Optimal Dating Strategy

Wittawat Jitkrittum
Gatsby Tea Talk

22 Oct 2015

Overview

- A.K.A. secretary problem, marriage problem.
- Well known problem in statistics.

■ Goal: Select the best out of n candidates.

Conditions:
1 Candidates arrive one at a time in random order.
$2 n$ known.
3 Candidates can be ranked unambiguously.
4 After the interview (or date), each candidate is either accepted or rejected. Irrevocable decision.

5 Decision based only on the relative ranks.

Strategy k

Possibly the only reasonable strategy.
Strategy k (a stopping rule) $=$ "let $k-1$ go by" strategy
1 Sample $k-1$ candidates to get a rough idea about the pool.
2 Reject them all.
3 Pick the next one who is better than all the $k-1$ samples.

- Main question: What is the best k ?

■ k will depend on n.

What is the best k ?

■ k too small. $k=3$.

$\underbrace{\text { Best Candidate }}_{\text {Candidate Selected }}$

■ k too big. $k=14$. Samples include the global best. Last one selected.

Best Candidate
■ "Success" := finding the global best (after the $k-1$ samples).

- Let $S_{n, k}$ be the event of success.

$$
\text { Best } k=\arg \max _{k} p\left(S_{n, k}\right)
$$

- Find k that maximizes the probability of success.

Example: $n=3$

- Assume $3>2>1$. Candidate 3 is the best.

■ 3 ! $=6$ possible arrival patterns.
■ Green $=$ best candidate selected. Orange $=$ samples.

- Tables from http://datagenetics.com/blog/december32012/index.html
$k=1$
$k=1$ no

1	2	3
1	3	2
2	1	3
2	3	1
3	1	2
3	2	1

- $p\left(S_{n, k}\right)=2 / 6$
$k=2$
$k=1$

1	2	3
1	3	2
2	1	3
2	3	1
3	1	2
3	2	1

- $p\left(S_{n, k}\right)=3 / 6$

$k=3$		
1	2	3
1	3	2
2	1	3
2	3	1
3	1	2
	2	1

■ $p\left(S_{n, k}\right)=2 / 6$

■ $k=2$ gives the highest probability.

Example: $n=4$

$p\left(S_{n, k}\right)=6 / 24 \quad p\left(S_{n, k}\right)=11 / 24 \quad p\left(S_{n, k}\right)=10 / 24 \quad p\left(S_{n, k}\right)=6 / 24$
■ $k=2$ gives the highest probability.

- $k=1$ or $k=n$ always give uniform probabilities.

Success probability of strategy k

$$
\begin{aligned}
p\left(S_{n, k}\right) & =\sum_{i=1}^{n} p(\mathrm{i} \text { selected } \cap \mathrm{i} \text { best })=\sum_{i=1}^{n} p(\mathrm{i} \text { selected } \mid \mathrm{i} \text { best }) p(\mathrm{i} \text { best }) \\
& =\frac{1}{n}[\sum_{i=1}^{k-1} \overbrace{p(\mathrm{i} \text { selected } \mid \mathrm{i} \text { best })}^{0 . \text { best is the samples. See } 1)}+\sum_{i=k}^{n} \overbrace{p \mathrm{i} \text { selected } \mid \mathrm{i} \text { best })}^{\text {see } 2)}] \\
& =\frac{1}{n} \sum_{i=k}^{n} p(\text { best up to } \mathrm{i}-1 \text { is in the samples } \mid \mathrm{i} \text { best }) \\
& =\frac{1}{n} \sum_{i=k}^{n} \frac{k-1}{i-1}
\end{aligned}
$$

As $n \rightarrow \infty$

$$
\begin{aligned}
p\left(S_{n, k}\right) & =\frac{1}{n} \sum_{i=k}^{n} \frac{k-1}{i-1}=\frac{k-1}{n} \sum_{i=k}^{n} \frac{n}{i-1} \frac{1}{n} \\
& =\left(\frac{k}{n}-\frac{1}{n}\right) \sum_{i=k}^{n}\left(\frac{i}{n}-\frac{1}{n}\right)^{-1} \frac{1}{n}
\end{aligned}
$$

■ Let $t:=i / n$
■ Let $x:=k / n=$ proportion of candidates to be used as samples

- $d t:=1 / n$
- As $n \rightarrow \infty$, the sum above is a Riemann sum.

$$
\begin{aligned}
p\left(S_{n, k}\right) & =\left(x-\frac{1}{n}\right) \sum_{t=k / n}^{n / n}\left(t-\frac{1}{n}\right)^{-1} \frac{1}{n} \\
& \rightarrow x \int_{x}^{1} \frac{1}{t} d t=-x \log (x) .
\end{aligned}
$$

■ $-\frac{\partial x \log x}{\partial x}=0 \Longrightarrow x=e^{-1} \approx 0.3679$
■ What is the best k ? Answer: $k=n / e \approx 37 \% \times n$

Practical for dating?

- Say I will live for another 50 years.
- 3 years for a partner. So $n=50 / 3 \approx 17$.
- $k=17 / e=6.25 \approx 6$.

■ Spend $3 \times 6=18$ years checking the 6 "samples".

- Then dump them all.

Practical for dating?

- Say I will live for another 50 years.
- 3 years for a partner. So $n=50 / 3 \approx 17$.
- $k=17 / e=6.25 \approx 6$.
- Spend $3 \times 6=18$ years checking the 6 "samples".
- Then dump them all.
- Pick the next one that is better than all the 6 people (assuming that I will still be attractive and can be picky).

Practical for dating?

- Say I will live for another 50 years.
- 3 years for a partner. So $n=50 / 3 \approx 17$.
- $k=17 / e=6.25 \approx 6$.
- Spend $3 \times 6=18$ years checking the 6 "samples".
- Then dump them all.
- Pick the next one that is better than all the 6 people (assuming that I will still be attractive and can be picky).
■ ... All assuming that I can find the first one to begin with.

Practical for dating?

- Say I will live for another 50 years.
- 3 years for a partner. So $n=50 / 3 \approx 17$.
- $k=17 / e=6.25 \approx 6$.
- Spend $3 \times 6=18$ years checking the 6 "samples".
- Then dump them all.
- Pick the next one that is better than all the 6 people (assuming that I will still be attractive and can be picky).
■ ... All assuming that I can find the first one to begin with.
- Conclusion: Not practical.

References I

- Took many images from: http://datagenetics.com/blog/december32012/index.html
■ Job queue image: https://www.quora.com/Probability-statistics-1/What-are-the-most-interesting-or-popular-probability-puzzles-in-which-the-intuition-is-contrary-to-the-solution
■ http://www.math.uah.edu/stat/urn/Secretary.html
■ Thomas S. Ferguson. Statist. Sci. Volume 4, Number 3 (1989), 282-289.

