
 1/12

Exact String Matching with
Z-Array

Wittawat Jitkrittum

30 May 2017

Gatsby Tea Talk

 2/12

Exact String Matching

● Given: a pattern P, long string T.

● Find all occurrences of P in T.

● Many applications

– Find subsequences of DNA.

P = “gtcc”, T = “...ctggtccactgtccactgg...”

– “ctrl + f” in a web browser.

 3/12

Naive Algorithm
● P = “ab”, T = “aabaabe”. Let m := len(P), n := len(T).

index 1 2 3 4 5 6 7

T a a b a a b e

k=1 a b

k=2 a b

k=3 a b

k=4 a b

k=5 a b

k=6 a b

● At iteration k, check [T(k), .., T(k+m-1)], and P.

● Complexity: O(m*n).

● Does not share information across iterations.

¿

 4/12

Z-Array
● Let S be a string of length u.

● Z-Array: Z(k) = Length of the longest substring of S
starting at k and matches a prefix of S, for k > 1.

● S = “aaabc”

index 1 2 3 4 5

S a a a b c

Z(2) = 2 a a b c

Z(3) = 1 a b c

Z(4) = 0 b c

Z(5) = 0 c

● Can be constructed in O(u) time. Linear-time!

 5/12

Z-Array for String Matching
● Let S = P$T, where $ = character appearing in neither

P nor T.

● P = “ab”, T = “aabaabe”. Let m := len(P), n := len(T).
index 1 2 3 4 5 6 7 8 9 10

S a b $ a a b a a b e

Z(4) = 1 a a b a a b e

Z(5) = 2 a b a a b e

Z(6) = 0 b a a b e

Z(7) = 1 a a b e

Z(8) = 2 a b e

● P occurs at k where Z(k) = m.

● So, string matching can be done in O(m + n).

 6/12

Z-box
● Will iteratively compute Z(k) given

– Z(2), .., Z(k-1) and

– boundaries of the right-most Z-box.
● Z-box = Z-box at i is the substring starting at i and

continuing to i+Z(i)-1. Only defined for Z(i) > 0.

● Let l and r be the boundaries of the right-most Z-box.
Right-most means largest right index.

Z-box at i

i i+Z(i)-1

Z(i) l r

Current k > l

 7/12

Z Algorithm (1)
Initialization:

● Set Z(2) = longest prefix of S[2..] and S.

● If Z(2) > 0, set l := 2, r := l + Z(2) – 1.

l r

1 2 3 4 5

● Otherwise, l = r = 0.

l, r

1 2 3 4 5

6 7 8 9 …..

...

 8/12

Z Algorithm (2)
● Input: Z(2), .., Z(k-1), and [l, r].

● Determine Z(k) and update [l, r].

● Case 1: if k > r,

l r k

● Compute Z(k) manually i.e., compare S[k..] and S.

● If Z(k) > 0, update l = k and r = k + Z(k) – 1.

 9/12

Z Algorithm (3)
Case 2: if k <= r

● Case 2a: Z(k') < B

● Set Z(k) = Z(k').

● No update to [l, r].

index 1 2 (k') 3 4 l k r ..

S b a a e b a a e ..

Z 0 0 0 4 ?

1 l rk

B := r – k +1

k' := k – l +1

 10/12

Z Algorithm (4)
Case 2: if k <= r, and Case 2b: Z(k') >= B

● Z-box guarantees that S[l..r] = S[1...5], but not beyond.

● S[k..r] must be a prefix. Compare S[r+1...] to S[B+1..].

● If a mismatch occurs at q >= r +1, set Z(k) = q – k + 1.

● Update l = k, r = q-1.

index 1 2 3 (k') 4 5 l k r

S a b a b a b ... a b a b a c

Z 0 4 0 1 5 0 ?

1 l rk

B := r – k +1

k' := k – l +1 ?

 11/12

Comments on the Z Algorithm
● Operations under Z-boxes are constant-time.

● Complexity outside Z-box = O(#comparisons)
= O(#matches + #mismatches)

● Each iteration contains at most one mismatch.
#mismatches = O(u), where u = len(S).

● When matched, Z-box boundary r is extended
proportionally to #matches.

● At most u possible values of r. That means
#mismatches = O(u).

 12/12

Thank you

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

