
Hamiltonian ABC

Meeds, Leenders, Welling UAI 2015

Heiko

Gatsby MLJC

June 8, 2014



Hamiltonian Approximate Bayesian Computation

Antagonistic?

I ABC is intended for complex and mostly intractable likelihoods

I HMC requires a lot from the target: gradients and Hessians



Ideas

Motivation:

I Overcome random walk on ABC

High level:

I Construct (parametric) synthetic likelihood

I Stochastic gradients

I Hamiltonian dynamics

Computational tricks:

I Synthetic likelihood is Gaussian

I Stochastic �nite di�erences for di�erentiation

I Variance reduction via sticky random numbers



ABC

I Bayesian posterior

π(θ|y) ∝ π(θ)π(y|θ)

with y ∈ RJ summary statistics of raw observations

I ABC: Likelihood is intractable

I Have simulator given for x ∈ RJ given θ ∈ RD

I Idea to estimate π(y|θ)

I Simulate x
(s) ∼ π(x|θ). In practice x

(s) = f (θ, ω) with seed ω
I Compare to observed data y via an ε-kernel πε(y|x)

πε(y|θ) =

ˆ
πε(y|x)π(x|θ)dx ≈ 1

S

S∑

s=1

πε(y|x(s))

I Examples: ε-ball, Gaussian, etc.



ABC-MCMC

I Targets approximate posterior:

πε(θ|y) ∝ π(θ)πε(y|θ)

I Proposal: θ′,x(1)
′
, . . . , x(S)

′
from

q(θ′|θ)
∏

s

π(x (s)
′ |θ′)

I Acceptance probability:

min

(
π(θ′)
π(θ)

×
1
S

∑
S

s=1 πε(y|x(s)
′
)

1
S

∑
S

s=1 πε(y|x(s))
× q(θ|θ′)

q(θ′|θ)

)

I Pseudo-Marginal MCMC, Marginal MCMC

I Under conditions: πε(θ|y)→ π(θ|y) as ε→ 0



Synthetic likelihoods

I Conditional model for π(x|θ)

I Can be Gaussian (Wood, 2010)

π(x|θ) = N (x|µθ, σ2θ)

with µθ, σ
2
θ estimated from x(s) ∼ π(x|θ)

I Can also be KDE or GP (Meeds, Welling, 2014)

I If the ε-kernel and π(x|θ) are Gaussian

πε(y|θ) =

ˆ
N (y|x, ε2)N (x|µθ, σ2θ)dx

= N (y|µθ, σ2θ + ε2)

I Paper claims: More robust to small ε

I Xian's Og: Doesn't make sense as ε is estimated from x(s) too



Gradients?

I Recall model

π(θ|y) ∝ π(θ)π(y|θ) ≈ π(θ)πε(y|θ)

I Gradient-based posterior inference on θ needs ∇θπε(y|θ)

I Here, that is
∇θN (y|µθ, σ2θ + ε2)

where e.g.

µθ =
1

S

S∑

s=1

x(s) and σ2θ =
1

S − 1

S∑

s=1

x(s)
(
x(s)
)>

I Unfortunately ∇θx
(s) = ∇θf (θ, ω) depends on simulator



Stochastic gradients

I Finite di�erenc quotient for dimension d

∂

∂θd
πε(y|θ) ≈ πε(y|θd + dθ)− πε(y|θd )

dθ

I Too expensive, pick random directions

I Simultaneous perturbation stochastic approximation (SPSA)

πε(y|θ) ≈ πε(y|θ + dθ∆)− πε(y|θ − dθ∆)

2dθ
[∆−11 , . . . ,∆−1

D
]

with random perturbation mask ∆d ∈ {−1, 1}
I Unbiased gradient estimator using 2D simulations



SGLD reminder

I Stochastic gradient Langevin (Welling & Teh 2011)

I Gradient descent + noise

I Proposal

θt+1 = θt + ηtN (0,M)− 1

2
η2t∇Û(θ)

I Correct as
∑

t
ηt =∞ and

∑
t
η2 < 0

I Local!



HMC reminder

I MCMC using Hamiltonian dynamics (Neal, 2011)

I De�ne joint log-density on (θ, ρ), the Hamiltonian

H(θ, ρ) = U(θ) + K (ρ)

where

U(θ) = − log π(θ|y) and K (ρ) = −1
2
ρ>M−1ρ

I Dynamics parametrised in t ∈ R on contours of H

dθ = M−1ρdt and dρ = −∇θU(θ)dt

I HMC is MCMC on (θ, ρ)-space

I Re-sample ρ′

I Simulate numerically (θ, ρ′) 7→ (θ∗, ρ∗) using dt = η
I Accept/reject



Stochastic gradient HMC

I Stochastic gradient HMC (Chen 2014)
I Stochastic gradient thermostats (Ding, 2014)
I The fundamental incompatibility of HMC of sub-sampling

(Betancourt 2015)

I Replace ∇U(θ) with noisy version ∇Û(θ)
I Mini-batches (Big Data), stochastic �nite di�erences, etc
I Problem: noise form? CLT 'model':

∇Û(θ) = ∇U(θ) +N (θ|0, η2V (θ))

I Dynamics become

dθ = M−1ρdt and dρ = −∇θU(θ)dt+N (0, η2V (θ))dt

I Problem: H not invariant under those dynamics
I To correct: accept/reject (?) or add friction −η2V (θ)M−1ρdt



Bias vs. variance: synthetic likelihoods

Recall:

I Synthetic likelihood: πε(y|θ) = N (y|µθ, σ2θ + ε2)

I Gaussian ε-kernel: πε(y|θ) = 1
S

∑
S

s=1N (x(s)|y, ε2I )

HAMILTONIAN ABC
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Figure 2: Variance of gradient estimation using kernel-ε and SL for different values of S ∈ {5, 50} and fixed ε = 0.37
(the same used in the other results). When S = 5, the empirical estimates of ∇Û(θMAP) are −12 ± 147
(kernel-ε) and −9.3± 43 (SL). When S = 50 they are −0.80± 19 (kernel-ε) and −7.3± 4.9 (SL). Note the
large discrepancy in variance. Note the limit of S →∞,∇Û(θMAP) = −7.8. The bias if SL gradients is due
to its Gaussian approximation (smoothed by ε) of π(x|θ), which is a heavy-tailed Gamma distribution (the
sum of N exponentials).

our Markov chain. We will now describe a simple Metropolis-Hastings transition operator that randomly
proposes flipping each seed ωs at time t with some probability γ.

This Metropolis-Hastings transition conditions of the current parameter location θ and proposes changing
a single random seed ω (it easily generalizes to S seeds). The procedure is as follows: 1) propose a new seed
ω
′ ∼ q(ω

′ |ω) = π(ω) (independent of the current seed and from its uniform prior); 2) simulate determin-
istically x

′
= f(θ, ω

′
); 3) compute the acceptance ratio (which reduces to the ratio of π(y|x′)/π(y|x)). It

is straightforward to show that this leaves the target distribution invariant. The probability of the proposal is
q(x

′
, ω
′ |θ, ω) = π(ω

′
)δ(x

′ −f(θ, ω
′
)), where δ(a) is a delta function at a = 0. Because the q has this form,

acceptance ratio simplifies:

πε(y|x
′
)π(ω

′
)π(x

′ |θ, ω′)
πε(y|x)π(ω)π(x|θ, ω)

π(ω)δ(x− f(θ, ω))

π(ω′)δ(x′ − f(θ, ω′))
=
πε(y|x

′
)

πε(y|x)
(31)

In pseudo-marginal ABC-MCMC one could propose q(x
′(s)|θ) (fixing θ) and still sample correctly from

the distribution of simulations with high likelihood at θ. What we propose is slightly different. By instead
keeping the random seeds fixed, we can sample θ using HABC and use ω as CRNs within the gradient
computation step and suppress gradient noise over time. In this way, random seeds carry over the same
additive noise from one step to the next.

5. Demonstration
We use a simple D = 1 problem to demonstrate HABC. Let y = 1

N

∑
i ei, where ei ∼ Exp(1/θ?); θ? =

0.15, N = 20, and y = 7.74 in our concrete example. Assuming π(θ) = Gamma(α, β), the true posterior is
a gamma distribution with shape α+N and rate β+Ny. Our simulator therefore generates the average of N
exponential random variates with rate λ = 1/θ. Data x sim∼ π(x|θ) are shown in Figure 1. We have explicitly
shown the smoothness of the simulator by generating data along trajectories of fixed seeds ωs; i.e. for several
ωs we vary θ (dashed lines are function f(θ, ωs)) and randomly reveal simulation data (blue circles). The
horizontal line with shading indicates y ± 2ε, where ε = 0.37 is used throughout the demonstration.
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Impact on posterior inference
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Figure 3: Posterior distributions for the demonstration problem. Top row: No persistent seeds. Bottom row: Persistent
seeds with γ = 0.1. Histograms of the posterior estimates are overlaid with the true posterior (dashed line).
All algorithms (except for SG-Thermostats for non-persistent ω) give roughly the same posterior estimate.
By adding persistent ω SG-Thermostats achieved similar posteriors to the other algorithms.

5.1 Bias and Variance of ∇Û(θ)

To test our assumption that the synthetic-likelihood model is better suited for HABC, we ran FDSA at the
true θMAP. Using S = 5 and S = 50 and fixing ε = 0.37, we gather 10K gradients samples using kernel-ε
and SL likelihoods. These gradient estimate densities are shown in Figure 2. An unbiased estimate of the
gradient should be centered at 0. There are two important results. First, the SL estimates have a small bias,
even at S = 50. This is because it is estimating the true Gamma distribution of π(x|θ) with a Gaussian. We
can analytically estimate this bias as S → ∞; for this example it is −7.8 which is what SL estimates are
centered around (−9.3 for S = 5 and 7.3 for S = 50). The kernel-ε likelihood, on the other hand, exhibits
low bias at S = 50. However, the second important result is the variances. SL variances decrease quickly
with S: σ2 = 432 → 4.92, whereas kernel-ε starts very high and remains high: σ2 = 1472 → 192. It is
for this reason that we have chosen to use SL likelihoods for our gradient estimates, despite their small bias.
As mentioned in Section 4.2 it is possible that other likelihood models, such as KDE, might provide low bias
and low variance gradient estimates. We leave this for future work.

5.2 Posterior Inference using HABC

We ran chains of length 50K for SL-MCMC, SGLD, SGHMC, and SGNHT versions of HABC using SL
gradient estimates (S = 5). A pseudo-marginal version of SL-MCMC was used. We note that SGHMC
gave results nearly identical to SGNHT, so are not shown do to space limitations. In one set of experi-
ments, common random seeds were used for gradient computations only, and did not persist over time steps;
these experiments are called non-persistent. In another set of runs, we resampled ωs at each time step with
probability γ = 0.1; these experiments are persistent. In Figure 3 we show the posterior distributions for
these experiments; in Table 1 we report the total variational distance between the true posterior and the
ABC posteriors using the first 10K samples and after 50K samples (averaged over 5 chains). Of note is
the poor approximation of SG-Thermostats when the seeds are not persistent. By adding persistent seeds,
SG-Thermostats gives similar posteriors to the other methods.
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Impact on posterior inference

I Skew normal:

p(y |θ) = N (y |µ = 10, 1) Φ (10y)
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Reduce noise 'for free' � sticky random numbers

I Recall ∇θU(θ) = −∇θπ(θ)πε(y|θ)
I Numerical integration of HMC dynamics requires to evaluate
∇θU(θ) at each point of trajectory

I Assume ∇θπε(y|θ) is smooth in θ, use CRNs
I Deterministic simulation x(s) = f (θ, ω) with seed ω

MEEDS, LEENDERS, AND WELLING
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Figure 1: A view of a simulator in terms of common random numbers. The horizontal line represents y and red shading
±2ε. The shaded curved region represents 2σ of π(x|θ). The dashed lines are f(θ, ωs) for several values of
ω. The blue circles are potential random samples from π(x|θ). For a fixed value ωs, the simulator produces
deterministic outputs that change smoothly, even though the simulator itself is quite noisy.

If we let ĝr(θ) be the estimate using perturbation mask ∆r, the estimate ĝ(θ) can be improved by averaging
ĝ(θ) = 1/R

∑
r ĝr(θ). Algorithm 2 shows SPSA to estimate ∇U(θ). The number of simulations required

for SPSA is 2SR, where R ≥ 1.
Variations of SPSA include one-sided SPSA (Spall, 2000) (we use what Spall calls 2SPSA) and an algo-

rithm for estimating the Hessian based on the same principle as SPSA (Spall, 2005). The one-sided version is
attractive computationally, but for HABC, the updates for θ require simulating two-sides anyway (once at θ,
after an step, and once for the one-sided gradient), so using 2SPSA makes more sense. SPSA has also been
used within a procedure for maximum-likelihood estimation for hidden Markov models using ABC (Ehrlich
et al., 2013).

4.4 Common and Sticky Random Numbers

The usefulness of applying common random numbers (CRNS) in SPSA has been previously demonstrated
(Kleinman et al., 1999). In that work, the same random numbers are used to simulate both sides of the opti-
mization function within the SPSA gradient. This makes sense intuitively, as we would generally assume that
the expected simulation function varies smoothly in dθ; by using CRNs, this smoothness is easily exploited
(see Figure 1). If we were to apply SPSA to Bayesian learning, then using CRNs in the gradient step would
be analogous to using the same mini-batch for both sides of the computation.

In addition to using CRNs in simulations for each gradient computation, we have found that using per-
sistent random seeds helps HABC explore the parameter landscape more easily for some algorithms and
problems. Intuitively, for a gradient-based sampling algorithm, it means a particle can slide along a smooth
Hamiltonian landscape because the additive noise is suppressed. This is very similar to using dependent ran-
dom streams to drive MCMC (Murray & Elliott, 2012; Neal, 2012), the main difference we believe is that
we are using the Hamiltonian dynamics to drive proposals for θ and using persistent seeds ω to suppress
simulation noise.

Using random seeds (versus, say, a set of random numbers) allows us to treat the simulator as a black-
box, setting the random seed of its RNG without knowing the internal mechanisms it uses to generate random
numbers. In light of our arguments above, we propose including persistent random seeds ω in the state of
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Reading suggestions

I MCMC using Hamiltonian dynamics (Neal, 2011)

I Stat. inference for noise nonlinear ecological dynamical
systems (Wood, 2010)

I Stochastic gradient HMC (Chen, Fox, Guestrin, 2014)

I Stochastic gradient thermostats (Ding et al 2014)

I The fundamental incompatibility of HMC of sub-sampling
(Betancourt 2015)

I Gaussian Process Surrograte ABC (Meeds, Welling, 2014)


