ true $) \leq \alpha$. Maximize $\mathbb{P}\left(\right.$ reject $H_{0} \mid H_{1}$ true $)$.

Test power $=\mathbb{P}$ (reject $H_{0} \mid H_{1}$ true $)$


## Which Kernel to Use?

■ Gaussian kernel: $k(x, y)=\exp \left(-\frac{\|x-y\|^{2}}{2 \sigma^{2}}\right)$. Best $\sigma^{2}$ ?
■ Keep false rejection rate at $\alpha$. Maximize true rejection rate.

- Keep $\mathbb{P}\left(\right.$ reject $H_{0} \mid H_{0}$ true $) \leq \alpha$. Maximize $\mathbb{P}\left(\right.$ reject $H_{0} \mid H_{1}$ true $)$.

Test power $=\mathbb{P}\left(\right.$ reject $H_{0} \mid H_{1}$ true $)$


## Which Kernel to Use?

■ Gaussian kernel: $k(x, y)=\exp \left(-\frac{\|x-y\|^{2}}{2 \sigma^{2}}\right)$. Best $\sigma^{2}$ ?
■ Keep false rejection rate at $\alpha$. Maximize true rejection rate.

- Keep $\mathbb{P}\left(\right.$ reject $H_{0} \mid H_{0}$ true $) \leq \alpha$. Maximize $\mathbb{P}\left(\right.$ reject $H_{0} \mid H_{1}$ true $)$.

Test power $=\mathbb{P}\left(\right.$ reject $H_{0} \mid H_{1}$ true $)$


## Which Kernel to Use?

■ Gaussian kernel: $k(x, y)=\exp \left(-\frac{\|x-y\|^{2}}{2 \sigma^{2}}\right)$. Best $\sigma^{2}$ ?
■ Keep false rejection rate at $\alpha$. Maximize true rejection rate.

- Keep $\mathbb{P}\left(\right.$ reject $H_{0} \mid H_{0}$ true $) \leq \alpha$. Maximize $\mathbb{P}\left(\right.$ reject $H_{0} \mid H_{1}$ true $)$.

Test power $=\mathbb{P}\left(\right.$ reject $H_{0} \mid H_{1}$ true $)$


## MMD Power Criterion [Sutherland et al., 2016]

- The test power $\mathbb{P}\left(\right.$ reject $H_{0} \mid H_{1}$ true $)=$

$$
\mathbb{P}_{H_{1}}\left(n \widehat{\mathrm{MMD}_{k}^{2}}>\hat{c}_{\alpha}\right) \rightarrow \Phi\left(\sqrt{n} \frac{\mathrm{MMD}_{k}^{2}}{\sqrt{V_{k}}}-\frac{\hat{c}_{\alpha}}{\sqrt{n V_{k}}}\right)
$$

where

- $\Phi$ is the CDF of the standard normal distribution.
- $\hat{c}_{\alpha}$ is an estimate of the $1-\alpha$ quantile $c_{\alpha}$ of the null distribution.
- Choose the kernel which maximizes

■ Signal-to-noise ratio. Can be estimated with samples.

## MMD Power Criterion [Sutherland et al., 2016]

■ The test power $\mathbb{P}\left(\right.$ reject $H_{0} \mid H_{1}$ true $)=$

$$
\mathbb{P}_{H_{1}}\left(n \widehat{\mathrm{MMD}_{k}^{2}}>\hat{c}_{\alpha}\right) \rightarrow \Phi\left(\sqrt{n} \frac{\mathrm{MMD}_{k}^{2}}{\sqrt{V_{k}}}-\frac{\hat{c}_{\alpha}}{\sqrt{n V_{k}}}\right)
$$

where

- $\Phi$ is the CDF of the standard normal distribution.
- $\hat{c}_{\alpha}$ is an estimate of the $1-\alpha$ quantile $c_{\alpha}$ of the null distribution.

■ Choose the kernel which maximizes

$$
\frac{\mathrm{MMD}_{k}^{2}}{\sqrt{V_{k}}} .
$$

- Signal-to-noise ratio. Can be estimated with samples.


## Deriving the MMD Power Criterion

■ Let $Z \sim \mathcal{N}(0,1)$.

$$
\mathbb{P}_{H_{1}}\left(n \widehat{\mathrm{MMD}_{k}^{2}}>\hat{c}_{\alpha}\right)
$$


where
$■ \Phi$ is the CDF of the standard normal distribution.

- $\hat{c}_{\alpha}$ is an estimate of the $1-\alpha$ quantile $c_{\alpha}$ of the null distribution.


## Deriving the MMD Power Criterion

■ Let $Z \sim \mathcal{N}(0,1)$.

$$
\mathbb{P}_{H_{1}}\left(n \widehat{\mathrm{MMD}_{k}^{2}}>\hat{c}_{\alpha}\right)
$$

$=\mathbb{P}_{H_{1}}\left(\frac{n \widehat{\mathrm{MMD}_{k}^{2}}-n \mathrm{MMD}_{k}^{2}}{\sqrt{V_{k}}}>\frac{\hat{c}_{\alpha}}{\sqrt{V_{k}}}-\frac{n \mathrm{MMD}_{k}^{2}}{\sqrt{V_{k}}}\right)$ $=\mathbb{P}_{H_{1}}\left(\frac{\sqrt{n \mathrm{MDD}_{k}^{2}}-\sqrt{n \mathrm{MMD}_{k}^{2}}}{\sqrt{V_{k}}}>\right.$
$\rightarrow \mathbb{P}_{H_{1}}\left(Z>\frac{\hat{c}_{\alpha}}{\sqrt{n V_{k}}}-\frac{\sqrt{n \mathrm{MMD}_{k}^{2}}}{\sqrt{V_{k}}}\right)$

where
$■ \Phi$ is the CDF of the standard normal distribution.

- $\hat{c}_{\alpha}$ is an estimate of the $1-\alpha$ quantile $c_{\alpha}$ of the null distribution.


## Deriving the MMD Power Criterion

- Let $Z \sim \mathcal{N}(0,1)$.

$$
\begin{aligned}
& \mathbb{P}_{H_{1}}\left(n \widehat{\mathrm{MMD}}_{k}^{2}>\hat{c}_{\alpha}\right) \\
& =\mathbb{P}_{H_{1}}\left(\frac{n \widehat{\mathrm{MMD}_{k}^{2}}-n \mathrm{MMD}_{k}^{2}}{\sqrt{V_{k}}}>\frac{\hat{c}_{\alpha}}{\sqrt{V_{k}}}-\frac{n \mathrm{MMD}_{k}^{2}}{\sqrt{V_{k}}}\right) \\
& =\mathbb{P}_{H_{1}}\left(\frac{\sqrt{n} \widehat{\mathrm{MMD}}_{k}^{2}-\sqrt{n} \mathrm{MMD}_{k}^{2}}{\sqrt{V_{k}}}>\frac{\hat{c}_{\alpha}}{\sqrt{n V_{k}}}-\frac{\sqrt{n} \mathrm{MMD}_{k}^{2}}{\sqrt{V_{k}}}\right) \\
& \rightarrow \mathbb{P}_{H_{1}}\left(Z>\frac{\hat{c}_{\alpha}}{\sqrt{n V_{k}}}-\frac{\sqrt{n M M D})_{k}^{2}}{\sqrt{V_{k}}}\right)
\end{aligned}
$$

where
$■ \Phi$ is the CDF of the standard normal distribution.

- $\hat{c}_{\alpha}$ is an estimate of the $1-\alpha$ quantile $c_{\alpha}$ of the null distribution.


## Deriving the MMD Power Criterion

- Let $Z \sim \mathcal{N}(0,1)$.

$$
\begin{aligned}
& \mathbb{P}_{H_{1}}\left(n \widehat{\mathrm{MMD}}_{k}^{2}>\hat{c}_{\alpha}\right) \\
& =\mathbb{P}_{H_{1}}\left(\frac{n \widehat{\mathrm{MMD}}_{k}^{2}-n \mathrm{MMD}_{k}^{2}}{\sqrt{V_{k}}}>\frac{\hat{c}_{\alpha}}{\sqrt{V_{k}}}-\frac{n \mathrm{MMD}_{k}^{2}}{\sqrt{V_{k}}}\right) \\
& =\mathbb{P}_{H_{1}}\left(\frac{\sqrt{n} \widehat{\mathrm{MMD}}_{k}^{2}-\sqrt{n} \mathrm{MMD}_{k}^{2}}{\sqrt{V_{k}}}>\frac{\hat{c}_{\alpha}}{\sqrt{n V_{k}}}-\frac{\sqrt{n} \mathrm{MMD}_{k}^{2}}{\sqrt{V_{k}}}\right) \\
& \rightarrow \mathbb{P}_{H_{1}}\left(Z>\frac{\hat{c}_{\alpha}}{\sqrt{n V_{k}}}-\frac{\sqrt{n} \mathrm{MMD}_{k}^{2}}{\sqrt{V_{k}}}\right)
\end{aligned}
$$

where
$■ \Phi$ is the CDF of the standard normal distribution.

- $\hat{c}_{\alpha}$ is an estimate of the $1-\alpha$ quantile $c_{\alpha}$ of the null distribution.


## Deriving the MMD Power Criterion

- Let $Z \sim \mathcal{N}(0,1)$.

$$
\begin{aligned}
& \mathbb{P}_{H_{1}}\left(n{\left.\widehat{\mathrm{MMD}_{k}^{2}}>\hat{c}_{\alpha}\right)}_{=\mathbb{P}_{H_{1}}\left(\frac{n \mathrm{MMD}_{k}^{2}-n \mathrm{MMD}_{k}^{2}}{\sqrt{V_{k}}}>\frac{\hat{c}_{\alpha}}{\sqrt{V_{k}}}-\frac{n \mathrm{MMD}_{k}^{2}}{\sqrt{V_{k}}}\right)}^{=\mathbb{P}_{H_{1}}\left(\frac{\sqrt{n} \widehat{M M D}_{k}^{2}-\sqrt{n} \mathrm{MMD}_{k}^{2}}{\sqrt{V_{k}}}>\frac{\hat{c}_{\alpha}}{\sqrt{n V_{k}}}-\frac{\sqrt{n \mathrm{MMD}_{k}^{2}}}{\sqrt{V_{k}}}\right)}\right. \\
& \rightarrow \mathbb{P}_{H_{1}}\left(Z>\frac{\hat{c}_{\alpha}}{\sqrt{n V_{k}}}-\frac{\sqrt{n} \mathrm{MMD}_{k}^{2}}{\sqrt{V_{k}}}\right) \\
& \rightarrow \Phi\left(\frac{\sqrt{n} \mathrm{MMD}_{k}^{2}}{\sqrt{V_{k}}}-\frac{\hat{c}_{\alpha}}{\sqrt{n V_{k}}}\right)
\end{aligned}
$$

where
$\square \Phi$ is the CDF of the standard normal distribution.

- $\hat{c}_{\alpha}$ is an estimate of the $1-\alpha$ quantile $c_{\alpha}$ of the null distribution.


## Properties of the MMD Test

As sample size $n \rightarrow \infty$,
1 If $H_{0}: p=q$, then $\mathbb{P}\left(\right.$ reject $\left.H_{0}\right) \leq \alpha$.
2 If $k$ is characteristic and $H_{1}: p \neq q$, then $\mathbb{P}\left(\right.$ reject $\left.H_{0}\right) \rightarrow 1$.
$■(1)$ and $(2) \Longrightarrow a$ consistent test.

- ${M M D D_{k}^{2}}^{2}$ can be estimated in $O\left(n^{2}\right)$ time.
- But, linear-time versions $(O(n))$ exist
[Gretton et al., 2012a, Zaremba et al., 2013].


## Properties of the MMD Test

As sample size $n \rightarrow \infty$,
1 If $H_{0}: p=q$, then $\mathbb{P}\left(\right.$ reject $\left.H_{0}\right) \leq \alpha$.
2 If $k$ is characteristic and $H_{1}: p \neq q$, then $\mathbb{P}\left(\right.$ reject $\left.H_{0}\right) \rightarrow 1$.
$■(1)$ and $(2) \Longrightarrow a$ consistent test.

- $\mathrm{MMD}_{k}^{2}$ can be estimated in $\mathcal{O}\left(n^{2}\right)$ time.
- But, linear-time versions $(\mathcal{O}(n))$ exist [Gretton et al., 2012a, Zaremba et al., 2013].


## Properties of the MMD Test

As sample size $n \rightarrow \infty$,
1 If $H_{0}: p=q$, then $\mathbb{P}\left(\right.$ reject $\left.H_{0}\right) \leq \alpha$.
2 If $k$ is characteristic and $H_{1}: p \neq q$, then $\mathbb{P}\left(\right.$ reject $\left.H_{0}\right) \rightarrow 1$.
$■(1)$ and $(2) \Longrightarrow a$ consistent test.

- $\widehat{\mathrm{MMD}_{k}^{2}}$ can be estimated in $\mathcal{O}\left(n^{2}\right)$ time.
- But, linear-time versions $(\mathcal{O}(n))$ exist [Gretton et al., 2012a, Zaremba et al., 2013].


## Generate MNIST Handwritten Digits



Observed MNIST handwritten digits. $X$.

| 3 | 0 | 7 | 5 | 4 | 9 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 5 | 3 | 0 | 5 | 7 | 5 |
| 5 | 2 | 4 | 9 | 4 | 5 |
| 0 | 4 | 1 | 0 | 8 | 1 |

Generated images from a model. Y.

- Goal: Learn a function which transforms noise into a handwritten digit.


## Generative Moment Matching Networks [Li et al., 2015]

## Generative Moment Matching Networks

Yujia Li ${ }^{1}$<br>Kevin Swersky ${ }^{1}$<br>Richard Zemel ${ }^{1,2}$<br>${ }^{1}$ Department of Computer Science, University of Toronto, Toronto, ON, CANADA<br>${ }^{2}$ Canadian Institute for Advanced Research, Toronto, ON, CANADA

YUJIALI@CS.TORONTO.EDU

■ ICML 2015.
■ Code: https://github.com/yujiali/gmmn

- One of the first to use MMD to train a generative network.


## More Recent Works on MMD Based Generative Nets

MMD GAN: Towards Deeper Understanding of Moment Matching Network Chun-Liang Li, Wei-Cheng Chang, Yu Cheng, Yiming Yang, Barnabás Póczos https://arxiv.org/abs/1705.08584

Generative Models and Model Criticism via Optimized Maximum Mean Discrepancy
Dougal J. Sutherland, Hsiao-Yu Tung, Heiko Strathmann, Soumyajit De, Aaditya Ramdas, Alex Smola, Arthur Gretton
ICLR 2017
https://arxiv.org/abs/1611.04488
Demystifying MMD GANs
Mikolaj Binkowski, Dougal J. Sutherland, Michael Arbel, Arthur Gretton ICLR 2018
https://openreview.net/pdf?id=r1lUOzWCW

## Generative Moment Matching Networks [Li et al., 2015]

$$
\arg \min _{\theta} \widehat{\operatorname{MMD}_{k}^{2}}\left(\mathrm{X},\left\{g_{\theta}\left(z_{i}\right)\right\}_{i=1}^{n}\right)
$$

$\square X=$ training sets. $x_{i}=$ one digit (an image with $28 \times 28=784$ pixels). 60000 images.
$\square Z=\left\{z_{i}\right\}_{i=1}^{n}$ random noise vectors. Drawn from $\mathcal{N}(\mathbf{0}, \mathbf{I})$.

- $g_{\theta}(z)$ a deep net transforming noise $z$ into an image.
- Kernel $k$ : sum of 5 Gaussian kernels of different bandwidths

Network architecture (my own, not [Li et al., 2015]):

- 4 hidden layers. Total parameters 60,608 (in $\theta$ ).
- Training for 15 epochs. $\approx 7$ minutes. My laptop without GPU.


## Generative Moment Matching Networks [Li et al., 2015]

$$
\arg \min _{\theta} \widehat{\mathrm{MMD}_{k}^{2}}\left(\mathrm{X},\left\{g_{\theta}\left(z_{i}\right)\right\}_{i=1}^{n}\right)
$$

$\square X=$ training sets. $x_{i}=$ one digit (an image with $28 \times 28=784$ pixels). 60000 images.
$\square Z=\left\{z_{i}\right\}_{i=1}^{n}$ random noise vectors. Drawn from $\mathcal{N}(\mathbf{0}, \boldsymbol{I})$.

- $g_{\theta}(z)$ a deep net transforming noise $z$ into an image.

■ Kernel $k$ : sum of 5 Gaussian kernels of different bandwidths
Network architecture (my own, not [Li et al., 2015]):

- 4 hidden layers. Total parameters 60,608 (in $\theta$ ).
- Training for 15 epochs. $\approx 7$ minutes. My laptop without GPU


## Generative Moment Matching Networks [Li et al., 2015]

$$
\arg \min _{\theta} \widehat{\mathrm{MMD}_{k}^{2}}\left(\mathrm{X},\left\{g_{\theta}\left(z_{i}\right)\right\}_{i=1}^{n}\right)
$$

$\square X=$ training sets. $x_{i}=$ one digit (an image with $28 \times 28=784$ pixels). 60000 images.
$\square \mathrm{Z}=\left\{z_{i}\right\}_{i=1}^{n}$ random noise vectors. Drawn from $\mathcal{N}(\mathbf{0}, \mathbf{I})$.

- $g_{\theta}(z)$ a deep net transforming noise $z$ into an image.
- Kernel $k$ : sum of 5 Gaussian kernels of different bandwidths

Network architecture (my own, not [Li et al., 2015]):

- 4 hidden layers. Total parameters 60,608 (in $\theta$ ).
- Training for 15 epochs. $\approx 7$ minutes. My laptop without GPU.


## My Results



## Quick Comments


(a) GMMN MNIST samples

| 4 | 5 | 6 | 4 | 0 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 5 | 4 | 6 | 1 | 2 |
| 6 | 6 | 5 | 0 | 2 | 5 |
| 7 | 2 | 9 | 5 | 0 | 6 |
| 2 | 3 | 2 | 2 | 6 | 5 |

(c) GMMN+AE MNIST samples

(b) GMMN TFD samples

(d) GMMN+AE TFD samples

##  61/91213/564112153

(e) GMMN nearest neighbors for MNIST samples

##  $56 / 747951173107$

(f) GMMN+AE nearest neighbors for MNIST samples

(g) GMMN nearest neighbors for TFD samples

(h) GMMN+AE nearest neighbors for TFD samples

■ I could have done better. Just had to wait + bigger network. Key points:
■ Easy to train. Simple implementation.

- Stable training.

■ Image quality depends on kernel $k$.

## Outline

1 Background

2 Kernel Methods for Comparing Distributions

3 Nonparametric Two-Sample Testing

4 Further Topics and Conclusion

## Further Topics I

"Dual view": Reproducing Kernel Hilbert Spaces (RKHSs)
■ Each point in $\mathcal{H}$ can be seen as a function:
$f \in \mathcal{H} \Longleftrightarrow f(x)=\sum_{i=1}^{m} \alpha_{i} k\left(x, x_{i}\right)$ for some $\left\{\alpha_{i}\right\}_{i=1}^{m},\left\{x_{i}\right\}_{i=1}^{m}$.

- Associated with $\operatorname{MMD}(p, q)$ is the witness function.
- Unit-norm function in $\mathcal{H}$ that best distinguishes $p$ and $q$.


## Further Topics I

"Dual view": Reproducing Kernel Hilbert Spaces (RKHSs)

- Each point in $\mathcal{H}$ can be seen as a function: $f \in \mathcal{H} \Longleftrightarrow f(x)=\sum_{i=1}^{m} \alpha_{i} k\left(x, x_{i}\right)$ for some $\left\{\alpha_{i}\right\}_{i=1}^{m},\left\{x_{i}\right\}_{i=1}^{m}$.
MMD

- Associated with $\operatorname{MMD}(p, q)$ is the witness function.

■ Unit-norm function in $\mathcal{H}$ that best distinguishes $p$ and $q$.

## Further Topics II

Dependence measure
■ Recall $X$ independent of $Y$ iff $p_{x y}(X, Y)=p_{x}(X) p_{y}(Y)$.
$■ \operatorname{MMD}\left(p_{x y}, p_{x} p_{y}\right)$ can be used to measure dependence [Gretton et al., 2005].
■ Applications: Feature selection, clustering etc.
Others
■ Linear-time versions of MMD [Gretton et al., 2012b, Chwialkowski et al., 2015, Jitkrittum et al., 2016].

- Goodness-of-fit test by distance(model, data)
[Liu et al., 2016, Chwialkowski et al., 2016, Jitkrittum et al., 2017].
- Gaussian process regression/classification
[Rasmussen and Williams, 2006]


## Further Topics II

## Dependence measure

■ Recall $X$ independent of $Y$ iff $p_{x y}(X, Y)=p_{x}(X) p_{y}(Y)$.

- $\operatorname{MMD}\left(p_{x y}, p_{x} p_{y}\right)$ can be used to measure dependence [Gretton et al., 2005].
■ Applications: Feature selection, clustering etc.


## Others

■ Linear-time versions of MMD [Gretton et al., 2012b, Chwialkowski et al., 2015, Jitkrittum et al., 2016].

- Goodness-of-fit test by distance(model, data) [Liu et al., 2016, Chwialkowski et al., 2016, Jitkrittum et al., 2017].
■ Gaussian process regression/classification [Rasmussen and Williams, 2006] .


## Conclusion



- Maximum Mean Discrepancy (MMD) = distance between two distributions
- "Mean embed" distributions to a high-dimensional space $\mathcal{H}$.
- Measure the distance in $\mathcal{H}$.
- Characteristic kernel (e.g., Gaussian kernel) $\Longrightarrow \operatorname{MMD}(p, q)=0$ iff $p=q$.
- Two-sample testing with MMD. Consistent test.


## Conclusion



- Maximum Mean Discrepancy (MMD) = distance between two distributions
- "Mean embed" distributions to a high-dimensional space $\mathcal{H}$.
- Measure the distance in $\mathcal{H}$.

■ Characteristic kernel (e.g., Gaussian kernel)
$\Longrightarrow \operatorname{MMD}(p, q)=0$ iff $p=q$.

- Two-sample testing with MMD. Consistent test.


## Conclusion



- Maximum Mean Discrepancy (MMD) = distance between two distributions
- "Mean embed" distributions to a high-dimensional space $\mathcal{H}$.
- Measure the distance in $\mathcal{H}$.

■ Characteristic kernel (e.g., Gaussian kernel)
$\Longrightarrow \operatorname{MMD}(p, q)=0$ iff $p=q$.
■ Two-sample testing with MMD. Consistent test.

## Questions?

# Thank you 

Wittawat Jitkrittum<br>wittawat.com<br>wittawatj@gmail.com

## References I

Chwialkowski, K., Ramdas, A., Sejdinovic, D., and Gretton, A. (2015).

Fast two-sample testing with analytic representations of probability measures.
In NIPS, pages 1972-1980.
( Chwialkowski, K., Strathmann, H., and Gretton, A. (2016). A kernel test of goodness of fit.
In $I C M L$, pages 2606-2615.
嗇 Fukumizu, K., Gretton, A., Sun, X., and Schölkopf, B. (2008). Kernel measures of conditional dependence. In NIPS, pages 489-496.

## References II

R Gretton, A., Borgwardt, K., Rasch, M., Schölkopf, B., and Smola, A. (2012a).
A kernel two-sample test.
Journal of Machine Learning Research, 13:723-773.
Eretton, A., Herbrich, R., Smola, A., Bousquet, O., and Schölkopf, B. (2005).
Kernel methods for measuring independence.
Journal of Machine Learning Research, 6:2075-2129.
目 Gretton, A., Sejdinovic, D., Strathmann, H., Balakrishnan, S., Pontil, M., Fukumizu, K., and Sriperumbudur, B. K. (2012b).
Optimal kernel choice for large-scale two-sample tests.
In NIPS, pages 1205-1213.

## References III

Titkrittum, W., Szabó, Z., Chwialkowski, K. P., and Gretton, A. (2016).

Interpretable Distribution Features with Maximum Testing
Power.
In NIPS, pages 181-189.
䡒 Jitkrittum, W., Xu, W., Szabo, Z., Fukumizu, K., and Gretton, A. (2017).

A linear-time kernel goodness-of-fit test.
R Li, Y., Swersky, K., and Zemel, R. (2015).
Generative moment matching networks.
In $I C M L$, pages 1718-1727.

## References IV

Liu, Q., Lee, J., and Jordan, M. (2016).
A kernelized Stein discrepancy for goodness-of-fit tests.
In $I C M L$, pages 276-284.
( Rasmussen, C. E. and Williams, C. K. I. (2006).
Gaussian Processes for Machine Learning.
MIT Press, Cambridge, MA.
围 Shawe-Taylor, J. and Cristianini, N. (2004).
Kernel methods for pattern analysis.
Cambridge university press.
婳 Smola, A., Gretton, A., Song, L., and Schölkopf, B. (2007). A Hilbert space embedding for distributions.
In International Conference on Algorithmic Learning Theory (ALT), pages 13-31.

## References V

國 Sriperumbudur，B．，Gretton，A．，Fukumizu，K．，Schoelkopf，B．， and Lanckriet，G．（2010）． Hilbert space embeddings and metrics on probability measures． Journal of Machine Learning Research，11：1517－1561．
國 Sutherland，D．J．，Tung，H．－Y．，Strathmann，H．，De，S．，Ramdas， A．，Smola，A．，and Gretton，A．（2016）．
Generative Models and Model Criticism via Optimized Maximum Mean Discrepancy． arXiv： 1611.04488.
目 Zaremba，W．，Gretton，A．，and Blaschko，M．（2013）． B－test：A non－parametric，low variance kernel two－sample test． In NIPS，pages 755－763．

