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Overview

Support points (https://arxiv.org/abs/1609.01811, 7 Sep 2016)
Simon Mak, V. Roshan Joseph

Generate representative points from a continuous distribution F .
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Figure 1: n = 25 support points for the two-dimensional N(0, 1), Exp(1) and
Beta(2, 4) distributions. Lines represent density contours.

By minimizing the distance-based energy statistic E

[Székely and Rizzo(2013)].
Applications:

1 Alternative to MCMC thinning.
2 Optimally allocate runs for stochastic simulations. Want the distribution of

g(x) where x ∼ F . Expensive to simulate g. So, find support points for F
first.

3 Numerical integration. Alternative to Monte-Carlo particles. Consistent.
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How to obtain the support points for F ?

Let F,G be two cont. distributions on X ⊆ R
p. Let x,x′

i.i.d.
∼ G and

y,y′ i.i.d.
∼ F .

E(F,G) := 2ExEy‖x− y‖2 − ExEx′‖x− x
′‖2 − EyEy′‖y − y

′‖2.

Assume G = Fn (empirical distribution function, e.d.f.) for {xi}
n
i=1.

In practice, {yj}
N
j=1 ∼ F . For a fixed point set size n, the support points

are

{ξi}
n
i=1

= arg min
x1,...,xn

E
(

{yj}
N
j=1

, {xi}
n
i=1

)

= arg min
x1,...,xn

2

nN

n
∑

i=1

N
∑

j=1

‖xi − yj‖2 −
1

n2

n
∑

i=1

n
∑

j=1

‖xi − xj‖2.

• Using a block coordinate descent,

xi = argmin
x

2

N

N
∑

j=1

‖x− yj‖2 −
1

n

∑

k 6=i

‖x− xk‖
2
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Theoretical properties

Proposition 1: E(F,G) is a metric i.e., E(F,G) = 0 if and only if F = G

[Székely and Rizzo(2013)].

E(F,Fn) has desirable properties for an optimization by majorization
minimization.

Theorem 2: Let x ∼ F and xn ∼ Fn (e.d.f. of the support points). Then,

xn
d
→ x.
• As n → ∞, the histogram of xn matches F .

Corollary 1: For any continuous map g : X → R

1 g(xn)
d
→ g(x)

2 If X is compact, then limn→∞
1

n

∑n

i=1
g(ξi) = E[g(x)]. That is, support

points are consistent for integration use asymptotically.

4/10



Theoretical properties

Proposition 1: E(F,G) is a metric i.e., E(F,G) = 0 if and only if F = G

[Székely and Rizzo(2013)].

E(F,Fn) has desirable properties for an optimization by majorization
minimization.

Theorem 2: Let x ∼ F and xn ∼ Fn (e.d.f. of the support points). Then,

xn
d
→ x.
• As n → ∞, the histogram of xn matches F .

Corollary 1: For any continuous map g : X → R

1 g(xn)
d
→ g(x)

2 If X is compact, then limn→∞
1

n

∑n

i=1
g(ξi) = E[g(x)]. That is, support

points are consistent for integration use asymptotically.

4/10



Theoretical properties

Proposition 1: E(F,G) is a metric i.e., E(F,G) = 0 if and only if F = G

[Székely and Rizzo(2013)].

E(F,Fn) has desirable properties for an optimization by majorization
minimization.

Theorem 2: Let x ∼ F and xn ∼ Fn (e.d.f. of the support points). Then,

xn
d
→ x.
• As n → ∞, the histogram of xn matches F .

Corollary 1: For any continuous map g : X → R

1 g(xn)
d
→ g(x)

2 If X is compact, then limn→∞
1

n

∑n

i=1
g(ξi) = E[g(x)]. That is, support

points are consistent for integration use asymptotically.

4/10



Theoretical properties

Proposition 1: E(F,G) is a metric i.e., E(F,G) = 0 if and only if F = G

[Székely and Rizzo(2013)].

E(F,Fn) has desirable properties for an optimization by majorization
minimization.

Theorem 2: Let x ∼ F and xn ∼ Fn (e.d.f. of the support points). Then,

xn
d
→ x.
• As n → ∞, the histogram of xn matches F .

Corollary 1: For any continuous map g : X → R

1 g(xn)
d
→ g(x)

2 If X is compact, then limn→∞
1

n

∑n

i=1
g(ξi) = E[g(x)]. That is, support

points are consistent for integration use asymptotically.

4/10



More on theoretical properties

Theorem 3: For a polynomial integrand g,
∣

∣Ex∼F g(x)−
1
n

∑n
i=1 g(ξi)

∣

∣ ≤
√

V (g)E(F,Fn) where V (g) is a constant
depending on g.

• =⇒ If E(F, Fn) is small, the integration error is also small.

Theorem 4: For any 0 < ν < 1, there exists Cν,p > 0 such that

E(F,Fn) ≤
Cν,p

n(log n)(1−ν)/p
.

This provides an integration error convergence rate

∣

∣

∣

∣

∣

Ex∼F [g(x)] −
1

n

n
∑

i=1

g(ξi)

∣

∣

∣

∣

∣

≤

√

V (g)Cν,p

n(log n)(1−ν)/p
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Comparison with MC, and QMC (in terms of integration errors)

Support points:
∣

∣Ex∼F [g(x)] − 1
n

∑n
i=1 g(ξi)

∣

∣ ≤
√

V (g)Cν,p

n(logn)(1−ν)/p =

O
(

n−1/2(log n)(1−ν)/2p
)

Monte-Carlo (MC):

O
(

n−1/2
√

log log n
)

(independent of p).

For a fixed p, the error of support points drops faster than MC.

When p is allowed to vary, MC may have an advantage i.e., constant Cν,p

can rapidly grow.

Assume F = U [0, 1]p. Quasi MC (QMC):

O(n−1(log n)p).

Faster than support points.

Claim: In simulations, support points perform better than QMC. Perhaps,
the upper bound is not tight.
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Illustration
24 S. MAK AND V. R. JOSEPH
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Figure 3: n = 50 support points, MC samples and IT-RSS points for i.i.d. N(0, 1)
and Exp(1) in p = 2 dimensions. Lines represent density contours.

Key:

Concentrated around regions with higher density.
Space filling. 7/10



Computation time
SUPPORT POINTS 25

0 2000 4000 6000 8000 10000

0
5
0
0
0

1
0
0
0
0

1
5
0
0
0

2
0
0
0
0

2
5
0
0
0

Point set size (n)

C
o
m
p
u
ta
ti
o
n
ti
m
e
(i
n
s
e
c
.)

p = 2

p = 5

p = 10

p = 20

p = 50

p = 100

0 20 40 60 80 100

0
5
0
0
0

1
0
0
0
0

1
5
0
0
0

2
0
0
0
0

2
5
0
0
0

Dimension (p)

C
o
m
p
u
ta
ti
o
n
ti
m
e
(i
n
s
e
c
.)

n = 50

n = 100

n = 500

n = 1000

n = 5000

n = 10000

Figure 4: Computation time (in sec.) of support points vs. point set size (n) and
dimension (p) for the i.i.d. N(0, 1) distribution.

Linear running time in n and p.

Still quite slow.
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Simulation: numerical integration

1 Gaussian peak function (GAPK): g(x) = exp
(

−
∑p

l=1 α
2
l (xl − ul)

2
)

2 Oscillatory function (OSC): g(x) = cos
(

2πu1 +
∑p

l=1 βlxl
)

F = multivariate Exp(1).
Better integration performance compared to QMC and MC. 9/10



Simulation: uncertainty propagation

g: an expensive (computationally, monetarily) simulator. x : input.

Distribution of g(x) = system output uncertainty.

Want to estimate this using few simulations.

Borehole physical model. Simulate the flow rate of water through a
borehole.
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Questions?

Thank you
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