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Comparing Distributions

Have: Two collections of samples X, Y from unknown distributions
p and q.
Two goals: using only X,Y ...
1 Measure the distance between p and g.
2 Are p and ¢ different (not just by chance)?
— Two-sample testing
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Application 1: Effects of Ads Placement
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Application 1: Effects of Ads Placement

Does ads at location 1 have the same effect as ads at location 27

m X = time it takes users to click ads at location 1.
m Y — time it takes users to click ads at location 2.

B Location 1
" Location 2

Frequency

0 10
Time to click
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Application 2: Data Integration

m Data from two labs collected under the (supposedly) same setting.

m Should we merge the two databases into one? [Gretton et al., 2012a]
0.3
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m If they have different distributions, do not merge.
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Application 3: Benchmarking Generative Models

134510/ l>(017]|s74]2
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9,¢/510/7/2WS 2¥ 91\ s
A2 509 SEMoY8 8/

Observed MNIST handwritten Generated images from a
digits. X. model. Y.

Is Y similar to X? I

m Distance between distributions can be used to train generative
models.
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1 Background

2 Kernel Methods for Comparing Distributions

3 Nonparametric Two-Sample Testing

4 Further Topics and Conclusion
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Outline

1 Background

7/44



Basic Linear Algebra

m Let a = (ay,...,a4)', b and ¢ be vectors in RY.
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Basic Linear Algebra

m Let a = (ay,...,a4)', b and ¢ be vectors in RY.

m Norm (length): ||a|| := 4, a?

Inner product (dot product)

ab—aTb—ab Zail

Yo

= a1b1+a2b2+~~-+ adbd.

m (a, b) = similarity between a and b.

® An inner product induces a norm: ||al| = +/{a, a).
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Properties of Inner Product
Three properties:
1 (Linear): (aa + Bb,c) = a(a,c)+ B (b, c)
2 (Symmetric): (a, b) = (b, a)
3 (a,a) >0 and (a,a) =0 if and only if a = 0.
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Properties of Inner Product

Three properties:

1 (Linear): (aa + Bb,c) = a(a,c)+ B (b, c)

2 (Symmetric): (a, b) = (b, a)

3 (a,a) >0 and (a,a) =0 if and only if a = 0.

m For z,y € R, we have (z — y)? = 22 — 2zy + 9.

m In general: ||a — b||? = (a, a) — 2(a, b) + (b, b).

|la — b|| = distance between a and b.

Definition 1 (Hilbert space).

A Hilbert space H is a complete inner product space.

m Hilbert space ~ a space with an inner product defined. R? is a
Hilbert space.

m In general, can be a space of generic objects.
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Outline

2 Kernel Methods for Comparing Distributions
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Case 1: Simple Mean Shift in 1D

p
9

-5 0 5

m Two Gaussian distributions.
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- X
- Y
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-5 0 5)

m We have only samples X ~ p and Y ~ gq.
m X={zy,...,z,} and Y ={y1,...,yn}. Sets of numbers.
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m We have only samples X ~ p and Y ~ gq.
B X={z,...,z,} and Y = {y1,...,Yn}. Sets of numbers.
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Case 1: Simple Mean Shift in 1D

X
ey

0 5

m Assume no differece in high-order moments.
m “Distance” = difference in the means. T-test.

(population) Di(p, q) := |Ex~p[X] — Ey~g[ Y]]

Z%—-Z%

(empirical) Dj(X,Y)
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Case 2: Same Mean, Different Variances

- P
q

-5 0 5
X

m Di(p, q) := |Ex~p[X] — Ey~g[Y]| cannot detect the difference.
Why?
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Case 2: Same Mean, Different Variances

Densities of features

- P
q

—5 0 5 2.5 5.0
X X2
m Di(p, q) := |Ex~p[X] — Ey~g[Y]| cannot detect the difference.
Why?

m Idea: look at difference in means of features ¢(-) of X and Y.
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Case 2: Same Mean, Different Variances

b s X
4 Y
—5 0 5
X 0 2 1 6
®m Di(p, q) = |Ex~p[X] — Ey~q[Y]| cannot detect the difference.

Why?
m Idea: look at difference in means of features ¢(-) of X and Y.

m New “distance”:

Da(p, @) = [Ex~p[¢(X)] = Eynq[d(X)]],

where ¢(z) = (z,z?)".
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Case 2: Same Mean, Different Variances

P - X
4 Y
—5 0 5
X 0 2 4 6

m Di(p, q) = |Ex~p[X] — Ey~q[Y]| cannot detect the difference.
Why?
m Idea: look at difference in means of features ¢(-) of X and Y.

Dy(p, q) = H ( Ifj:}j’[@] ) - ( IIEE;::[[))CCZ]] ) H
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Case 3: Difference in High-Order Moments

p m p = Gaussian distribution,
— q q = Laplace distribution.

m Same mean and variance.
m D, fails.
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Case 3: Difference in High-Order Moments

p m p = Gaussian distribution,
— q q = Laplace distribution.

m Same mean and variance.
m D, fails.

m ¢(z) = (z,2% 2*)" works. Difference is in kurtosis (4 moment).
m ¢(z) = (z,2% 2% cosz, e ...)". But, when to stop?

m Solution: Use an infinite-dimensional feature map ¢(-) with the
kernel trick.
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The (Kernel) Mean Embedding [Smola et al., 2007]

m Given a feature map ¢(-) mapping to a Hilbert space H,

14/44



The (Kernel) Mean Embedding [Smola et al., 2007]

m Given a feature map ¢(-) mapping to a Hilbert space H,
represent p with u, := Ez~p[¢(x)] (ie., the mean embedding of p),
represent g with ug 1= Eyq[d(y)].

14/44



The (Kernel) Mean Embedding [Smola et al., 2007]

m Given a feature map ¢(-) mapping to a Hilbert space H,
represent p with u, := Ez~p[¢(x)] (ie., the mean embedding of p),
represent g with ug 1= Eyq[d(y)].

Hilbert space H

Space of distributions B,

i (x)]

® H can be infinite dimensional. Depends on ¢(-).
If ¢(z) = (z,2%)7, then H = R2.

Hp
\\QMD(IJ, q)

Hq

m Then, measure the distance in H.
m The distance is called the “Maximum Mean Discrepancy” (MMD).
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Maximum Mean Discrepancy (MMD) [Gretton et al., 2012a]

MMD(p, q) := ||[Ez~p[@(z)] — Ey~qld(y)]

?

H

where ¢(z) is in the Hilbert space H.
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H
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Maximum Mean Discrepancy (MMD) [Gretton et al., 2012a]

MMD(p, q) := ||[Ez~p[@(z)] — Ey~qld(y)]

?

H

where ¢(z) is in the Hilbert space H.
m Recall ||a — b||2 = (a,a) — 2(a, b) + (b, b).
2

MMD2(10, q) = |Ex~plé(z)] — Ey~4[¢(y)] N

= (Ez~p[é(2)], Eo z')]) = 2 (Exnp[d(2)], Ey~qld(y)])
< y~qP(Y), E (?J )] >

= FonpBarnp (9 ) = 2EznpEynq(d(2), ¢(y))

)
t Eynglyn <( ) (y’)>
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Maximum Mean Discrepancy (MMD) [Gretton et al., 2012a]

MMD(p, q) := ||[Ez~p[@(z)] — Ey~qld(y)]

?

H

where ¢(z) is in the Hilbert space H.
m Recall ||a — b||2 = (a,a) — 2(a, b) + (b, b).

2
MMD?(p, q) =

Eznp[¢(2)] — Eynqld(y)]
H

= (Eonp[¢(2)], Exrnp[p(z)]) — 2(Eanp[p(2)], Eynqld(y)])

+ (Ey~qlp(y)], E (ZI )] >
= EonpRarnp(9( )> 2EanpBEy~q(d(x), ¢(y))
+ By gByrng (9 ( ) ¢(y')

m Depend on only the inner product (¢(z), #(y)).
m Don’t need ¢(x) explicitly (could be co-dimensionall).
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Maximum Mean Discrepancy (MMD) [Gretton et al., 2012a]

m Define k(x, z') := (¢(x), ¢(x')),, (kernel).
2
MMD3 (p, q) =

Eznpld(z)] — Eynglp(y)]
H
= EgnpBaipk(z, ') — 2Eg By gk(z, y')
+ Ey~gEyngk(y, y').

16/44



Maximum Mean Discrepancy (MMD) [Gretton et al., 2012a]

m Define k(x, z') := (¢(x), ¢(x')),, (kernel).
2
MMD3 (p, q) = '

Ez~p ()] — Eywq[‘ﬁ(l])]
H

= EgnpBaipk(z, ') — 2Eg By gk(z, y')
+Ey~oEyrngk(y, y').

m Unbiased estimator:

9 1.
MMD2 (X, Y) = e sz (zi,25) = —3 3> k(s ;)
1= 1]#1 1=1j5=1
aln 1) sz Yir Yj)-
1=17#1

m k(z,z') ~ similarity between = and z'.
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Intuition for the MMD

m Dogs ~ p and fish ~ gq.
m Each entry is one of k(dog,,dog;), k(dog;, fish;), or k(fish;, fish;)

Ll e

>

»?

-
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Intuition for the MMD

1

MMD; =
T n(n -

Z k(dog;,dog;) — 2 Z k(dog;, fish;)

]

18/44



Positive Definite Kernel

m Defining k(z, ') from ¢(-) is always valid.

19/44



Positive Definite Kernel

m Defining k(z, ') from ¢(-) is always valid.
m Can start directly from k(x, z') without specifying ¢(-).
m What k is valid?

19/44



Positive Definite Kernel

m Defining k(z, ') from ¢(-) is always valid.
m Can start directly from k(x, z') without specifying ¢(-).
m What k is valid?

Definition 2 (Positive definite kernel).
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Positive Definite Kernel

m Defining k(z, ') from ¢(-) is always valid.
m Can start directly from k(x, z') without specifying ¢(-).
m What k is valid?

Definition 2 (Positive definite kernel).

A symmetric function k: X x X — R is called positive definite if, for
any integer n >0, c1,...,¢n € R, and x1,...,x, € X, we have
i=1 25=1 Cicik(xi, ;) > 0.

m Equivalently, the Gram matrix K is a positive semi-definite
matrix where (K); = k(z;, ;).

m z can be anything (e.g., vector, image, tree, string, graph, ...).
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Positive Definite Kernel <= ¢(-) Exists
Theorem 1 (Moore-Aronszajn).
Assume k(-,-) s positive definite.
1 k 1s an inner product in some Hilbert space H.
2 There exists ¢(-) such that k(z,y) = (¢(x), d(y)) -
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Positive Definite Kernel <= ¢(-) Exists

Theorem 1 (Moore-Aronszajn).

Assume k(-,-) s positive definite.

1 k 1s an inner product in some Hilbert space H.

2 There exists ¢(-) such that k(z,y) = (¢(x), d(y)) -

Summary: Pos. def. k automatically defines ¢(-) (implicitly).

m Defining k can be easier than defining ¢(-). Imagine strings.

m To study H, can study k(-,-) instead of ¢(-).
Reproducing kernel Hilbert spaces (RKHS).

20/44



Example: Polynomial Kernel
Let X = R? (domain).

m
k(z,y) = (='y)
is positive definite, for m € {1,2,...}.
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Example: Polynomial Kernel
Let X = R? (domain).
m
k(z,y) = (='y)
is positive definite, for m € {1,2,...}.

m Consider d = 2 and m = 3.

k (( o )( vt )) = (zy1 + 22y)°.
) Y2

m Feature map

1 ¢1(x)

5 << z; )) | VB || ée(2)
) V3mazi || ¢3(z)

3 pa()

So, H = R%.
m Show that k(z,y) = (#(z), #(y))y = ¢(z) " ¢(y).
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New Kernels from Old [Shawe-Taylor and Cristianini, 2004, p. 75]

m Assume ki, k; are pos. def. kernels with feature maps ¢; and ¢-.

m New kernel k& with feature map ¢.
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m Assume ki, k; are pos. def. kernels with feature maps ¢; and ¢-.

m New kernel k& with feature map ¢.

k(z,y) features

ki(2,) + ka(w,y)  ¢(x) = stack of ¢1(x) and ¢a(a)
ky(f (), f(2)) $(z) = ¢1(f(z))
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New Kernels from Old [Shawe-Taylor and Cristianini, 2004, p. 75]

m Assume ki, k; are pos. def. kernels with feature maps ¢; and ¢-.

m New kernel k& with feature map ¢.

k(z,y) features

ki(z,y) + k(z,y)  ¢(x) = stack of ¢1(z) and ¢2(z)

ku(f(z), f () ¢(z) = ¢1(f(=))

ki(z, y)ka(z, y) ¢(x) = tensor product of ¢1(x), p2(x)
exp(ki(z,y)) ~ weighted polynomial features of all orders

m k(x,y) = —ki(z,y) is NOT valid. Why?
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Non-Injective Mean Embedding

Variance difference revisited ...

-5 0 5
X

m We used ¢(z) = z. So, k(z,y) = zy (linear kernel).
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Non-Injective Mean Embedding

Variance difference revisited ...

p Space of distributions Hilbert space #
—_ @ Ex<p [9(x)
{ T q
-5 0 5 E,
X

y~p[@(yn

m We used ¢(z) = z. So, k(z,y) = zy (linear kernel).

= MMD2(p, q) = (Ex~pl¢(X)] — Ev~[#(X)])* = 0 but p # g.
Why?

m k (and thus ¢) is not powerful enough.

m Mathematically, the map p — u, is not injective.
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Characteristic Kernels [Fukumizu et al., 2008]

Definition 3.
A pos. def. kernel k is said to be characteristic if distinct
distributions are embedded to different points in .

m Mathematically, p — Egp[¢(2)] is injective.

Hilbert space H Hilbert space H

Space of distributions

Eyylo(y)]

not characteristic characteristic
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Characteristic Kernels [Fukumizu et al., 2008]

Definition 3.
A pos. def. kernel k is said to be characteristic if distinct
distributions are embedded to different points in .

m Mathematically, p — Egp[¢(2)] is injective.

Hilbert space H Hilbert space H

Space of distributions

Eyylo(y)]

not characteristic characteristic
If k is characteristic, ...

® L, contains all information of p,
m MMDy(p, q) = 0 if and only if p = g [Gretton et al., 2012a]. A

proper distance.
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Examples of Characteristic Kernels

Characteristic kernels on X = R%:

m Gaussian kernel:

k?(iL', y) — exp (_Hil) — yH2>

2072

for ¢ > 0.
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Examples of Characteristic Kernels

Characteristic kernels on X = R%:
m Gaussian kernel:

k?(iL', y) — exp (_Hil) — yH2>

2072

for o > 0.
m Laplace kernel: k(x,y) = exp ( 2 y”) for o > 0.
m Matérn class of kernels [Rasmussen and Williams, 2006, Sec 4.2.1]

m etc. See [Sriperumbudur et al., 2010].

Not characteristic:

d
m Polynomial kernel: k(z,y) = (:nTy + c) for
c>0,d€e{L,2,.. .}
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Summary So Far
Only population quantities.

1 Cannot compute co-dimensional ¢(-). Can still compute
MMDg(p, q). Kernel trick.

2 Positive definite k(-,) <= ¢(-) exists.

26/44



Summary So Far

Only population quantities.

1

Cannot compute co-dimensional ¢(-). Can still compute
MMDg(p, q). Kernel trick.

Positive definite k(-,-) <= ¢(-) exists.

If k is characteristic, Ex~p[¢p(x)] fully characterizes p.

Hilbert space H

Space of distributions B,
\f\al\'ﬂ)(n q)

x)]
Hp
m Hq

26/44



Summary So Far

Only population quantities.

1

Cannot compute co-dimensional ¢(-). Can still compute
MMDg(p, q). Kernel trick.

Positive definite k(-,-) <= ¢(-) exists.

If k is characteristic, Ex~p[¢p(x)] fully characterizes p.

Hilbert space H

Space of distributions B,
\f\al\'ﬂ)(n q)

x)]
Hp
m Hq

Characteristic k implies
MMDg(p, ) = [[Eznp[$(x)] — Ey~q[¢(y)]l iff p = g.

26/44



Summary So Far

Only population quantities.

1

Cannot compute co-dimensional ¢(-). Can still compute
MMDg(p, q). Kernel trick.

Positive definite k(-,-) <= ¢(-) exists.

If k is characteristic, Ex~p[¢p(x)] fully characterizes p.

Hilbert space H

Space of distributions B,
\f\al\'ﬂ)(n q)

x)]
Hp
m Hq

Characteristic k implies
MMDg(p, ) = [[Eznp[$(x)] — Ey~q[¢(y)]l iff p = g.

26/44



Outline

3 Nonparametric Two-Sample Testing

27/44



Two-Sample Testing with MMD

Have: Two collections of samples X, Y from unknown p and gq.
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Two-Sample Testing with MMD
Have: Two collections of samples X, Y from unknown p and gq.
Goal: Test Hy: p=qvs H1: p # q.
1 When p = q, n@% (random) is “close to 0.”

2 When p # g, nMMDi is “far from 0.”

MMD density under HO
0.7 T T |

— 12 sum
[l =rpirical POF
0.6 g

Prob. density
o o o
@, 2 il

o
N

0.1
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Two-Sample Testing with MMD
Have: Two collections of samples X, Y from unknown p and gq.
Goal: Test Hy: p=qvs H1: p # q.
1 When p = q, nl\H/IB% (random) is “close to 0.”
2 When p # q, nI\H/IB% is “far from 0.”

MMD density

—P=Q
—P=Q

2

Prob. of n x MMD
o
'S

m Reject Hy if
nMMD?2 > c,
(threshold).

m o = significance level.

Cy= 1-o quantile when P=Q

False negatives N

— 2
n x MMD
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Asymptotic Null Distribution of nMMD?
When Hp : p = gq, statistic has asymptotic distribution

nVIMD ~ 3 A (27 2]
=1

MMD density under HO

7 Aﬂpi(w):/xk(w,w)zﬁi(w)p(w) dz

centred

o
3

Il
o

o
13

Z ~ N(0,2) iid.

o
IS

o
w

Main point:

Prob. density

o
[

m Can simulate to get
threshold c,.

0.1
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Asymptotic Distribution Under H; [Gretton et al., 2012a]
m When Hi: p # q, statistic is asymptotically normal,
o d
v/ (MMD} - MMD(p, 9)) - N (0, Vi(p, 0)),
Vi(p, q) = variance term.

MMD distribution and Gaussian fit under H1

Wl =mpirical PDF
12H Gaussian fit

Prob. density

0 005 0.1 0.15 025 03 035 04

0.2
MMD
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Which Kernel to Use?

m Gaussian kernel: k(z,y) = exp (—%) Best 027
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m Gaussian kernel: k(z,y) = exp (—%) Best 027

m Keep false rejection rate at a. Maximize true rejection rate.
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_ Py
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MMD Power Criterion [Sutherland et al., 2016]

m The test power P(reject Hy | H; true) =

— MMD? ¢
Py, (nMMDi > ea> - & (ﬁ k Ca > ,

NS

where

$ is the CDF of the standard normal distribution.
Cq is an estimate of the 1 — a quantile ¢, of the null distribution.
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MMD Power Criterion [Sutherland et al., 2016]

m The test power P(reject Hy | H; true) =

— MMD? ¢
Py, (nMMDi > ea> - & (ﬁ k Ca > ,

NS

where

$ is the CDF of the standard normal distribution.
Cq is an estimate of the 1 — a quantile ¢, of the null distribution.

m Choose the kernel which maximizes
MMD?
VVi

m Signal-to-noise ratio. Can be estimated with samples.
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Deriving the MMD Power Criterion
m Let Z ~ N(0,1).

Py, (nMMDi > &a)

where

m & is the CDF of the standard normal distribution.

Cq is an estimate of the 1 — a quantile ¢, of the null distribution/.
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Deriving the MMD Power Criterion
m Let Z ~ N(0,1).

Py, (nMMDi > &a)

_p nMMD? — nMMD? . G nMMD?
- Vv Vi Vv Vi Vv Vi

where
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Deriving the MMD Power Criterion
m Let Z ~ N(0,1).

Py, (nMMDi > &a)

nMMDi—nMMD2 ¢  nMMD?

=Py
' vV Vi F VVi
P v/nMMD? — /n. MMD,c Ca v/nMMD?
= 1A
' VVi \ﬁ VVi

where

m & is the CDF of the standard normal distribution.
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Deriving the MMD Power Criterion
m Let Z ~ N(0,1).

Py, (nMMDi > &a)

nMMDi—nMMD2 ¢  nMMD?

=P
H Vs F oA
P v/nMMD? — /n. MMD,c Ca v/nMMD?
o VVi \ﬁ VVi
p ( 7~ _Ca ﬁMMDﬁ)
= V4 ’I’LVk 1/ Vk

where
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Deriving the MMD Power Criterion
m Let Z ~ N(0,1).

Py, (nMMDi > &a)

nMMDi—nMMD2 ¢  nMMD?

=P
. Ve IV IV
P v/nMMD? — /n. MMD,c Ca v/nMMD?
. Ve v I
¢ +/nMMD}
— ]PHl
\/ nV v/ Vk
2 ~
s (f MMD? 2 )
V4 Vk \/TLV]C

where

m & is the CDF of the standard normal distribution.

Cq is an estimate of the 1 — a quantile ¢, of the null distribution/.
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Properties of the MMD Test

As sample size n — o0,

1 If Hy: p = q, then P(reject Hp) < a.
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Properties of the MMD Test

As sample size n — o0,

1 If Hy: p = q, then P(reject Hp) < a.
2 If k is characteristic and H;: p # g, then P(reject Hp) — 1.

® (1) and (2) = a consistent test.

m MMD? can be estimated in O(n?) time.

But, linear-time versions (O(n)) exist
[Gretton et al., 2012a, Zaremba et al., 2013].
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Generate MNIST Handwritten Digits

13450/ > 0(7|574[2
5]8]7|574 /S5 |3|0/7|7|5)
7|#|S10|7 SIS 2 ¥ |9\ |5
2427009 SO v\8¢/

Observed MNIST handwritten Generated images from a
digits. X. model. Y.

m Goal: Learn a function which transforms noise into a
handwritten digit.
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Generative Moment Matching Networks [Li et al., 2015]

Generative Moment Matching Networks

Yujia Li' YUIJIALI@CS.TORONTO.EDU
Kevin Swersky' KSWERSKY @CS.TORONTO.EDU
Richard Zemel'? ZEMEL @ CS.TORONTO.EDU

lDepartmem of Computer Science, University of Toronto, Toronto, ON, CANADA
2Canadian Institute for Advanced Research, Toronto, ON, CANADA

= ICML 2015.
m Code: https://github.com/yujiali/gmmn

m One of the first to use MMD to train a generative network.
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More Recent Works on MMD Based Generative Nets

MMD GAN: Towards Deeper Understanding of Moment Matching Network
Chun-Liang Li, Wei-Cheng Chang, Yu Cheng, Yiming Yang, Barnabas Poczos

https://arxiv.org/abs/1705.08584

Generative Models and Model Criticism via Optimized Maximum Mean
Discrepancy

Dougal J. Sutherland, Hsiao-Yu Tung, Heiko Strathmann, Soumyajit De, Aaditya
Ramdas, Alex Smola, Arthur Gretton

ICLR 2017
https://arxiv.org/abs/1611.04488

Demystifying MMD GANs

Mikolaj Binkowski, Dougal J. Sutherland, Michael Arbel, Arthur Gretton
ICLR 2018

https://openreview.net/pdf?id=r11U0zWCW
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Generative Moment Matching Networks [Li et al., 2015]
arg min MMD? (X, {gs(2:) 1)

m X = training sets. x; = one digit (an image with 28 x 28 = 784
pixels). 60000 images.
m Z = {z;} , random noise vectors. Drawn from N (0, I).

m go(z) a deep net transforming noise z into an image.
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Generative Moment Matching Networks [Li et al., 2015]
arg min MMD? (X, {gs(2:) 1)

m X = training sets. x; = one digit (an image with 28 x 28 = 784
pixels). 60000 images.

m Z = {z;} , random noise vectors. Drawn from N (0, I).
m go(z) a deep net transforming noise z into an image.

m Kernel k: sum of 5 Gaussian kernels of different bandwidths

Network architecture (my own, not [Li et al., 2015]):

m 4 hidden layers. Total parameters 60,608 (in 6).
m Training for 15 epochs. &~ 7 minutes. My laptop without GPU.
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Quick Comments
ganeen g DoEHEaOmeme
s(8]6[9]7[3] G/ G138 L1451

(e) GMMN nearest neighbors for MNIST samples

[7[5]4

IIIIII 5161/1d[919S[\ 2130

(a) GMMN MNIST samples (b) GMMN TFD samples (f) GMMN+AE nearest neighbors for MNIST samples

- B L e
Pe 9 DAy N

g) GMMN nearest neighbors for TFD samples
N W M

|

EEEDEE CoMA s E

(c) GMMN+AE MNIST samples  (d) GMMN+AE TFD samples (h) GMMN+AE nearest neighbors for TFD samples

m [ could have done better. Just had to wait + bigger network.
Key points:
m Easy to train. Simple implementation.

m Stable training.

m Image quality depends on kernel k. 1044



Outline

4 Further Topics and Conclusion
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Further Topics I
“Dual view”: Reproducing Kernel Hilbert Spaces (RKHSs)

m Each point in H can be seen as a function:
feH = flz)=2X"o;k(z,z;) for some {a;}7,, {z:}.
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Further Topics I
“Dual view”: Reproducing Kernel Hilbert Spaces (RKHSs)

m Each point in H can be seen as a function:
feH = f(z)=2 ak(z, z;) for some {a;},, {z:} ;.

MMD
Smooth function
1 ‘ : :
05/
X oe o e®m o e 400
~0.5 ]
g
o 02 0.4 0.6 0.8 1
X

m Associated with MMD(p, q) is the witness function.
m Unit-norm function in H that best distinguishes p and gq.
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Further Topics II
Dependence measure
m Recall X independent of YV iff pgyy (X, Y) = pz(X)py(Y).

® MMD(pgy, pzpy) can be used to measure dependence
[Gretton et al., 2005].

m Applications: Feature selection, clustering etc.
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Dependence measure
m Recall X independent of YV iff pgyy (X, Y) = pz(X)py(Y).

® MMD(pgy, pzpy) can be used to measure dependence
[Gretton et al., 2005].

m Applications: Feature selection, clustering etc.

Others

m Linear-time versions of MMD [Gretton et al., 2012b,
Chwialkowski et al., 2015, Jitkrittum et al., 2016].

m Goodness-of-fit test by distance(model , data)
[Liu et al., 2016, Chwialkowski et al., 2016, Jitkrittum et al., 2017].

m Gaussian process regression/classification
[Rasmussen and Williams, 2006] .
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Conclusion

Space of distributions Explo(x

Hilbert space H

Hp

\‘\QMD(II, q)

Hq
Eyp[d(y)]

m Maximum Mean Discrepancy (MMD) = distance between two
distributions

“Mean embed” distributions to a high-dimensional space H.
Measure the distance in H.
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Conclusion

Hilbert space H

Hp

\‘\QMD(JH, q)

m Maximum Mean Discrepancy (MMD) = distance between two
distributions
o “Mean embed” distributions to a high-dimensional space H.
* Measure the distance in H.

m Characteristic kernel (e.g., Gaussian kernel)
= MMD(p,q) =0iff p=gq.
m Two-sample testing with MMD. Consistent test.
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Questions?

Thank you

Wittawat Jitkrittum
wittawat.com

wittawatj@gmail.com
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