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Introduction

In kernel methods, learned functions take the form

f (x) =
∑

i

αik(x , xi ) =
∑

i

αi 〈φ(x), φ(xi )〉H

for training points xi .
1 Advantage: can work with infinite feature spaces.
2 Disadvantage: need to store all the training points.

Ways to get around this:
1 Throw points away (incomplete Cholesky, sparse methods,...)
2 This paper: finite random feature spaces
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Method 1: Fourier space

Bochner’s theorem: a continous kernel k(x− y) on <d is positive definite
iff

k(x− y) =

ˆ
<d

p(ω)e iω>(x−y)dω

for a probability measure p(ω) (actually a finite non-negative Borel measure: prob.
measure with appropriate normalization)

Define ζω := e iω>x. Then

k(x− y) = Eω
[(

e iω>x
)(

e iω>y
)∗]

= Eω(cos(ω>(x− y))) + iEω(sin(ω>(x− y)))︸ ︷︷ ︸
=0

.
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Method 1: Fourier space

Because k(x− y) is real and p(ω) is real, can replace this with cosine
features:

zω,b(x) =
√
2cos

(
ω>x + b

)

where b uniform on [0, 2π)

Then
k(x− y) = Eω,b

[
zω,b(x)zω,b(y)

]

Proof:

2 cos(ω>x + b) cos(ω>y + b) = cos(ω>(x + y) + 2b)︸ ︷︷ ︸
expectation zero

+ cos(ω>(x− y))
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Method 1: Fourier space

Generate D random features to decrease variance. Then

k(x− y) ≈ 1
D

D∑

j=1

z(j)
ω,b(x)z(j)

ω,b(y).

Convergence result:

RD

R2ω

x
Kernel Name k(∆) p(ω)

Gaussian e−
�∆�2

2
2 (2π)−

D
2 e−

�ω�2
2

2

Laplacian e−�∆�1
�

d
1

π(1+ω2
d)

Cauchy
�

d
2

1+∆2
d

e−�∆�1

Figure 1: Random Fourier Features. Each component of the feature map z(x) projects x onto a random
direction ω drawn from the Fourier transform p(ω) of k(∆), and wraps this line onto the unit circle in R2.
After transforming two points x and y in this way, their inner product is an unbiased estimator of k(x,y). The
table lists some popular shift-invariant kernels and their Fourier transforms. To deal with non-isotropic kernels,
the data may be whitened before applying one of these kernels.

If the kernel k(δ) is properly scaled, Bochner’s theorem guarantees that its Fourier transform p(ω)

is a proper probability distribution. Defining ζω(x) = ejω�x, we have

k(x − y) =

�

Rd

p(ω)ejω�(x−y) dω = Eω[ζω(x)ζω(y)∗], (2)

so ζω(x)ζω(y)∗ is an unbiased estimate of k(x,y) when ω is drawn from p.

To obtain a real-valued random feature for k, note that both the probability distribution p(ω) and
the kernel k(∆) are real, so the integrand ejω�(x−y) may be replaced with cosω�(x − y). Defining
zω(x) = [ cos(x) sin(x) ]

� gives a real-valued mapping that satisfies the condition E[zω(x)�zω(y)] =

k(x,y), since zω(x)�zω(y) = cosω�(x − y). Other mappings such as zω(x) =
√

2 cos(ω�x +
b), where ω is drawn from p(ω) and b is drawn uniformly from [0, 2π], also satisfy the condition
E[zω(x)�zω(y)] = k(x,y).

We can lower the variance of zω(x)�zω(y) by concatenating D randomly chosen zω into a column
vector z and normalizing each component by

√
D. The inner product of points featureized by the

2D-dimensional random feature z, z(x)�z(y) = 1
D

�D
j=1 zωj (x)zωj (y) is a sample average of

zωj (x)zωj (y) and is therefore a lower variance approximation to the expectation (2).

Since zω(x)�zω(y) is bounded between -1 and 1, for a fixed pair of points x and y, Hoeffd-
ing’s inequality guarantees exponentially fast convergence in D between z(x)�z(y) and k(x,y):
Pr [|z(x)�z(y) − k(x,y)| ≥ �] ≤ 2 exp(−D�2/2). Building on this observation, a much stronger
assertion can be proven for every pair of points in the input space simultaneously:

Claim 1 (Uniform convergence of Fourier features). Let M be a compact subset of Rd with diam-
eter diam(M). Then, for the mapping z defined in Algorithm 1, we have

Pr

�
sup

x,y∈M
|z(x)�z(y) − k(x,y)| ≥ �

�
≤ 28

�
σp diam(M)

�

�2

exp

�
− D�2

4(d + 2)

�
,

where σ2
p ≡ Ep[ω

�ω] is the second moment of the Fourier transform of k. Fur-
ther, supx,y∈M |z(x)�z(y) − k(y,x)| ≤ � with any constant probability when D =

Ω
�

d
�2 log

σp diam(M)
�

�
.

The proof of this assertion first guarantees that z(x)�z(y) is close to k(x − y) for the centers of an
�-net over M × M. This result is then extended to the entire space using the fact that the feature
map is smooth with high probability. See the Appendix for details.

By a standard Fourier identity, the scalar σ2
p is equal to the trace of the Hessian of k at 0. It

quantifies the curvature of the kernel at the origin. For the spherical Gaussian kernel, k(x,y) =
exp

�
−γ�x − y�2

�
, we have σ2

p = 2dγ.

3
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Method 2: randomly shifted grid

Figure: Kernel khat(x − y) = max
(
0, 1− |x−y |

δ

)
.
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Method 2: randomly shifted grid

Figure: Randomly shifted grid. u ∼ U(0, δ).

Probability of x , y falling in the same bin:

Pr
u

(x̂ = ŷ | δ) = khat(x − y) x̂ =

⌊
x − u
δ

⌋
.
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Method 2: randomly shifted grid

As before, take distributions over features to get more advanced kernels:

k(x , y) =

ˆ ∞
0

khat(x , y ; δ)p(δ)dδ.

Given a kernel, how to compute p(δ)?

k(|x − y |) =: k(∆)

=

ˆ ∞
0

max
(
0, 1− ∆

δ

)
p(δ)dδ

=

ˆ ∞
∆

p(δ)dδ −∆

ˆ ∞
∆

p(δ)

δ
dδ.

Take 2nd derivative wrt ∆:

d2k
d∆2 =

p(∆)

∆
=⇒ p(∆) = ∆

d2k
d∆2
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Method 2: randomly shifted grid

Example:
klap = exp (− |x − y |) = exp (−∆)

then p(δ) = δ exp(−δ) (Gamma distribution).
Note: for a Gaussian, p(δ) not a valid prob. density.

Reduce variance by averaging over P independent grids (u, δ).

Multiple dimensions: use independent grids in each dimension, and

k(x− y) =
m∏

k=1

km(xm − ym).

The feature is an m-dimensional binary tensor with a single one at
coordinate

[ ⌊
x1−u1
δ1

⌋
. . .

⌊
xm−um
δm

⌋ ]
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Method 2: randomly shifted grid

In practice: use a hash of the binary vector as a feature map.

Convergence result:

probability that x and y are binned together in every dimension is
�d

m=1 km(|xm−ym|) = k(x−y).
In this multivariate case, z(x) encodes the integer vector [ x̂1,··· ,x̂d ] corresponding to each bin of the
d-dimensional grid as a binary indicator vector. In practice, to prevent overflows when computing
z(x) when d is large, our implementation eliminates unoccupied bins from the representation. Since
there are never more bins than training points, this ensures no overflow is possible.

We can again reduce the variance of the estimator z(x)�z(y) by concatenating P random binning
functions z into a larger list of features z and scaling by

�
1/P . The inner product z(x)�z(y) =

1
P

�P
p=1 zp(x)�zp(y) is the average of P independent z(x)�z(y) and has therefore lower variance.

Since z(x)�z(y) is binary, Hoeffding’s inequality guarantees that for a fixed pair of points x and y,
z(x)�z(y) converges exponentially quickly to k(x,y) as a function of P . Again, a much stronger
claim is that this convergence holds simultaneously for all points:
Claim 2. Let M be a compact subset of Rd with diameter diam(M). Let α = E[1/δ] and let Lk

denote the Lipschitz constant of k with respect to the L1 norm. With z as above, we have

Pr

�
sup

x,y∈M
|z(x)�z(y) − k(x,y)| ≤ �

�
≥ 1 − 36dPα diam(M) exp



−
�

P�2

8 + ln �
Lk

�

d + 1


 ,

Note that α =
�∞
0

1
δp(δ) dδ =

�∞
0

k̈(δ) dδ is 1, and Lk = 1 for the Laplacian kernel. The proof
of the claim (see the appendix) partitions M × M into a few small rectangular cells over which
k(x,y) does not change much and z(x) and z(y) are constant. With high probability, at the centers
of these cells z(x)�z(y) is close to k(x,y), which guarantees that k(x,y) and z(x)�z(y) are close
throughout M × M.

Algorithm 2 Random Binning Features.

Require: A point x ∈ Rd. A kernel function k(x,y) =
�d

m=1 km(|xm − ym|), so that pm(∆) ≡
∆k̈m(∆) is a probability distribution on ∆ ≥ 0.

Ensure: A randomized feature map z(x) so that z(x)�z(y) ≈ k(x − y).
for p = 1 . . . P do

Draw grid parameters δ,u ∈ Rd with the pitch δm ∼ pm, and shift um from the uniform
distribution on [0, δm].
Let z return the coordinate of the bin containing x as a binary indicator vector zp(x) ≡
hash(�x1−u1

δ1 �, · · · , �xd−ud

δd �).
end for
z(x) ≡

�
1
P [ z1(x)···zP (x) ]

�.

5 Experiments

The experiments summarized in Table 1 show that ridge regression with our random features is a fast
way to approximate the training of supervised kernel machines. We focus our comparisons against
the Core Vector Machine [14] because it was shown in [14] to be both faster and more accurate than
other known approaches for training kernel machines, including, in most cases, random sampling of
datapoints [8]. The experiments were conducted on the five standard large-scale datasets evaluated
in [14], excluding the synthetic datasets. We replicated the results in the literature pertaining to the
CVM, SVMlight, and libSVM using binaries provided by the respective authors.1 For the random
feature experiments, we trained regressors and classifiers by solving the ridge regression problem

1We include KDDCUP99 results for completeness, but note this dataset is inherently oversampled: training
an SVM (or least squares with random features) on a random sampling of 50 training examples (0.001% of the
training dataset) is sufficient to consistently yield a test-error on the order of 8%. Also, while we were able
to replicate the CVM’s 6.2% error rate with the parameters supplied by the authors, retraining after randomly
shuffling the training set results in 18% error and increases the computation time by an order of magnitude.
Even on the original ordering, perturbing the CVM’s regularization parameter by a mere 15% yields 49% error
rate on the test set [16].

5
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Results

Dataset Fourier+LS Binning+LS CVM Exact SVM
CPU 3.6% 5.3% 5.5% 11%
regression 20 secs 3 mins 51 secs 31 secs
6500 instances 21 dims D = 300 P = 350 ASVM
Census 5% 7.5% 8.8% 9%
regression 36 secs 19 mins 7.5 mins 13 mins
18,000 instances 119 dims D = 500 P = 30 SVMTorch
Adult 14.9% 15.3% 14.8% 15.1%
classification 9 secs 1.5 mins 73 mins 7 mins
32,000 instances 123 dims D = 500 P = 30 SVMlight

Forest Cover 11.6% 2.2% 2.3% 2.2%
classification 71 mins 25 mins 7.5 hrs 44 hrs
522,000 instances 54 dims D = 5000 P = 50 libSVM
KDDCUP99 (see footnote) 7.3% 7.3% 6.2% (18%) 8.3%
classification 1.5 min 35 mins 1.4 secs (20 secs) < 1 s
4,900,000 instances 127 dims D = 50 P = 10 SVM+sampling

Table 1: Comparison of testing error and training time between ridge regression with random features, Core
Vector Machine, and various state-of-the-art exact methods reported in the literature. For classification tasks,
the percent of testing points incorrectly predicted is reported, and for regression tasks, the RMS error normal-
ized by the norm of the ground truth.
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Figure 3: Accuracy on test data continues to improve as the training set grows. On the Forest dataset, using
random binning, doubling the dataset size reduces testing error by up to 40% (left). Error decays quickly as P
grows (middle). Training time grows slowly as P grows (right).

minw �Z�w − y�2
2 + λ�w�2

2, where y denotes the vector of desired outputs and Z denotes the
matrix of random features. To evaluate the resulting machine on a datapoint x, we can simply
compute w�z(x). Despite its simplicity, ridge regression with random features is faster than, and
provides competitive accuracy with, alternative methods. It also produces very compact functions
because only w and a set of O(D) random vectors or a hash-table of partitions need to be retained.
Random Fourier features perform better on the tasks that largely rely on interpolation. On the other
hand, random binning features perform better on memorization tasks (those for which the standard
SVM requires many support vectors), because they explicitly preserve locality in the input space.
This difference is most dramatic in the Forest dataset.

Figure 3(left) illustrates the benefit of training classifiers on larger datasets, where accuracy con-
tinues to improve as more data are used in training. Figure 3(middle) and (right) show that good
performance can be obtained even from a modest number of features.

6 Conclusion

We have presented randomized features whose inner products uniformly approximate many popular
kernels. We showed empirically that providing these features as input to a standard linear learning
algorithm produces results that are competitive with state-of-the-art large-scale kernel machines in
accuracy, training time, and evaluation time.

It is worth noting that hybrids of Fourier features and Binning features can be constructed by con-
catenating these features. While we have focused on regression and classification, our features can
be applied to accelerate other kernel methods, including semi-supervised and unsupervised learn-
ing algorithms. In all of these cases, a significant computational speed-up can be achieved by first
computing random features and then applying the associated linear technique.

6

Interpretation: for data where interpolation is needed, use Fourier kernels.
For data where “memorization” is needed, use binning features.
Caveat: the Gaussian kernel was used for Fourier+LS, the Laplace for
Binning+LS
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