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Introduction

In kernel methods, learned functions take the form

f(x) = Z aik(x,x;) = Z a; (p(x), p(xi)) 5

for training points x;.
© Advantage: can work with infinite feature spaces.

@ Disadvantage: need to store all the training points.
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Introduction

In kernel methods, learned functions take the form

f(x) = Z aik(x,x;) = Z a; (p(x), p(xi)) 5

for training points x;.
© Advantage: can work with infinite feature spaces.

@ Disadvantage: need to store all the training points.

Ways to get around this:
@ Throw points away (incomplete Cholesky, sparse methods,...)

@ This paper: finite random feature spaces
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Method 1: Fourier space

Bochner's theorem: a continous kernel k(x —y) on R is positive definite
iff

k(x —y) = / p(w)ein(x_Y)dw
Rd

for a probability measure p(w) (actually a finite non-negative Borel measure: prob.
measure with appropriate normalization)
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Method 1: Fourier space

Bochner's theorem: a continous kernel k(x —y) on R is positive definite
iff
k(x —y) = / p(w)ein(x_Y)dw
Rd

for a probability measure p(w) (actually a finite non-negative Borel measure: prob.
measure with appropriate normalization)

Define ¢, := e/ *. Then

k) = [ (7 (Y]
= E(cos(w ' (x —y))) + iEu(sin(w’ (x — y))).

=0

Rahimi, Recht ((NIPS 2007)) Random features for large-scale kernel m: April 25, 2013 3/11



Method 1: Fourier space

Because k(x —y) is real and p(w) is real, can replace this with cosine
features:

2, b(X) = V2cos (wa + b)

where b uniform on [0, 27)

Then
k(X — y) =E, [Zw,b(x)zw,b()')]
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Method 1: Fourier space

Because k(x —y) is real and p(w) is real, can replace this with cosine
features:

2, b(X) = V2cos (wa + b)

where b uniform on [0, 27)

Then
k(x —y) = Eup [20,6(X)20,5(y)]
Proof:

2 cos(w " x + b) cos(w 'y 4 b) = cos(w " (x + y) + 2b) + cos(w ' (x — y))

expectation zero
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.
Method 1: Fourier space

Generate D random features to decrease variance. Then

D
1 . .
k(x —y) ~ ) E zﬁl(x)zﬁ%(y).
j=1
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.
Method 1: Fourier space

Generate D random features to decrease variance. Then
k(x —y) ~ ) Z zﬁl(x)zﬁ%(y).
j=1

Convergence result:

Claim 1 (Uniform convergence of Fourier features). Let M be a compact subset of R® with diam-
eter diam(M). Then, for the mapping z defined in Algorithm 1, we have

e et s ] 2 (B o (5255,

where crg = Epw'w] is the second moment of the Fourier transform of k.  Fur-

ther, sup, e |2(x)'2(y) — k(y,x)| < € with any constant probability when D =
Q (E% log (r,,diaem(/\/l))
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Method 2: randomly shifted grid

Figure: Kernel kpat(x — y) = max (O, 1-— M)

o
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-
Method 2: randomly shifted grid

Figure: Randomly shifted grid. u ~ U(0, §).

Probability of x, y falling in the same bin:

= 16) =kl —n) %= |5

2a¢

o
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.
Method 2: randomly shifted grid

As before, take distributions over features to get more advanced kernels:

k(x,y) = /OOO knat (X, y; 0)p(8)déd.

Given a kernel, how to compute p(d)?
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.
Method 2: randomly shifted grid

As before, take distributions over features to get more advanced kernels:

k(Xay) = /OVOO khat(X,y;(S)P((S)d(S.

Given a kernel, how to compute p(d)?

k(]x = y1)

k(A)

—/Aoop(é)dé—A/:o

Take 2nd derivative wrt A:
2k p(B)
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.
Method 2: randomly shifted grid

Example:
kiap = exp (= |x — y[) = exp (—A)

then p(d) = d exp(—d) (Gamma distribution).
Note: for a Gaussian, p(d) not a valid prob. density.
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.
Method 2: randomly shifted grid
Example:
kiap = exp (— |x — y|) = exp (—A)

then p(d) = d exp(—d) (Gamma distribution).
Note: for a Gaussian, p(d) not a valid prob. density.

Reduce variance by averaging over P independent grids (u,d).
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.
Method 2: randomly shifted grid

Example:
kiap = exp (= |x — y[) = exp (—A)

then p(d) = d exp(—d) (Gamma distribution).
Note: for a Gaussian, p(d) not a valid prob. density.

Reduce variance by averaging over P independent grids (u,d).

Multiple dimensions: use independent grids in each dimension, and
m
k(x—y) = [T km(x™ = y™).
k=1

The feature is an m-dimensional binary tensor with a single one at

coordinate [ {%J L%J ]
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.
Method 2: randomly shifted grid

In practice: use a hash of the binary vector as a feature map.

Convergence result:

Claim 2. Let M be a compact subset of R® with diameter diam(M). Let o = E[1/6] and let Ly,
denote the Lipschitz constant of k with respect to the Ly norm. With z as above, we have

Pe? €
s T In ﬁ)
Pr| sup |z(x)'z(y) — k(x,y)| < €| >1—36dPadiam(M)exp | ————= |,
x,yeM d+1
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Results
Dataset Fourier+LS Binning+LS CVM Exact SVM
CPU 3.6% 5.3% 5.5% 11%
regression 20 secs 3 mins 51 secs 31 secs
6500 instances 21 dims D = 300 P = 350 ASVM
Census 5% 7.5% 8.8% 9%
regression 36 secs 19 mins 7.5 mins 13 mins
18,000 instances 119 dims D = 500 P =30 SVMTorch
Adult 14.9% 15.3% 14.8% 15.1%
classification 9 secs 1.5 mins 73 mins 7 mins
32,000 instances 123 dims D = 500 P =30 svMlisht
Forest Cover 11.6% 2.2% 2.3% 2.2%
classification 71 mins 25 mins 7.5 hrs 44 hrs
522,000 instances 54 dims D = 5000 P =50 libSVM
KDDCUP 99 (see footnote) 7.3% 7.3% 6.2% (18%) 8.3%
classification 1.5 min 35 mins 1.4 secs (20 secs) <1s
4,900,000 instances 127 dims D = 50 P =10 SVM+sampling

Interpretation: for data where interpolation is needed, use Fourier kernels.
For data where “memorization” is needed, use binning features.

Caveat: the Gaussian kernel was used for Fourier+LS, the Laplace for

Binning+LS
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