Random features for large-scale kernel machines

Rahimi, Recht

(NIPS 2007)

April 25, 2013

Rahimi, Recht ((NIPS 2007)) Random features for large-scale kernel ma

April 25, 2013 1 / 11

э

Introduction

In kernel methods, learned functions take the form

$$f(\mathbf{x}) = \sum_{i} \alpha_{i} k(\mathbf{x}, \mathbf{x}_{i}) = \sum_{i} \alpha_{i} \langle \phi(\mathbf{x}), \phi(\mathbf{x}_{i}) \rangle_{\mathcal{H}}$$

for training points x_i .

- Advantage: can work with infinite feature spaces.
- ② Disadvantage: need to store all the training points.

• • = • • =

Introduction

In kernel methods, learned functions take the form

$$f(\mathbf{x}) = \sum_{i} \alpha_{i} k(\mathbf{x}, \mathbf{x}_{i}) = \sum_{i} \alpha_{i} \langle \phi(\mathbf{x}), \phi(\mathbf{x}_{i}) \rangle_{\mathcal{H}}$$

for training points x_i .

- Advantage: can work with infinite feature spaces.
- ② Disadvantage: need to store all the training points.

Ways to get around this:

- Introw points away (incomplete Cholesky, sparse methods,...)
- This paper: finite random feature spaces

A (10) A (10) A (10)

Bochner's theorem: a **continous** kernel $k(\mathbf{x} - \mathbf{y})$ on \Re^d is positive definite iff

$$k(\mathbf{x} - \mathbf{y}) = \int_{\Re^d} p(\omega) e^{i\omega^\top (\mathbf{x} - \mathbf{y})} d\omega$$

for a **probability measure** $p(\omega)$ (actually a finite non-negative Borel measure: prob. measure with appropriate normalization)

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

Bochner's theorem: a **continous** kernel $k(\mathbf{x} - \mathbf{y})$ on \Re^d is positive definite iff

$$k(\mathbf{x}-\mathbf{y}) = \int_{\Re^d} p(\omega) e^{i\omega^ op (\mathbf{x}-\mathbf{y})} d\omega$$

for a **probability measure** $p(\omega)$ (actually a finite non-negative Borel measure: prob. measure with appropriate normalization)

Define $\zeta_{\omega} := e^{i\omega^{\top}\mathbf{x}}$. Then

$$k(\mathbf{x} - \mathbf{y}) = \mathbb{E}_{\omega} \left[\left(e^{i\omega^{\top}\mathbf{x}} \right) \left(e^{i\omega^{\top}\mathbf{y}} \right)^{*} \right]$$

= $\mathbb{E}_{\omega} (\cos(\omega^{\top}(\mathbf{x} - \mathbf{y}))) + i \underbrace{\mathbb{E}_{\omega} (\sin(\omega^{\top}(\mathbf{x} - \mathbf{y})))}_{=0}.$

Rahimi, Recht ((NIPS 2007)) Random features for large-scale kernel ma

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

Because $k(\mathbf{x} - \mathbf{y})$ is real and $p(\omega)$ is real, can replace this with cosine features:

$$z_{\omega,b}(\mathbf{x}) = \sqrt{2} \cos\left(\omega^{\top} \mathbf{x} + b\right)$$

where *b* uniform on $[0, 2\pi)$

Then

$$k(\mathbf{x}-\mathbf{y}) = \mathbb{E}_{\omega,b}\left[z_{\omega,b}(\mathbf{x})z_{\omega,b}(\mathbf{y})
ight]$$

(日) (四) (三) (三) (三)

Because $k(\mathbf{x} - \mathbf{y})$ is real and $p(\omega)$ is real, can replace this with cosine features:

$$z_{\omega,b}(\mathbf{x}) = \sqrt{2} \cos\left(\omega^{\top} \mathbf{x} + b\right)$$

where *b* uniform on $[0, 2\pi)$

Then

$$k(\mathsf{x}-\mathsf{y}) = \mathbb{E}_{\omega,b}\left[z_{\omega,b}(\mathsf{x})z_{\omega,b}(\mathsf{y})
ight]$$

Proof:

$$2\cos(\omega^{\top}\mathbf{x} + b)\cos(\omega^{\top}\mathbf{y} + b) = \underbrace{\cos(\omega^{\top}(\mathbf{x} + \mathbf{y}) + 2b)}_{\text{expectation zero}} + \cos(\omega^{\top}(\mathbf{x} - \mathbf{y}))$$

Rahimi, Recht ((NIPS 2007)) Random features for large-scale kernel ma

・ロト ・個ト ・ヨト ・ヨト 三日

Generate D random features to decrease variance. Then

$$k(\mathbf{x} - \mathbf{y}) pprox rac{1}{D} \sum_{j=1}^{D} z_{\omega,b}^{(j)}(\mathbf{x}) z_{\omega,b}^{(j)}(\mathbf{y}).$$

(日) (四) (三) (三) (三)

Generate D random features to decrease variance. Then

$$k(\mathbf{x} - \mathbf{y}) pprox rac{1}{D} \sum_{j=1}^{D} z_{\omega,b}^{(j)}(\mathbf{x}) z_{\omega,b}^{(j)}(\mathbf{y}).$$

Convergence result:

Claim 1 (Uniform convergence of Fourier features). Let \mathcal{M} be a compact subset of \mathcal{R}^d with diameter diam(\mathcal{M}). Then, for the mapping \mathbf{z} defined in Algorithm 1, we have

$$\Pr\left[\sup_{x,y\in\mathcal{M}} |\mathbf{z}(\mathbf{x})'\mathbf{z}(\mathbf{y}) - k(\mathbf{x},\mathbf{y})| \ge \epsilon\right] \le 2^8 \left(\frac{\sigma_p \operatorname{diam}(\mathcal{M})}{\epsilon}\right)^2 \exp\left(-\frac{D\epsilon^2}{4(d+2)}\right),$$

where $\sigma_p^2 \equiv E_p[\omega'\omega]$ is the second moment of the Fourier transform of k. Further, $\sup_{x,y\in\mathcal{M}} |\mathbf{z}(\mathbf{x})'\mathbf{z}(\mathbf{y}) - k(\mathbf{y},\mathbf{x})| \leq \epsilon$ with any constant probability when $D = \Omega\left(\frac{d}{\epsilon^2}\log\frac{\sigma_p \operatorname{diam}(\mathcal{M})}{\epsilon}\right)$.

<□> <同> <同> <同> <同> <同> <同> <同> <同> <

Figure: Kernel
$$k_{hat}(x - y) = max \left(0, 1 - \frac{|x - y|}{\delta}\right)$$
.

Rahimi, Recht ((NIPS 2007)) Random features for large-scale kernel ma

<ロ> <問> <問> < 回> < 回> < 回> < 回</p>

Figure: Randomly shifted grid. $u \sim \mathcal{U}(0, \delta)$.

Probability of x, y falling in the same bin:

$$\Pr_{u}(\hat{x} = \hat{y} \mid \delta) = k_{\text{hat}}(x - y) \qquad \hat{x} = \left\lfloor \frac{x - u}{\delta} \right\rfloor.$$
Rahimi, Recht ((NIPS 2007))
Random features for large-scale kernel m:
April 25, 2013 7 / 11

As before, take distributions over features to get more advanced kernels:

$$k(x,y) = \int_0^\infty k_{\mathrm{hat}}(x,y;\delta) p(\delta) d\delta.$$

Given a kernel, how to compute $p(\delta)$?

《曰》 《聞》 《臣》 《臣》 三臣

As before, take distributions over features to get more advanced kernels:

$$k(x,y) = \int_0^\infty k_{\mathrm{hat}}(x,y;\delta) p(\delta) d\delta.$$

Given a kernel, how to compute $p(\delta)$?

$$k(|x - y|) =: k(\Delta)$$

= $\int_0^\infty \max\left(0, 1 - \frac{\Delta}{\delta}\right) p(\delta) d\delta$
= $\int_{\Delta}^\infty p(\delta) d\delta - \Delta \int_{\Delta}^\infty \frac{p(\delta)}{\delta} d\delta.$

Take 2nd derivative wrt Δ :

$$\frac{d^2k}{d\Delta^2} = \frac{p(\Delta)}{\Delta} \implies p(\Delta) = \Delta \frac{d^2k}{d\Delta^2}$$

Rahimi, Recht ((NIPS 2007))

Random features for large-scale kernel ma

Example:

$$k_{ ext{lap}} = \exp\left(-\left|x-y
ight|
ight) = \exp\left(-\Delta
ight)$$

then $p(\delta) = \delta \exp(-\delta)$ (Gamma distribution). Note: for a Gaussian, $p(\delta)$ not a valid prob. density.

9 / 11

Example:

$$k_{ ext{lap}} = \exp\left(-\left|x-y
ight|
ight) = \exp\left(-\Delta
ight)$$

then $p(\delta) = \delta \exp(-\delta)$ (Gamma distribution). Note: for a Gaussian, $p(\delta)$ not a valid prob. density.

Reduce variance by averaging over P independent grids (u, δ) .

イロト 不得下 イヨト イヨト 二日

Example:

$$k_{ ext{lap}} = \exp\left(-\left|x-y
ight|
ight) = \exp\left(-\Delta
ight)$$

then $p(\delta) = \delta \exp(-\delta)$ (Gamma distribution). Note: for a Gaussian, $p(\delta)$ not a valid prob. density.

Reduce variance by averaging over P independent grids (u, δ) .

Multiple dimensions: use independent grids in each dimension, and

$$k(\mathbf{x}-\mathbf{y})=\prod_{k=1}^m k_m(x^m-y^m).$$

April 25, 2013

9 / 11

The feature is an *m*-dimensional binary tensor with a single one at coordinate $\left[\left\lfloor \frac{x_1 - u_1}{\delta_1} \right\rfloor \dots \left\lfloor \frac{x_m - u_m}{\delta_m} \right\rfloor \right]$

Rahimi, Recht ((NIPS 2007)) Random features for large-scale kernel ma

In practice: use a hash of the binary vector as a feature map.

Convergence result:

Claim 2. Let \mathcal{M} be a compact subset of \mathcal{R}^d with diameter diam (\mathcal{M}) . Let $\alpha = E[1/\delta]$ and let L_k denote the Lipschitz constant of k with respect to the L_1 norm. With z as above, we have

$$\Pr\left[\sup_{\mathbf{x},\mathbf{y}\in\mathcal{M}}|\mathbf{z}(\mathbf{x})'\mathbf{z}(\mathbf{y})-k(\mathbf{x},\mathbf{y})|\leq\epsilon\right]\geq 1-36dP\alpha\operatorname{diam}(\mathcal{M})\exp\left(\frac{-\left(\frac{P\epsilon^2}{8}+\ln\frac{\epsilon}{L_k}\right)}{d+1}\right),$$

Rahimi, Recht ((NIPS 2007)) Random features for large-scale kernel ma

ヘロト 人間ト ヘヨト ヘヨト

Results

Dataset	Fourier+LS	Binning+LS	CVM	Exact SVM
CPU	3.6%	5.3%	5.5%	11%
regression	20 secs	3 mins	51 secs	31 secs
6500 instances 21 dims	D = 300	P = 350		ASVM
Census	5%	7.5%	8.8%	9%
regression	36 secs	19 mins	7.5 mins	13 mins
18,000 instances 119 dims	D = 500	P = 30		SVMTorch
Adult	14.9%	15.3%	14.8%	15.1%
classification	9 secs	1.5 mins	73 mins	7 mins
32,000 instances 123 dims	D = 500	P = 30		SVM ^{light}
Forest Cover	11.6%	2.2%	2.3%	2.2%
classification	71 mins	25 mins	7.5 hrs	44 hrs
522,000 instances 54 dims	D = 5000	P = 50		libSVM
KDDCUP99 (see footnote)	7.3%	7.3%	6.2% (18%)	8.3%
classification	1.5 min	35 mins	1.4 secs (20 secs)	< 1 s
4,900,000 instances 127 dims	D = 50	P = 10		SVM+sampling

Interpretation: for data where interpolation is needed, use Fourier kernels. For data where "memorization" is needed, use binning features. Caveat: the Gaussian kernel was used for Fourier+LS, the Laplace for Binning+LS

Rahimi, Recht ((NIPS 2007)) Random features for large-scale kernel ma