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Overview

Support points (https://arxiv.org/abs/1609.01811, 7 Sep 2016)
Simon Mak, V. Roshan Joseph

m Generate representative points from a continuous distribution F.
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Figure 1: n = 25 support points for the two-dimensional N(0,1), Exp(l) and
Beta(2,4) distributions. Lines represent density contours.
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Figure 1: n = 25 support points for the two-dimensional N(0,1), Exp(l) and
Beta(2,4) distributions. Lines represent density contours.

m By minimizing the distance-based energy statistic F
[Székely and Rizzo(2013)].
m Applications:
1 Alternative to MCMC thinning.

2 Optimally allocate runs for stochastic simulations. Want the distribution of
g(x) where x ~ F. Expensive to simulate g. So, find support points for F'

first.

3 Numerical integration. Alternative to Monte-Carlo particles. Consistent.
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How to obtain the support points for F'?

m Let G be two cont. distributions on X C RP. Let x,x’ "4 G and
v.y' iid o
E(F,G) = 2ExEy[Ix — y|l2 = ExEx[Ix — x'[[2 = EyEy/[ly — ¥'[|2.
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How to obtain the support points for F'?

. j.id.
m Let F, G be two cont. distributions on X C RP. Let x,x’ “~" G and
id.d.
Y,y '~

E(F,G) := 2ExEy[Ix = yll2 = ExEx[|x = X'l|2 = EyEy[ly — ¥'ll2.

m Assume G = F,, (empirical distribution function, e.d.f.) for {x;}7 ;.
m In practice, {yj}évzl ~ F. For a fixed point set size n, the support points
are

{&}in =arg min B ({y;}} {x}i0)

- e I,mn nNZZHx? yillz = 222”"1_’9”2

sXn
=1 j=1 =1 j=1
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are

{&}in =arg min B ({y;}} {x}i0)

g i, 23S =yl — 5 303 i~ il

Xn T
=1 j=1 =1 j=1

Using a block coordinate descent,

X = argmln— Z Ix —yjlla = — Z I — x *
k;él
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Theoretical properties

m Proposition 1: E(F,G) is a metric i.e.,, E(F,G) =0ifand only if F =G
[Székely and Rizzo(2013)].
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Theoretical properties

m Proposition 1: E(F,G) is a metric i.e.,, E(F,G) =0ifand only if F =G
[Székely and Rizzo(2013)].
m E(F, F,) has desirable properties for an optimization by majorization
minimization.
m Theorem 2: Let x ~ F and x,, ~ F,, (e.d.f. of the support points). Then,
Xn 4«
As n — o0, the histogram of x,, matches F'.
m Corollary 1: For any continuous map g : X — R
d
1 g(xn) = g(x)
2 If X is compact, then lim,, o + 31" | g(&;) = E[g(x)]. That is, support
points are consistent for integration use asymptotically.
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More on theoretical properties

m Theorem 3: For a polynomial integrand g,

‘Exwpg(x) — % o g(Ei)| < +/V(9)E(F, F,) where V(g) is a constant

depending on g.
o = If E(F,F,) is small, the integration error is also small.
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More on theoretical properties

m Theorem 3: For a polynomial integrand g,

‘Exwpg(x) — % Yoy g(Ei)| < +/V(9)E(F, F,) where V(g) is a constant

depending on g.
= If E(F, F,) is small, the integration error is also small.
m [heorem 4: For any 0 < v < 1, there exists C, , > 0 such that

C7p

D) = g

m This provides an integration error convergence rate

EXNF - _Zg

V(9)Cup

)

n(logn)(-»)/p
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Comparison with MC, and QMC (in terms of integration errors)

. n Cup
= Support points: [Ex-r [9(x)] — £ 31, 9(6)| < \/seai s =

@) (n*1/2(log n)(lf”)/Qp)
m Monte-Carlo (MC):

O (nfl/Q\/ log log n)

(independent of p).
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Comparison with MC, and QMC (in terms of integration errors)

V(9)Cv.p

® Support points: !EX~F [g(x)] — L3 g€ )| <\ nlogn)0-7F =

@) (n*1/2(log n)(lf”)/Qp)
m Monte-Carlo (MC):

O (n~'/2\/loglogn)

(independent of p).
m For a fixed p, the error of support points drops faster than MC.

m When p is allowed to vary, MC may have an advantage i.e., constant C,
can rapidly grow.

6/10



Comparison with MC, and QMC (in terms of integration errors)

= Support points: [Ex-r [9(x)] — £ 31, 9(6)| < \/seai s =

@) (n*1/2(log n)(lf”)/Qp)
m Monte-Carlo (MC):

O (n~'/2\/loglogn)

(independent of p).
m For a fixed p, the error of support points drops faster than MC.

m When p is allowed to vary, MC may have an advantage i.e., constant C,
can rapidly grow.

m Assume F' = UJ0,1]P. Quasi MC (QMC):

O(n~(logn)P).

Faster than support points.

m Claim: In simulations, support points perform better than QMC. Perhaps,
the upper bound is not tight.
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[[lustration
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Figure 3: n = 50 support points, MC samples and IT-RSS points for i.i.d. N(0,1)
and Ezp(1) in p =2 dimensions. Lines represent density contours.

Key:

m Concentrated around regions with higher density.
m Space filling. 7/10



Computation time
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Figure 4: Computation time (in sec.) of support points vs. point set size (n) and
dimension (p) for the i.i.d. N(0,1) distribution.

m Linear running time in n and p.

m Still quite slow.
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Simulation: numerical integration

1 Gaussian peak function (GAPK): g(x) = exp (— >_7_; af(z; — w)?)
2 Oscillatory function (OSC): g(x) = cos (2muy + Y7, Biz1)
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Figure 5: Log-absolute integration errors for the i.i.d. Exp(l) distribution with
p = 5,10 and 50. Shaded bands mark the region between 25-th and 75-th quantiles.

m ' = multivariate Exp(1).
m Better integration performance compared to QMC and MC. 9/10



Simulation: uncertainty propagation

m ¢: an expensive (computationally, monetarily) simulator. x : input.
m Distribution of g(x) = system output uncertainty.

m Want to estimate this using few simulations.

m Borehole physical model. Simulate the flow rate of water through a

borehole.
—=— Support
Input ‘ Distribution 7 —* IT-RSS mean
A --4&- MC mean
Borehole radius N(0.01,0.01618) « 952
Radius of influence Lognormal(7.71, 1.0056) 5
Upper transmissivity U[63070, 115600] 5 |
Upper head U990, 1110] g "
Lower transmissivity U[63.1,116]
Lower head U700, 820] 7
Borehole length U[1120, 1680] _
Borehole conductivity U/[9855, 12045] "

20 40 60 80 100

Point set size (n)
Table 1: Inputs and their uncertainty distributions Figure 6: Log-absolute errors for esti
for the borehole model. mating Elg(X)] in the borehole model.
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Questions?

Thank you
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