Weighted Sums of Random Kitchen Sinks

based on Rahimi & Recht, NIPS 2008

Dino Sejdinovic

Gatsby Unit, UCL

May 9, 2014

• Fit a function $f: \mathcal{X} \to \mathbb{R}$ to examples $\{(x_i, y_i)\}_{i=1}^m \overset{i.i.d.}{\sim} P$ with $y_i \in \{-1, +1\}$.

- Fit a function $f: \mathcal{X} \to \mathbb{R}$ to examples $\{(x_i, y_i)\}_{i=1}^m \overset{i.i.d.}{\sim} P$ with $y_i \in \{-1, +1\}$.
- f is assumed to be of the form $f(x) = \int \alpha(\omega)\phi(x;\omega)d\omega$, where
 - $\phi(x;\omega)$ are the feature functions / nonlinearities / weak learners, parametrized by $\omega \in \Omega$ (tanh($\omega^{\top}x$), cos ($\omega^{\top}x + b$))
 - $\alpha:\Omega \to \mathbb{R}$ are the weights associated to each of the individual feature functions

- Fit a function $f: \mathcal{X} \to \mathbb{R}$ to examples $\{(x_i, y_i)\}_{i=1}^m \overset{i.i.d.}{\sim} P$ with $y_i \in \{-1, +1\}$.
- f is assumed to be of the form $f(x) = \int \alpha(\omega)\phi(x;\omega)d\omega$, where
 - $\phi(x;\omega)$ are the feature functions / nonlinearities / weak learners, parametrized by $\omega \in \Omega$ (tanh($\omega^{\top}x$), cos ($\omega^{\top}x + b$))
 - $oldsymbol{lpha}:\Omega
 ightarrow\mathbb{R}$ are the weights associated to each of the individual feature functions
- Loss function c(f(x), y) determines the *empirical risk*:

$$R_{emp}[f] = \frac{1}{m} \sum_{i=1}^{m} c(f(x_i), y_i)$$

- Fit a function $f: \mathcal{X} \to \mathbb{R}$ to examples $\{(x_i, y_i)\}_{i=1}^m \overset{i.i.d.}{\sim} P$ with $y_i \in \{-1, +1\}$.
- f is assumed to be of the form $f(x) = \int \alpha(\omega)\phi(x;\omega)d\omega$, where
 - $\phi(x;\omega)$ are the feature functions / nonlinearities / weak learners, parametrized by $\omega \in \Omega$ (tanh($\omega^{\top}x$), cos ($\omega^{\top}x + b$))
 - $oldsymbol{lpha}:\Omega
 ightarrow\mathbb{R}$ are the weights associated to each of the individual feature functions
- Loss function c(f(x), y) determines the *empirical risk*:

$$R_{emp}[f] = \frac{1}{m} \sum_{i=1}^{m} c(f(x_i), y_i)$$

True risk:

$$R[f] = \mathbb{E}_{P}c(f(X), Y)$$

$$\min_{\omega_1,...,\omega_K;\alpha_1,...,\alpha_K} \mathsf{R}_{\mathsf{emp}} \left[\sum_{k=1}^K \alpha_k \phi(\cdot;\omega_k) \right].$$

$$\min_{\omega_1,\dots,\omega_K;\alpha_1,\dots,\alpha_K} \mathsf{R}_{\mathsf{emp}} \left[\sum_{k=1}^K \alpha_k \phi(\cdot;\omega_k) \right].$$

 This paper: pick non-linearities randomly and optimize only over the weights:

$$\{\omega_k\}_{k=1}^K \overset{i.i.d.}{\sim} \pi; \qquad \min_{\alpha_1,...,\alpha_K} \mathsf{R}_{\mathsf{emp}} \left[\sum_{k=1}^K \alpha_k \phi(\cdot;\omega_k) \right].$$

$$\min_{\omega_1,\dots,\omega_K;\alpha_1,\dots,\alpha_K} \mathsf{R}_{\mathsf{emp}} \left[\sum_{k=1}^K \alpha_k \phi(\cdot;\omega_k) \right].$$

 This paper: pick non-linearities randomly and optimize only over the weights:

$$\{\omega_k\}_{k=1}^K \overset{i.i.d.}{\sim} \pi; \qquad \min_{\alpha_1,...,\alpha_K} \mathsf{R}_{\mathsf{emp}} \left[\sum_{k=1}^K \alpha_k \phi(\cdot;\omega_k) \right].$$

$$x_i \mapsto \mathbf{z}(x_i) := [\phi(x_i; \omega_1) \cdots \phi(x_i; \omega_K)]^\top.$$

$$\min_{\omega_1, \dots, \omega_K; \alpha_1, \dots, \alpha_K} \mathsf{R}_{\mathsf{emp}} \left[\sum_{k=1}^K \alpha_k \phi(\cdot; \omega_k) \right].$$

 This paper: pick non-linearities randomly and optimize only over the weights:

$$\{\omega_k\}_{k=1}^K \stackrel{i.i.d.}{\sim} \pi; \qquad \min_{\alpha_1,...,\alpha_K} \frac{1}{m} \sum_{i=1}^m c \left(\sum_{k=1}^K \alpha_k \phi(x_i; \omega_k), y_i \right).$$

$$x_i \mapsto \mathbf{z}(x_i) := [\phi(x_i; \omega_1) \cdots \phi(x_i; \omega_K)]^\top.$$

$$\min_{\omega_1,...,\omega_K;\alpha_1,...,\alpha_K} \mathsf{R}_{\mathsf{emp}} \left[\sum_{k=1}^K \alpha_k \phi(\cdot;\omega_k) \right].$$

 This paper: pick non-linearities randomly and optimize only over the weights:

$$\{\omega_k\}_{k=1}^K \stackrel{i.i.d.}{\sim} \pi; \qquad \min_{\alpha_1,\ldots,\alpha_K} \frac{1}{m} \sum_{i=1}^m c\left(\alpha^\top z(x_i), y_i\right).$$

$$x_i \mapsto \mathbf{z}(x_i) := [\phi(x_i; \omega_1) \cdots \phi(x_i; \omega_K)]^\top.$$

$$\min_{\omega_1, \dots, \omega_K; \alpha_1, \dots, \alpha_K} \mathsf{R}_{\mathsf{emp}} \left[\sum_{k=1}^K \alpha_k \phi(\cdot; \omega_k) \right].$$

 This paper: pick non-linearities randomly and optimize only over the weights:

$$\{\omega_k\}_{k=1}^K \stackrel{i.i.d.}{\sim} \pi; \qquad \min_{\alpha_1,\ldots,\alpha_K} \frac{1}{m} \sum_{i=1}^m c\left(\alpha^\top z(x_i), y_i\right) \quad \text{s.t. } \|\alpha\|_{\infty} \leq \frac{C}{K}.$$

$$x_i \mapsto \mathbf{z}(x_i) := [\phi(x_i; \omega_1) \cdots \phi(x_i; \omega_K)]^\top.$$

Greedy function approximations

Given function f^* and a probability measure μ (to measure fidelity):

$$\begin{array}{rcl} (\omega_k,\alpha_k) & = & \arg\min_{\omega_k,\alpha_k} \left\| (1-\alpha_k) \, \hat{f}_{k-1} + \alpha_k \phi(\cdot;\omega_k) - f^* \right\|_{L^2(\mu)} \\ & \hat{f}_k & \leftarrow & (1-\alpha_k) \, \hat{f}_{k-1} + \alpha_k \phi(\cdot;\omega_k) \end{array}$$

Uniform bounds for functions in a given smoothness class. For example (Jones, 1992; Barron, 1993) if $f^* = \sum_{k=1}^{\infty} \alpha_k^* \phi(\cdot; \omega_k^*)$,

$$\left\|\hat{f}_{K} - f^{*}\right\|_{L^{2}(\mu)} = O\left(\frac{\left\|\alpha\right\|_{1}}{\sqrt{K}}\right)$$

Space \mathcal{F}_{π}

• Functions of interest $f(x) = \int \alpha(\omega)\phi(x;\omega)d\omega$ are endowed with the norm w.r.t. sampling distribution π :

$$\|f\|_{\pi} = \sup_{\omega \in \Omega} \frac{|\alpha(\omega)|}{\pi(\omega)}$$

- Space of interest $\mathcal{F}_{\pi} = \{ f = \int \alpha(\omega) \phi(\cdot; \omega) d\omega \mid \|f\|_{\pi} < \infty \}.$
- $|\alpha(\omega)| \leq C\pi(\omega)$: weights α decay more rapidly than π .
- ullet Smoothness class induced by the sampling distribution π .

• Define kernel $k(x,y) = \mathbb{E}_{\omega \sim \pi} \left[\phi(x;\omega) \phi(y;\omega) \right]$

- Define kernel $k(x,y) = \mathbb{E}_{\omega \sim \pi} \left[\phi(x;\omega) \phi(y;\omega) \right]$
- Then RKHS \mathcal{H}_k consists of functions $f(x) = \int \alpha(\omega)\phi(x;\omega)d\omega$ such that $\|f\|_{\mathcal{H}_k}^2 = \int \frac{\alpha(\omega)^2}{\pi(\omega)}d\omega < \infty$

- Define kernel $k(x,y) = \mathbb{E}_{\omega \sim \pi} \left[\phi(x;\omega) \phi(y;\omega) \right]$
- Then RKHS \mathcal{H}_k consists of functions $f(x) = \int \alpha(\omega)\phi(x;\omega)d\omega$ such that $\|f\|_{\mathcal{H}_k}^2 = \int \frac{\alpha(\omega)^2}{\pi(\omega)}d\omega < \infty$
- $\|f\|_{\mathcal{H}_k}^2 = \int \frac{\alpha(\omega)^2}{\pi(\omega)^2} \pi(\omega) d\omega \le \|f\|_{\pi}^2$, so $\mathcal{F}_{\pi} \subseteq \mathcal{H}_k$

- Define kernel $k(x,y) = \mathbb{E}_{\omega \sim \pi} \left[\phi(x;\omega) \phi(y;\omega) \right]$
- Then RKHS \mathcal{H}_k consists of functions $f(x) = \int \alpha(\omega)\phi(x;\omega)d\omega$ such that $\|f\|_{\mathcal{H}_k}^2 = \int \frac{\alpha(\omega)^2}{\pi(\omega)}d\omega < \infty$
- $||f||_{\mathcal{H}_k}^2 = \int \frac{\alpha(\omega)^2}{\pi(\omega)^2} \pi(\omega) d\omega \le ||f||_{\pi}^2$, so $\mathcal{F}_{\pi} \subseteq \mathcal{H}_k$
- The case $\phi(x;\omega) = \cos\left(w^{\top}x + b\right)$ covers all translation-invariant kernels: $\pi(w)$ is then the inverse Fourier transform of $\kappa(x) = k(x,0)$.

- Define kernel $k(x,y) = \mathbb{E}_{\omega \sim \pi} \left[\phi(x;\omega) \phi(y;\omega) \right]$
- Then RKHS \mathcal{H}_k consists of functions $f(x) = \int \alpha(\omega)\phi(x;\omega)d\omega$ such that $\|f\|_{\mathcal{H}_k}^2 = \int \frac{\alpha(\omega)^2}{\pi(\omega)}d\omega < \infty$
- $||f||_{\mathcal{H}_k}^2 = \int \frac{\alpha(\omega)^2}{\pi(\omega)^2} \pi(\omega) d\omega \le ||f||_{\pi}^2$, so $\mathcal{F}_{\pi} \subseteq \mathcal{H}_k$
- \mathcal{F}_{π} is **dense** in \mathcal{H}_{k} : it contains all functions of the form

$$f(x) = \sum_{i=1}^{m} a_i k(x_i, x) = \sum_{i=1}^{m} a_i \int \phi(x_i; \omega) \phi(x; \omega) \pi(\omega) d\omega$$
$$= \int \left[\underbrace{\pi(\omega) \sum_{i=1}^{m} a_i \phi(x_i; \omega)}_{\alpha(\omega)} \right] \phi(x; \omega) d\omega,$$

since
$$\frac{|\alpha(\omega)|}{\pi(\omega)} \leq \sum_{i=1}^m |a_i| < \infty$$
.

Hypothesis space

• After randomization of $\{\omega_k\}_{k=1}^K$ we find the best function in a random subspace spanned by $\{\phi(x;\omega_k)\}_{k=1}^K$

$$\hat{\mathcal{F}}_{\omega} = \left\{ f = \sum_{k=1}^{K} \alpha_k \phi(\cdot; \omega_k) \mid |\alpha_k| \le \frac{C}{K} \right\}$$

- Two sources of error:
 - Approximation: is the risk of the best function in $\hat{\mathcal{F}}_{\omega}$ close to the risk of the best function in C-ball of \mathcal{F}_{π} ?
 - Estimation: is the empirical risk in $\hat{\mathcal{F}}_{\omega}$ close to the true risk?

Given function f^* and a probability measure μ (to measure fidelity):

• sample $\{\omega_k\}_{k=1}^K \stackrel{i.i.d.}{\sim} \pi$, batch-fit α 's:

$$\alpha = \arg\min_{\alpha} \left\| \sum_{k=1}^{K} \alpha_k \phi(\cdot; \omega_k) - f^* \right\|_{L^2(\mu)}$$

• (Lemma 1): Now, w.p. $1 - \delta$

$$\left\|\hat{f}_{K} - f^{*}\right\|_{L^{2}(\mu)} = O\left(\frac{\|f^{*}\|_{\pi}}{\sqrt{K}}\left(1 + \sqrt{2\log\frac{1}{\delta}}\right)\right)$$

ullet So uniform result only over the balls in \mathcal{F}_{π}

Main result

Theorem

Suppose that $\sup_{x,\omega} |\phi(x;\omega)| \leq 1$ and that c(f(x),y) = c(f(x)y) depends only on the product f(x)y and is L-Lipschitz. Let π be any distribution on Ω . Then random featurization with $\{\omega_k\}_{k=1}^K \overset{i.i.d.}{\sim} \pi$ gives w.p. $1-2\delta$:

$$\mathsf{R}[\hat{f}] - \min_{\|f\|_{\pi} \leq C} \mathsf{R}[f] \ \leq \ O\left(\mathsf{LC}\left(\frac{1}{\sqrt{m}} + \frac{1}{\sqrt{K}}\right)\sqrt{\log\frac{1}{\delta}}\right).$$

Approximation error: Lemma 1

Lemma

Let $f^* \in \mathcal{F}_{\pi}$ with $||f^*||_{\pi} \leq C$, and $\{\omega_k\}_{k=1}^K \stackrel{i.i.d.}{\sim} \pi$. Then there exists $\hat{f} = \sum_{k=1}^K \hat{\alpha}_k \phi(\cdot; \omega_k)$, with $|\hat{\alpha}_k| \leq \frac{C}{K}$, s.t. w.p. $1 - \delta$:

$$\left\|\hat{f}_{\mathcal{K}} - f^* \right\|_{L^2(\mu)} \le \frac{C}{\sqrt{K}} \left(1 + \sqrt{2\log \frac{1}{\delta}}\right).$$

Proof.

Denote $f^* = \int \alpha^*(\omega)\phi(\cdot;\omega)d\omega$ and let $f_k = \frac{\alpha^*(\omega_k)}{\pi(\omega_k)}\phi(\cdot;\omega_k)$. Now $\mathbb{E}_{\omega_k}f_k = \int \frac{\alpha^*(\omega_k)}{\pi(\omega_k)}\phi(\cdot;\omega_k)\pi(\omega_k)d\omega_k = f^*$. Define $\hat{f}_K = \frac{1}{K}\sum_{k=1}^K f_k$, i.e., weights are $\hat{\alpha}_k = \frac{\alpha^*(\omega_k)}{K\pi(\omega_k)}$, and clearly $|\hat{\alpha}_k| \leq \frac{C}{K}$. Moreover, $||f_k||_{L^2(\mu)} \leq C$ a.s. and the proof follows by the concentration around the mean of the empirical average $\frac{1}{K}\sum_{k=1}^K f_k$ in $L^2(\mu)$.

Approximation error

Lemma

$$\mathbf{R}[\hat{f}_K] - \mathbf{R}[f^*] \le \frac{LC}{\sqrt{K}} \left(1 + \sqrt{2\log\frac{1}{\delta}}\right).$$

 $R[\hat{t}_K] - R[f^*] = \mathbb{E}_P \left[c \left(\hat{t}_K(x) y \right) - c \left(f^*(x) y \right) \right]$

$$\leq \mathbb{E}_{P} \left| c \left(\hat{f}_{K}(x) y \right) - c \left(f^{*}(x) y \right) \right|$$

$$(cis Lipschitz) \qquad \leq L \mathbb{E}_{P} \left| \left(\hat{f}_{K}(x) - f^{*}(x) \right) y \right|$$

$$(|y| \leq 1) \qquad \leq L \mathbb{E}_{P_{X}} \left| \hat{f}_{K}(x) - f^{*}(x) \right|$$

$$(Jensen) \qquad \leq L \sqrt{\mathbb{E}_{P_{X}} \left(\hat{f}_{K}(x) - f^{*}(x) \right)^{2}} = L \left\| \hat{f}_{K} - f^{*} \right\|_{L^{2}(P_{X})}$$

Summary

- Selecting many random non-linearities can achieve better accuracy-time tradeoff than greedy algorithms that optimize both non-linearities and their weights
 - Much more non-linearities required
 - Optimization much much faster
- Assuming that the sampling distribution has thicker tails than the weight of the target, approximation error decays as $O(1/\sqrt{K})$ with K randomly sampled non-linearities
- Constant depends on the "smoothness" of target w.r.t. sampling distribution, so the result is not uniform on target space.