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Notation

e Fit a function f : X — R to examples {(xi,yi)}i_; "L p with
yi € {-1,+1}.
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1
m

Remp [f] =

o True risk:

R[f] = Epc(f(X),Y)
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@ Typically: fix the number of non-linearities K and minimize the
empirical risk over both the parameters w and the weights «:

W1 yee s WK QL -y

K
min KRemp Zakqb(-;wk)
k=1
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Greedy function approximations

Given function f* and a probability measure u (to measure fidelity):

(wk, ) = arg min
Wi,k

fe (1—ax) Fe1 + ard(-; wi)

(1 — ag) i1 + arod(-wy) — FF

L2(p)

Uniform bounds for functions in a given smoothness class. For example
(Jones, 1992; Barron, 1993) if £* = "7 afé(- wp).

||04||1)
= 0
L2(p) ( VK

s
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.
Space F;

e Functions of interest f(x) = [ a(w)¢(x; w)dw are endowed with the
norm w.r.t. sampling distribution 7

lo(w))|
fl. =
1£1l,c SUP ()

Space of interest F = {f = [ a(w)¢(;w)dw | ||f]|, < co}.
|o(w)| < Cr(w): weights o decay more rapidly than 7.

Smoothness class induced by the sampling distribution .
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.
The richness of space F;

o Define kernel k(x,y) = Eyr [0(x; w)o(y; w)]
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m(w)
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m(w
o The case ¢(x;w) = cos (w' x + b) covers all translation-invariant
kernels: 7(w) is then the inverse Fourier transform of x(x) = k(x, 0).
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7r(w
o F, is dense in H,: it contains all functions of the form

=Y aknx) = 3o [ dbuw)olxiw)r(e)de
i=1 i:l_

- / (@) ai(xiw) | é(xiw)dew,
i=1

a(w)

since %3‘ <3 il < oo

Dino Sejdinovic (Gatsby Unit, UCL) Random Kitchen Sinks May 9, 2014

6/ 12



.
Hypothesis space

e After randomization of {wk},’le we find the best function in a random
subspace spanned by {6(x; wi)}r_;

) K C
Fo = {f: > awd(wi) || < K}

k=1

@ Two sources of error:

o Approximation: is the risk of the best function in F,, close to the risk
of the best function in C-ball of F,.?
e Estimation: is the empirical risk in F,, close to the true risk?
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Given function f* and a probability measure u (to measure fidelity):

j.i.d. - ’
o sample {wi}h_, "~ 7, batchfit a's:

a = argmin
(03

K
> awd(wk) -
k=1

L2(u)

o (Lemma 1): Now, w.p. 1 -4

- {5 i)

@ So uniform result only over the balls in F

fer
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Main result

Theorem

Suppose that sup, ,, |¢(x;w)| < 1 and that c(f(x),y) = c (f(x)y) depends
only on the product f(x)y and is L-Lipschitz. Let w be any distribution on

Q. Then random featurization with {w;} R gives w.p. 1 — 24:

R[7] - |fﬂ1m R[f] < O<LC<\1F+\ﬁ) \/E)
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-
Approximation error: Lemma 1

Lemma

Let f* € Fr with ||[f*|. < C, and {wk}k 1 "I 1. Then there exists

f= Zk:l Qxd (- wi), with |G| < 7, s.t. wp. 1 —0:

5 C 1
fx — f* < — (1 2log - | .
HK () \/R<+\/ °g5>
Proof.
Denote f* = [ a*(w)¢(-w)dw and let f, = ir(;jk)gb( wi). Now
B fe = [ O;(Uik))ﬁb(‘;wk)w(wk)dwk = f*. Define fx = o Z,’le fx, i.e.,

weights are &y = ;W((‘:’;)) and clearly |ax| < f. Moreover, ||fl2(,y < C

a.s. and the proof follows by the concentration around the mean of the
empirical average Zle fi in L2(p). O
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Approximation error

Lemma

Rl ~RIFT = Ep [c (he()y) = e (F ()]

< Eple (fctay) — e (F ()
(cis Lipschitz) < LEp <AK(X) - f*(x)> y‘
(V=) < LEp [k~ ()
(Jensen) < L\/IEPX (?K(x) — f*(x))2 -1 H:A‘K —f* o)
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Summary

@ Selecting many random non-linearities can achieve better
accuracy-time tradeoff than greedy algorithms that optimize both
non-linearities and their weights

e Much more non-linearities required
o Optimization much much faster

@ Assuming that the sampling distribution has thicker tails than the
weight of the target, approximation error decays as O(1/v/K) with K
randomly sampled non-linearities

e Constant depends on the “smoothness” of target w.r.t. sampling
distribution, so the result is not uniform on target space.
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