Graphical Models, ExpFam, Variational Inference Chapter 3/4.1

Wittawat Jitkrittum ${ }^{1}$
Heiko Strathmann ${ }^{1}$

Gatsby Machine Learning Journal Club

16 Feb 2015

[^0]
3.2 Basics of ExpFam (pp39)

■ Random vector $\left(X_{1}, \ldots, X_{m}\right) \in \mathcal{X}^{m}$
■ Sufficient statistics: $\phi_{\alpha}: \mathcal{X}^{m} \rightarrow \mathbb{R}$, stack to ϕ

- Associated canonical parameters $\theta=\left(\theta_{\alpha}, \alpha \in \mathcal{I}\right)$

■ Density

$$
p_{\theta}\left(x_{1}, \ldots, x_{m}\right)=\exp (\langle\theta, \phi(x)\rangle-A(\theta))
$$

- Convex cumulant

$$
A(\theta)=\log \int_{\mathcal{X}^{m}} \exp \langle\theta, \phi(x)\rangle \nu(d x)
$$

■ Convex parameter space

$$
\Omega=\left\{\theta \in \mathbb{R}^{d} \mid A(\theta)<+\infty\right\}
$$

■ Minimal: No $a \in \mathbb{R}^{d} \backslash\{\mathbf{0}\}$ such that $\sum_{\alpha \in \mathcal{I}} a_{\alpha} \phi_{\alpha}(x)$ is constant.
■ Overcomplete: Not minimal. There is affine subset of $\theta \mathrm{s}$ associated with same density. Useful for sum-product.

3.1 ExpFam via Maximum Entropy (pp37)

$$
\begin{aligned}
p^{*} & :=\arg \max _{p \in \mathcal{P}} H(p) \\
& \text { subject to } \mathbb{E}_{p}\left[\phi_{\alpha}(X)\right]=\hat{\mu}_{\alpha} \\
\hat{\mu}_{\alpha} & :=\frac{1}{n} \sum_{i=1}^{n} \phi_{\alpha}\left(X^{i}\right) \text { for all } \alpha \in \mathcal{I}
\end{aligned}
$$

The optimal p^{*} takes the form

$$
p_{\theta}(x) \propto \exp \left(\sum_{\alpha \in \mathcal{I}} \theta_{\alpha} \phi_{\alpha}(x)\right) .
$$

3.1 ExpFam via Maximum Entropy (pp37)

Discrete case Lagrangian

$$
\mathcal{L}=\underbrace{-\sum_{j} p_{j} \log p_{j}}_{H(p)}+\lambda_{0} \underbrace{\left(\sum_{j} p_{j}-1\right)}_{\text {normalisation }}+\sum_{\alpha} \lambda_{\alpha} \underbrace{\left(\sum_{j} p_{j} \phi_{\alpha}(X)-\hat{\mu}_{\alpha}\right)}_{\text {data }}
$$

Differentiating

$$
\frac{\partial}{\partial p_{j}} \mathcal{L}=-\log p_{j}+\lambda_{0}+\sum_{\alpha} \lambda_{\alpha} \phi_{\alpha}(X)
$$

Setting to zero

$$
p_{j} \propto \exp \left(\sum_{\alpha} \lambda_{\alpha} \phi_{\alpha}(x)\right)
$$

Example 3.1 Ising Model (pp41)

- Graph $G=(V, E)$

■ Random variables $X_{s} \in\{0,1\}$ with node $s \in V$

$$
p_{\theta}(x)=\exp \left(\sum_{s \in V} \theta_{s} x_{s}+\sum_{(s, t) \in E} \theta_{s t} x_{s} x_{t}-A(\theta)\right)
$$

■ Sufficient statistics

$$
\phi(x)=\left(x_{s}, s \in V ; x_{s} x_{t},(s, t) \in E\right) \in \mathbb{R}^{|V|+|E|}
$$

■ Minimal

3.4 Mean Parametrisation (pp52)

- Mean parameter

$$
\mu_{\alpha}=\mathbb{E}_{p}\left[\phi_{\alpha}(X)\right] \quad \text { for } \alpha \in \mathcal{I}
$$

■ Feasible means

$$
\mathcal{M}=\left\{\mu \in \mathbb{R}^{d} \mid \exists p \text { s.t. } \mathbb{E}_{p}\left[\phi_{\alpha}(X)\right]=\mu_{\alpha} \quad \forall \alpha \in \mathcal{I}\right\}
$$

(p not necessarily exponential family)
■ Discrete case

$$
\begin{array}{r}
\mathcal{M}=\left\{\mu \in \mathbb{R}^{d} \mid \quad \mu=\sum_{x \in \mathcal{X}^{m}} \phi(x) p(x) \quad \text { for some } p(x) \geq 0\right. \\
\left.\sum_{x \in \mathcal{X}^{m}} p(x)=1\right\}
\end{array}
$$

■ Minkowski-Weyl

$$
\mathcal{M}=\left\{\mu \in \mathbb{R}^{d} \mid\left\langle a_{j}, \mu\right\rangle \geq b_{j} \quad \forall j \in \mathcal{J}\right\}
$$

3.4 Mean Parametrisation (pp52)

Fig. 3.5 Generic illustration of \mathcal{M} for a discrete random variable with $\left|\mathcal{X}^{m}\right|$ finite. In this case, the set \mathcal{M} is a convex polytope, corresponding to the convex hull of $\left\{\phi(x) \mid x \in \mathcal{X}^{m}\right\}$. By the Minkowski-Weyl theorem, this polytope can also be written as the intersection of a finite number of half-spaces, each of the form $\left\{\mu \in \mathbb{R}^{d} \mid\left\langle a_{j}, \mu\right\rangle \geq b_{j}\right\}$ for some pair $\left(a_{j}, b_{j}\right) \in \mathbb{R}^{d} \times \mathbb{R}$.

Example 3.8 Ising Mean Parameters (pp55)

■ Graph $G=(V, E)$

- Random variables $X_{s} \in\{0,1\}$ with node $s \in V$

$$
p_{\theta}(x)=\exp \left(\sum_{s \in V} \theta_{s} x_{s}+\sum_{(s, t) \in E} \theta_{s t} x_{s} x_{t}-A(\theta)\right)
$$

- Sufficient statistics

$$
\phi(x)=\left(x_{s}, s \in V ; x_{s} x_{t},(s, t) \in E\right) \in \mathbb{R}^{|V|+|E|}
$$

- Mean parameters

$$
\begin{aligned}
\mu_{s} & =\mathbb{E}_{p}\left[X_{s}\right]=P\left[X_{s}=1\right] \quad \text { for all } s \in V \\
\mu_{s t} & =\mathbb{E}_{p}\left[X_{s} X_{t}\right]=P\left[\left(X_{s}, X_{t}\right)=(1,1)\right] \quad \text { for all }(s, t) \in E
\end{aligned}
$$

- Feasible means / correlation polytope

$$
\mathcal{M}=\operatorname{conv}\left\{\phi(x) \mid x \in\{0,1\}^{m}\right\}
$$

Example 3.1/3.8 Ising Mean Parameters

■ Consider $V=\left\{X_{1}, X_{2}\right\}, E=\{(1,2),(2,1)\}$

- Feasible means

$$
\begin{aligned}
\mathcal{M} & =\operatorname{conv}\left\{\left(x_{1}, x_{2}, x_{1} x_{2}\right) \mid\left(x_{1}, x_{2}\right) \in\{0,1\}^{2}\right\} \\
& =\operatorname{conv}\{(0,0,0),(1,0,0),(0,1,0),(1,1,1)\}
\end{aligned}
$$

$$
\left[\begin{array}{ccc}
0 & 0 & 1 \\
1 & 0 & -1 \\
0 & 1 & -1 \\
-1 & -1 & 1
\end{array}\right]\left[\begin{array}{l}
\mu_{1} \\
\mu_{2} \\
\mu_{12}
\end{array}\right] \geq\left[\begin{array}{c}
0 \\
0 \\
0 \\
-1
\end{array}\right] .
$$

These four constraints provide an alternative characterization of the 3D polytope illustrated in Figure 3.6.

3.5 Properties of $A=\log \int \exp \langle\theta, \phi(x)\rangle \nu(d x)(\mathrm{pp} 62)$

Proposition (3.1 Cumulant)

$$
\begin{aligned}
\frac{\partial A}{\partial \theta_{\alpha}}(\theta) & =\mathbb{E}_{\theta}\left[\phi_{\alpha}(X)\right] \\
\frac{\partial^{2} A}{\partial \theta_{\alpha} \partial \theta_{\beta}}(\theta) & =\mathbb{E}_{\theta}\left[\phi_{\alpha}(X) \phi_{\beta}(X)\right]-\mathbb{E}_{\theta}\left[\phi_{\alpha}(X)\right] \mathbb{E}_{\theta}\left[\phi_{\beta}(X)\right]
\end{aligned}
$$

Proof: Take derivative under condition that \int and $\frac{\partial}{\partial \theta_{\alpha}}$ can be switched. Need minimal representation for strictly positive definite Hessian.

Proposition (3.2 Forward mapping to mean parameters)
The gradient mapping $\nabla A: \Omega \rightarrow \mathcal{M}$ is one-to-one iff exponential representation is minimal.

If overcomplete (non-identifiable), then many-to-one, affine subset of Ω

Theorem 3.3 (pp65) Moment matching

Theorem (3.3)
In a minimal exponential family, the gradient map ∇A is onto the interior of \mathcal{M}, denoted by \mathcal{M}°, i.e.

$$
\nabla A(\Omega)=\mathcal{M}^{\circ} .
$$

Consequently, for each $\mu \in \mathcal{M}^{\circ}$, there exists some $\theta=\theta(\mu) \in \Omega$ such that

$$
\mathbb{E}_{\theta}[\phi(X)]=\mu .
$$

Proof: Use minimal representation, and properties of convex sets
Remarkable: "All mean parameters $\mu \in \mathcal{M}^{\circ}$ that are realizable by some distribution can be realized by a member of the exponential family."

Conjugate Duality: $A^{*}(\mu):=\sup _{\theta \in \Omega}\langle\mu, \theta\rangle-A(\theta)$

Theorem (3.4, pp67)
a) Entropy form

$$
A^{*}(\mu)= \begin{cases}-H\left(p_{\theta(\mu)}\right) & \text { if } \mu \in \mathcal{M}^{\circ} \\ +\infty & \text { if } \mu \notin \overline{\mathcal{M}}\end{cases}
$$

b) Variational representation

$$
A(\theta):=\sup _{\mu \in \mathcal{M}}\langle\mu, \theta\rangle-A^{*}(\mu)
$$

c) Above supremum attained by

$$
\mu=\mathbb{E}_{\theta}[\phi(X)]
$$

We will need b) later with $A^{*}(\mu)$ is replaced with a the Bethe entropy. ${ }^{2 / 40}$

Conjugate Duality

3.6 Conjugate Duality: Maximum Likelihood and Maximum Entropy 69

Fig. 3.8 Idealized illustration of the relation between the set Ω of valid canonical parameters, and the set \mathcal{M} of valid mean parameters. The gradient mappings ∇A and ∇A^{*} associated with the conjugate dual pair $\left(A, A^{*}\right)$ provide a bijective mapping between Ω and the interior \mathcal{M}°.

Conjugate Duality: Bernoulli

■ $X \in\{0,1\}, \quad \phi(x)=x, \quad A(\theta)=\log (1+\exp (\theta)), \quad \Omega=\mathbb{R}$
■ Dual

$$
A^{*}(\mu)=\sup _{\theta \in \mathbb{R}}\{\theta \mu-\log (1+\exp (\theta))\}
$$

■ Differentiate, set to zero, get

$$
\mu=\frac{\exp (\theta)}{1+\exp (\theta)}
$$

■ If $\mu \in(0,1)$

$$
\theta(\mu)=\log \left(\frac{\mu}{1-\mu}\right)
$$

■ Substitude into A^{*} gives negative entropy of X with mean parameter μ

$$
A^{*}(\mu)=\mu \log \mu+(1-\mu) \log (1-\mu)
$$

■ Unbounded otherwise

Summary of Chaper 3

- Exponential family form
- Cannonical and mean parametrisation

■ Duality via cumulant and entropy

■ Variational representation

$$
A(\theta):=\sup _{\mu \in \mathcal{M}}\langle\mu, \theta\rangle-A^{*}(\mu)
$$

■ In practice

- constraint set \mathcal{M} is hard to characterise
- negative entropy A^{*} lacks and explicit form

■ Now: replace \mathcal{M}, approximate A^{*}

Section 4.1: Sum-Product and Bethe Approximation

■ Explore sum-product or belief propagation (BP) algorithm, an inference algorithm for finding marginals.

- Exact on a tree.
- Can be applied to a loopy graph as well, yielding loopy BP.

■ Will see that loopy BP attempts to solve the so-called Bethe variational problem.

- Approximate the variational representation

$$
A(\theta):=\sup _{\mu \in \mathcal{M}}\langle\mu, \theta\rangle-A^{*}(\mu) .
$$

- First approximation: approximate \mathcal{M}
- Second approximation: approximate $A^{*}(\mu)$ (Bethe approximation)

4.1 Sum-Product and Bethe Approximation (pp. 76)

Notations for graph $G=(V, E)$
■ Domain of X_{s} is $\mathcal{X}_{s}=\left\{0,1, \ldots r_{s}-1\right\}$. Discrete random variable.

$$
p_{\theta}(x) \propto \exp \left(\sum_{s \in V} \theta_{s}\left(x_{s}\right)+\sum_{(s, t) \in E} \theta_{s t}\left(x_{s}, x_{t}\right)\right)
$$

- θ_{s} is a vector of length r_{s}.
$\square \theta_{s}\left(x_{s}\right):=\sum_{j} \theta_{s ; j} I_{s ; j}\left(x_{s}\right)=\theta_{s}^{\top} I_{s}$ is the $k^{t h}$ element of θ_{s} if $x_{s}=k$.
- $I_{s}=(0, \ldots, 1, \ldots 0)^{\top}$ with 1 at the $k^{t h}$ position.

■ Mean parameter $\mu_{s}=\mathbb{E} I_{s}$ is the probability vector for x_{s}.
■ Marginal polytope (Eq. 4.4):

$$
\mathbb{M}(G):=\left\{\mu \in \mathbb{R}^{d} \mid \exists p \text { with marginals } \mu_{s}\left(x_{s}\right), \mu_{s t}\left(x_{s}, x_{t}\right)\right\}
$$

■ $\mathbb{M}(G)$ requires global consistency i.e., marginalization of the full joint gives $\mu_{s}\left(x_{s}\right)$ and $\mu_{s t}\left(x_{s}, x_{t}\right)$.

4.1.1 A Tree-Based Outer Bound to $\mathbb{M}(G)$ (pp. 77)

- $\mathbb{M}(G)$ can be written as the intersection of a finite number of half-spaces (facets).
■ Extremely difficult to list these half-space constraints.
■ Solution: List only subsets. Obtain a polyhedral outer bound $\mathbb{L}(G)$ on $\mathbb{M}(G)$. The first approximation.

(Misleading picture. The polytope $\mathbb{L}(G)$ has fewer facets and more vertices, but this is difficult to convey in a 2D representation.)

Specification of $\mathbb{L}(G)$ (pp. 78)

- Consider nonnegative $\tau_{s}\left(x_{s}\right)$ and $\tau_{s t}\left(x_{s}, x_{t}\right)$.
- τ plays the same role as μ
- τ for pseudomarginals.

■ Two constraints for $\mathbb{L}(G)$:
1 Normalization condition: $\sum_{x_{s}} \tau_{s}\left(x_{s}\right)=1$
2 Marginalization constraints:

$$
\begin{aligned}
& \sum_{x_{t}^{\prime}} \tau_{s t}\left(x_{s}, x_{t}^{\prime}\right)=\tau_{s}\left(x_{s}\right) \text { for all } x_{s} \\
& \sum_{x_{s}^{\prime}} \tau_{s t}\left(x_{s}^{\prime}, x_{t}\right)=\tau_{t}\left(x_{t}\right) \text { for all } x_{t}
\end{aligned}
$$

■ The two constraints define $\mathbb{L}(G)$

$$
\mathbb{L}(G)=\{\tau \geq 0 \mid \text { both conditions hold }\} .
$$

■ Polytope $\mathbb{L}(G)$ defines a set of locally consistent marginal distributions.

Proposition 4.1 $\mathbb{M}(G) \subseteq \mathbb{L}(G)$ (pp. 78-79)

Proposition (4.1)
$\mathbb{M}(G) \subseteq \mathbb{L}(G)$ holds for any graph G. For a tree $T, \mathbb{M}(T)=\mathbb{L}(T)$.
Proof
■ If $\mu \in \mathbb{M}(G)$, then it must be normalized and satisfy marginalization conditions. So, $\mu \in \mathbb{L}(G)$ proving $\mathbb{M}(G) \subseteq \mathbb{L}(G)$.
■ For a tree T, need to show $\mathbb{L}(G) \subseteq \mathbb{M}(G)$ by showing $\mu \in \mathbb{L}(G) \Rightarrow \mu \in \mathbb{M}(G)$.
■ Assume a tree. By the junction tree theorem,

$$
p_{\mu}(x):=\prod_{s \in V} \mu_{s}\left(x_{s}\right) \prod_{(s, t) \in E} \frac{\mu_{s t}\left(x_{s}, x_{t}\right)}{\mu_{s}\left(x_{s}\right) \mu_{t}\left(x_{t}\right)}
$$

■ By running intersection property of the junction tree, local consistency implies global consistency.
■ So $\mu \in \mathbb{M}(G)$.

Example of $\tau \in \mathbb{L}(G) \backslash \mathbb{M}(G)$ (pp. 80)

- Consider a simpler example than example 4.1.

■ 3 binary variables: $\left\{x_{1}, x_{2}, x_{3}\right\}$

$$
\begin{aligned}
\tau_{s}\left(x_{s}\right) & :=(0.5,0.5) \\
\tau_{s t}\left(x_{s}, x_{t}\right) & :=\left[\begin{array}{cc}
0 & 0.5 \\
0.5 & 0
\end{array}\right]
\end{aligned}
$$

■ Equivalently, $p\left(x_{s} \neq x_{t}\right)=0.5$.
$\square \tau:=\left\{\tau_{s}, \tau_{s t}\right\}_{s, t}$ give locally consistent marginals i.e., in $\mathbb{L}(G)$.
■ But, $p\left(x_{1}, x_{2}, x_{3}\right)=0$ for all configurations.
■ So, $\sum_{x_{1}} \sum_{x_{2}} p\left(x_{1}, x_{2}, x_{3}\right) \neq \tau_{3}\left(x_{3}\right)$ for example.
■ Not globally consistent i.e., not in $\mathbb{M}(G)$.
■ In fact, $\mathbb{M}(G)$ is empty (we think..).

4.1.2 Bethe Entropy Approximation (pp. 81-82) I

\square Second approximation (Bethe entropy) that underlies the sum-product.
■ Approximate A^{*} in $A(\theta):=\sup _{\mu \in \mathbb{M}(G)}\langle\mu, \theta\rangle-A^{*}(\mu)$.
■ Consider a tree (eq. 4.8)

$$
p_{\mu}(x):=\prod_{s \in V} \mu_{s}\left(x_{s}\right) \prod_{(s, t) \in E} \frac{\mu_{s t}\left(x_{s}, x_{t}\right)}{\mu_{s}\left(x_{s}\right) \mu_{t}\left(x_{t}\right)} .
$$

■ Marginal distributions correspond to μ under the canonical overcomplete representation (sufficient statistics given by indicator functions).

4.1.2 Bethe Entropy Approximation (pp. 81-82) II

■ Exact entropy for a tree:

$$
\begin{align*}
H_{\text {Bethe }}\left(p_{\mu}\right) & =-A^{*}(\mu)=\mathbb{E}_{\mu}\left[-\log p_{\mu}(x)\right] \\
& =\sum_{s \in V} H_{s}\left(\mu_{s}\right)-\sum_{(s, t) \in E} I_{s t}\left(\mu_{s t}\right) \tag{1}
\end{align*}
$$

■ where

$$
\begin{aligned}
& H_{s}\left(\mu_{s}\right)=-\sum_{x_{s} \in \mathcal{X}_{s}} \mu_{s}\left(x_{s}\right) \log \mu_{s}\left(x_{s}\right) \\
& I_{s t}\left(\mu_{s t}\right)=\sum_{\left(x_{s}, x_{t}\right) \in \mathcal{X}_{s} \times \mathcal{X}_{t}} \mu_{s t}\left(x_{s}, x_{t}\right) \log \frac{\mu_{s t}\left(x_{s}, x_{t}\right)}{\mu_{s}\left(x_{s}\right) \mu_{t}\left(x_{t}\right)}
\end{aligned}
$$

4.1.2 Bethe Entropy Approximation (pp. 81-82) III

■ Bethe entropy approximation: Assume $H_{\text {Bethe }}$ in Eq. 1 anyway even on a general loopy graph.
■ $H_{\text {Bethe }}\left(p_{\mu}\right)$ can be evaluated on $\tau=\left\{\tau_{s}, \tau_{s t}\right\}_{s, t}$ that belongs to $\mathbb{L}(G)$.

- Singleton and pairwise marginals are properly defined.

4.1.3 Bethe Variational Problem (BVP)

With the two ingredients
1 Set $\mathbb{L}(G)$ of locally consistent marginals (outer bound on $\mathbb{M}(G)$).
2 Bethe entropy approximation $\sum_{s \in V} H_{s}\left(\mu_{s}\right)-\sum_{(s, t) \in E} I_{s t}\left(\mu_{s t}\right)$ to $-A^{*}(\mu)$.
Approximate variational representation of the log-partition

$$
\text { (exact) } A(\theta)=\sup _{\mu \in \mathbb{M}(G)}\langle\mu, \theta\rangle-A^{*}(\mu)
$$

with
(BVP: 4.16) $A_{\text {Bethe }}(\theta)=\max _{\tau \in \mathbb{L}(G)}\langle\tau, \theta\rangle+\sum_{s \in V} H_{s}\left(\tau_{s}\right)-\sum_{(s, t) \in E} I_{s t}\left(\tau_{s t}\right)$.
■ Solution of BVP admits the same form as the sum-product algorithm.
$■ \Rightarrow$ Sum-product algorithm finds a fixed point of BVP.

Lagrangian of BVP (pp. 84)

Define constraint functions for $\mathbb{L}(G)$

$$
\begin{aligned}
\text { (normalization) } C_{s s}(\tau) & :=1-\sum_{x_{s}} \tau_{s}\left(x_{s}\right) \\
\text { (marginalization) } C_{t s}\left(x_{s} ; \tau\right) & :=\tau_{s}\left(x_{s}\right)-\sum_{x_{t}} \tau_{s t}\left(x_{s}, x_{t}\right)
\end{aligned}
$$

■ $\lambda_{s s}:=$ Lagrange multiplier associated with $C_{s s}(\tau)=0$
■ $\lambda_{t s}\left(x_{s}\right):=$ Lagrange multiplier associated with $C_{t s}\left(x_{s} ; \tau\right)=0$

- $\lambda_{t s}\left(x_{s}\right)$ is a vector indexed by x_{s}. In continuous case, $\lambda_{t s}$ is a function.

Lagrangian

$$
\begin{aligned}
\mathcal{L}(\tau, \lambda ; \theta) & =\langle\theta, \tau\rangle+H_{\text {Bethe }}(\tau)+\sum_{s \in V} \lambda_{s s} C_{s s}(\tau) \\
& +\sum_{(s, t) \in E}\left[\sum_{x_{s}} \lambda_{t s}\left(x_{s}\right) C_{t s}\left(x_{s} ; \tau\right)+\sum_{x_{t}} \lambda_{s t}\left(x_{t}\right) C_{s t}\left(x_{t} ; \tau\right)\right]_{26 / 40}
\end{aligned}
$$

Thm 4.2 (Sum-Product and the Bethe Problem) (pp. 84)

Connection between sum-product and BVP is made precise by
Theorem (4.2)
The sum-product updates are a Lagrangian method for finding a fixed point of BVP.

1 For any G, any fixed point specifies a pair $\left(\tau^{*}, \lambda^{*}\right)$ such that

$$
\begin{aligned}
& \nabla_{\tau} \mathcal{L}\left(\tau^{*}, \lambda^{*} ; \theta\right)=0 \text { (stationary) } \\
& \nabla_{\lambda} \mathcal{L}\left(\tau^{*}, \lambda^{*} ; \theta\right)=0 \text { (constraint satisfaction) }
\end{aligned}
$$

2 For a tree, $\left(\tau^{*}, \lambda^{*}\right)$ is unique. Elements of τ^{*} correspond to exact singleton and pairwise marginal distributions. Moreover, the optimal value of BVP is equal to $A(\theta)$ (cumulant function).

Proof of Theorem 4.2a

■ Define $M_{t s}\left(x_{s}\right):=\exp \left(\lambda_{t s}\left(x_{s}\right)\right)$.
$■$ Find $\nabla_{\tau} \mathcal{L}\left(\tau^{*}, \lambda^{*} ; \theta\right)$. Equate it to 0 . Solve for τ.

$$
\begin{aligned}
\tau_{s}\left(x_{s}\right) & =\kappa \exp \left(\theta_{s}\left(x_{s}\right)\right) \prod_{t \in N(s)} M_{t s}\left(x_{s}\right) \\
\tau_{s t}\left(x_{s}, x_{t}\right) & =\kappa^{\prime} \exp \left(\theta_{s t}\left(x_{s}, x_{t}\right)+\theta_{s}\left(x_{s}\right)+\theta_{t}\left(x_{t}\right)\right) \\
& \times \prod_{u \in N(s) \backslash t} M_{u s}\left(x_{s}\right) \prod_{u \in N(t) \backslash s} M_{u t}\left(x_{s}\right)
\end{aligned}
$$

\square Solving for $M_{t s}\left(x_{s}\right)$ by using these two equations and others gives

$$
M_{t s}\left(x_{s}\right) \propto \sum_{x_{t}}\left[\exp \left(\theta_{s t}\left(x_{s}, x_{t}\right)+\theta_{t}\left(x_{t}\right)\right) \prod_{u \in N(t) \backslash s} M_{u t}\left(x_{t}\right)\right]
$$

which is the familiar sum-product message from x_{t} to x_{s}.
■ λ turns out to be log of messages.

Proof of Theorem 4.2b (pp. 273)

Theorem (4.2b)
For a tree $T,\left(\tau^{*}, \lambda^{*}\right)$ is unique. Elements of τ^{*} correspond to exact singleton and pairwise marginal distributions. Moreover, the optimal value of BVP is equal to $A(\theta)$ (cumulant function).

■ By Proposition 4.1, $\mathbb{L}(T)=\mathbb{M}(T)$.

- $H_{\text {Bethe }}$ is exact. So, $-A^{*}=H_{\text {Bethe }}$.
\square So there is no approximation in moving from

$$
\begin{aligned}
& A(\theta)=\sup _{\mu \in \mathbb{M}(G)}\langle\mu, \theta\rangle-A^{*}(\mu) \\
& \text { to } \max _{\tau \in \mathbb{L}(G)}\langle\tau, \theta\rangle+\sum_{s \in V} H_{s}\left(\tau_{s}\right)-\sum_{(s, t) \in E} I_{s t}\left(\tau_{s t}\right) .
\end{aligned}
$$

■ The value of the optimized BVP is $A(\theta)$.
■ Theorem 3.4(c) implies that the optimum τ^{*} corresponds to the exact marginal distributions.
$■$ Strict convexity implies that the solution is unique.

Remark 4.1 (pp. 85)

■ Nonnegativity of τ is handled implicitly by logarithmic barriers (in H_{s} and $I_{s t}$).
■ Any optimum $\tau^{*}>0$ must satisfy the Theorem 4.2a (stationarity).
■ For graphical models where all configurations are given strictly positive mass (ExpFam with finite θ in particular), the sum-product messages stay bounded strictly away from zero.

- \Rightarrow There is always an optimum $\tau^{*}>0$.

4.1.5 Bethe Optima and Reparameterization (pp. 91)

■ Recall: the junction tree algorithm takes in a set of potential functions and returns an alternative factorization of the distribution.

$$
p\left(x_{1: m}\right)=\frac{\prod_{C \in \mathcal{C}} \mu_{C}\left(x_{C}\right)}{\prod_{S \in \mathcal{S}}\left[\mu_{S}\left(x_{S}\right)\right]^{d(S)-1}} \text { Eq } 2.12 \text { (pp. 32) }
$$

- Same interpretation for the sum-product.
- Any local optimum of BVP specifies a reparameterization of the original distribution p_{θ}.

Proposition (4.3 Reparameterization by Bethe Approximation)
Let $\tau^{*}=\left(\tau_{s}^{*}, s \in V ; \tau_{s t}^{*},(s, t) \in E\right)$ denote any optimum of the BVP defined by the distribution p_{θ}. At the fixed point,

$$
p_{\tau^{*}}(x):=\frac{1}{Z\left(\tau^{*}\right)} \prod_{s \in V} \tau_{s}^{*}\left(x_{s}\right) \prod_{(s, t) \in E} \frac{\tau_{s t}^{*}\left(x_{s}, x_{t}\right)}{\tau_{s}^{*}\left(x_{s}\right) \tau_{t}^{*}\left(x_{t}\right)}=p_{\theta}(x) \text { (Eq. 4.27) }
$$

Comments on the Reparameterization (pp. 92)

■ Applied to a graph with cycles.
■ $Z\left(\tau^{*}\right)$ is not 1 in general. $Z\left(\tau^{*}\right)=1$ for a tree.
■ Every graph has at least one such reparameterization.

- Multiple optima of BVP \Rightarrow multiple reparameterizations.

■ Possible to derive the approximation error of the sum-product. Detailed not mentioned in the text.

- Difference of exact marginals μ_{s} of $p_{\theta}(x)$ and τ_{s}^{*} from the sum-product.

Example 4.3 Fooling the Sum-Product Algorithm (pp. 92-93)

■ For any pseudomarginal τ in the interior of $\mathbb{L}(G)$, possible to construct p_{θ} for which τ is a fixed point of the sum-product.

- The text provides an example where messages are initialized to be uniform distributions.
■ Messages do not change with sum-product updates. Already a fixed point.
■ Messages give the same pseudomarginals as τ.
■ For any discrete MRF in ExpFam with at most one cycle, sum-product has a unique fixed point and always converges to it from any initialization..

4.1.6 Bethe and Loop Series Expansions (pp. 94)

■ Loop series expansions provide an exact representation of the cumulant function $A(\theta)$ as a sum of terms.
■ The first term is $A_{\text {Bethe }}(\theta)$ and higher-order terms obtained by adding in so-called loop corrections.
■ Need some definitions.
■ Given an undirected graph $G=(V, E)$ and $\tilde{E} \subseteq E$, let $G(\tilde{E})=(V(\tilde{E}), \tilde{E})$ be the induced subgraph associated with \tilde{E}.
■ Degree of $s \in V$ w.r.t. \tilde{E}

$$
d_{s}(\tilde{E}):=|\{t \in V \mid(s, t) \in \tilde{E}\}| .
$$

Generalized Loop (pp. 95)

- Define a generalized loop to be a subgraph $G(\tilde{E})$ for which all nodes $s \in V$ have degree $d_{s}(\widetilde{E}) \neq 1$.
■ In other words, either $d_{s}(\widetilde{E})=0$ or $d_{s}(\tilde{E}) \geq 2$.
4.1 Sum-Product and Bethe Approximation 95

(a)

(b)

(c)

(d)

Fig. 4.3 Illustration of generalized loops. (a) Original graph. (b)-(d) Various generalized loops associated with the graph in (a). In this particular case, the original graph is a generalized loop for itself.

- A tree does not have any generalized loops because at least one node s has $d_{s}(\widetilde{E})=1$.

Proposition 4.4 Loop Series Expansion (pp. 96) I

Proposition (4.4)

Consider a pairwise binary MRF. Let $A_{\text {Bethe }}(\theta)$ be the optimized BVP objective evaluated at a BP fixed point τ. The cumulant $A(\theta)$ is eqal to the loop series expansion:

$$
\begin{aligned}
A(\theta) & =A_{\text {Bethe }}(\theta)+\log \left(1+\sum_{\emptyset \neq \widetilde{E} \subseteq E} \beta_{\widetilde{E}} \prod_{s \in V} \mathbb{E}_{\tau_{s}}\left[\left(X_{s}-\tau_{s}\right)^{d_{s}(\widetilde{E})}\right]\right) \\
\beta_{\widetilde{E}} & :=\prod_{(s, t) \in \widetilde{E}} \beta_{s t} \text { and } \beta_{s t}:=\frac{\tau_{s t}-\tau_{s} \tau_{t}}{\tau_{s}\left(1-\tau_{s}\right)\left(1-\tau_{t}\right)}
\end{aligned}
$$

■ $\beta_{s t}$ defines an edge weight. $\beta_{\widetilde{E}}$ defines a subgraph weight.

Proposition 4.4 Loop Series Expansion (pp. 96) II

■ Equivalently, can also sum over all subsets of E.
■ Note the d th central moments of a Bernoulli variable

$$
\mathbb{E}_{\tau_{s}}\left[\left(X_{s}-\tau_{s}\right)^{d}\right]=\left(1-\tau_{s}\right)\left(-\tau_{s}\right)^{d}+\tau_{s}\left(1-\tau_{s}\right)^{d}
$$

- If $d_{s}(\widetilde{E})=1$ for an $s \in V$ (i.e., a tree), the associated term in the expansion vanishes.
■ Only generalized loops \widetilde{E} lead to nonzero terms in the expansion.
■ Provide an alternative proof that $A(\theta)=A_{\text {Bethe }}(\theta)$ for a tree.

Comments on Loop Series Expansion (pp. 96,98)

- Computation of full sequence of loop corrections is intractable.

■ Same problem as in computing $A(\theta)$ in a loopy graph.
■ Any fully connected graph with $n \geq 5$ has more than 2^{n} generalized loops.
■ Can improve approximation to $A(\theta)$ by accounting for a small set of loop corrections.
■ The expansion has a generalization for factor graphs. Ref: [51, 224].

Summary of Section 4.1

■ Sum-product and its connection to Bethe approximation.
■ Sum-product tries to solve Bethe variational problem, a relaxed form of variational representation of $A(\theta)$:
(BVP: 4.16) $A_{\text {Bethe }}(\theta)=\max _{\tau \in \mathbb{L}(G)}\langle\tau, \theta\rangle+\sum_{s \in V} H_{s}\left(\tau_{s}\right)-\sum_{(s, t) \in E} I_{s t}\left(\tau_{s t}\right)$.

■ At a fixed point τ^{*}, it reparameterize the distribution p_{θ}

$$
p_{\tau^{*}}(x):=\frac{1}{Z\left(\tau^{*}\right)} \prod_{s \in V} \tau_{s}^{*}\left(x_{s}\right) \prod_{(s, t) \in E} \frac{\tau_{s t}^{*}\left(x_{s}, x_{t}\right)}{\tau_{s}^{*}\left(x_{s}\right) \tau_{t}^{*}\left(x_{t}\right)}=p_{\theta}(x) \text { (Eq. 4.27) }
$$

■ The cumulant $A(\theta)$ has a loop series expansion.

4.2 Preface to Kikuchi and Hypertree-based Methods (pp. 98-99)

■ Two ways in which BVP is an approximate to the exact variational principle

1 Only approximate the entropy or $-A^{*}$.
2 Use outer bound $\mathbb{L}(G)$ instead of marginal polytop $\mathbb{M}(G)$
■ The accuracy can be strengthened by improving either one.
■ BVP approximation is based on trees.
■ Kikuchi and Hypertree-based methods follow the same principle as BVP by using hypertrees.

- A (hyper)edge involves more than two vertices.

References I

https://www.eecs.berkeley.edu/~wainwrig/Papers/WaiJor08_FT

[^0]: ${ }^{1}$ Equal contribution

