Exact String Matching with Z-Array

Wittawat Jitkrittum

30 May 2017

Gatsby Tea Talk

Exact String Matching

- Given: a pattern P, long string T.
- Find all occurrences of P in T.
- Many applications
 - Find subsequences of DNA.

P = "gtcc", T = "...ctggtccactgtccactgg..."

- "ctrl + f" in a web browser.

Naive Algorithm

• $P = ab^{n}$, $T = ab^{n}$. Let m := len(P), n := len(T). 2 3 5 index 1 4 6 7 b Т b а а а а е k=1 b а k=2 b а j k=3 b а k=4 b а k=5 b а b k=6 а

- At iteration k, check [T(k), .., T(k+m-1)], and P.
- Complexity: O(m*n).
- Does not share information across iterations.

Z-Array

- Let S be a string of length u.
- Z-Array: Z(k) = Length of the longest substring of S starting at k and matches a prefix of S, for k > 1.
- S = "aaabc"

index	1	2	3	4	5
S	а	а	а	b	С
Z(2) = 2	а	а	b	С	
Z(3) = 1	а	b	С		
Z(4) = 0	b	С			
Z(5) = 0	С				

Can be constructed in O(u) time. Linear-time!

Z-Array for String Matching

- Let S = P\$T, where \$ = character appearing in neither P nor T.
- P ="ab", T ="aabaabe". Let m := len(P), n := len(T).

• P occurs at k where Z(k) = m.

• So, string matching can be done in O(m + n). 5/12

Z-box

- Will iteratively compute Z(k) given
 - Z(2), ..., Z(k-1) and
 - boundaries of the right-most Z-box.
- Z-box = Z-box at i is the substring starting at i and continuing to i+Z(i)-1. Only defined for Z(i) > 0.
- Let I and r be the boundaries of the right-most Z-box. Right-most means largest right index.

Z Algorithm (1)

Initialization:

- Set Z(2) = longest prefix of S[2..] and S.
- If Z(2) > 0, set I := 2, r := I + Z(2) − 1.

• Otherwise, I = r = 0.

Z Algorithm (2)

- Input: Z(2), ..., Z(k-1), and [I, r].
- Determine Z(k) and update [l, r].
- Case 1: if k > r,

- Compute Z(k) manually i.e., compare S[k..] and S.
- If Z(k) > 0, update I = k and r = k + Z(k) 1.

Z Algorithm (3)

Case 2: if k <= r

• Case 2a: Z(k') < B

- Set Z(k) = Z(k').
- No update to [l, r].

Z Algorithm (4)

- Z-box guarantees that S[I..r] = S[1...5], but not beyond.
- S[k..r] must be a prefix. Compare S[r+1...] to S[B+1..].
- If a mismatch occurs at $q \ge r + 1$, set Z(k) = q k + 1.
- Update I = k, r = q-1.

10/12

Comments on the Z Algorithm

- Operations under Z-boxes are constant-time.
- Complexity outside Z-box = O(#comparisons)
 = O(#matches + #mismatches)
- Each iteration contains at most one mismatch.
 #mismatches = O(u), where u = len(S).
- When matched, Z-box boundary r is extended proportionally to #matches.
- At most u possible values of r. That means #mismatches = O(u).

Thank you