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Data is Big and Blurry

Data is so big, so we look for compressive patterns.

Data involving uncertainty, we prefer statistical patterns .



Data Changes

I Smart technologies provide us ways of updating information.

I People use mobiles to send tweets, and trend topics.
I Challenging our traditional view of statistical learning.
I Would you learn a pattern today knowing it is going to

change tomorrow?
I Particularly, when learning a pattern is expensive (Deep Net?)!

I Dataset shift problem [Quionero-Candela et al., 2009].



Changes between Patterns

I Knowing the change itself can be helpful (Part I and II).
I Change Detection, Outlier Detection, etc.

I The changes of patterns are also relative patterns.
I Use it to make adjustment on our old pattern (Part III).
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Density Ratio, Measuring the Changes of Patterns

I Given a set of samples, Dp := {x (i)
p }npi=1 ∼ P

I Density p(x) describes the static pattern of Dp

I Given another set of samples, Dq := {x (i)
q }nqi=1 ∼ Q

I Density ratio p(x)
q(x) describes the changes between datasets.

I Ratio is directional!



Models of Density Ratio

A density model

p(x ;θp) =
1

Z (θp)
exp(θ>p f (x))

Taking the ratio:

p(x ;θp)

q(x ;θq)
∝

exp(θ>p f (x))

exp(θ>q f (x))
= exp((θp − θq)>f (x))

Letting θ = θp − θq

g(x ;θ) :=
p(x ;θp)

q(x ;θq)
=

1
N(θ)

exp(θ>f (x))



Models of Density Ratio

I Density ratio needs to be normalized.
I
∫
q(x)g(x ;θ)dx = 1.

I Let N(θ) =
∫
q(x) exp(θ>f (x))dx suffices.

I can be approximated using samples:

N̂(θ) :=
1
nq

nq∑
j=1

exp
(
θ>f (x (j))

)

I We denote ĝ(x ;θ) :=
exp(θ>f (x))

N̂(θ)
.



Models of Density Ratio

I A few variations are available:
I use linear model instead of log-linear model:

g(x ;θ) :=
1

N(θ)
θ>f (x),N(θ) :=

∫
q(x)θ>f (x)dx .

I or drop out the normalization term completely

g(x ;θ) := θ>f (x),

and use other methods to enforce the normalization.



Estimating the Density Ratio

I Need to measure the difference between the true quantity p
q

and the estimated model gθ.
I No natural distances apply here.
I There are difference measures for distributions though, such as

Kullback-Leibler (KL) divergence [Kullback and Leibler, 1951]:

KL [p‖q] =

∫
p(x) log

p(x)

q(x)
dx



Estimating the Density Ratio

I Idea: we can reconstruct a “density model” from density ratio
model:

pθ(x) = q(x)g(x ;θ)

and minimize the difference between p(x) and pθ(x).
I Won’t be able to compute this “density” model for a specific x .
I Not interested in modelling the individual densities anyway.



Kullback-Leibler Importance Estimation Procedure (KLIEP)

Criterion [Sugiyama et al., 2008a]

θ̂ = argmin
θ

KL [p‖pθ] ,

where

KL [p‖pθ] =

∫
p(x) log

p(x)

pθ(x)
dx = −

∫
p(x) log g(x ;θ) + C ,

where C is some constant.
We can approximate the above criterion using sample average:

θ̂ = argmax
θ

1
np

np∑
i=1

log g(x (i);θ).



Kullback-Leibler Importance Estimation Procedure (KLIEP)

Plug in g(x ;θ):

θ̂ = argmax
θ

1
np

np∑
i=1

θ>f (x (i))− logN(θ)

≈ argmax
θ

1
np

np∑
i=1

θ>f (x (i))− log N̂(θ)

≈ argmax
θ

1
np

np∑
i=1

θ>f (x (i))− log
1
nq

nq∑
j=1

exp(θ>f (x (j)))︸ ︷︷ ︸
`KLIEP(θ)

Concave, unconstrained, objective.



A Few Simplification...

Let’s denote
Ep [f (x)] :=

∫
p(x)f (x)dx

as the population expectation and

Êp [f (x)] :=
1
n

n∑
i=1

f (x (i))

as empirical expectation of f (x) given samples {x i}ni=1 ∼ P .



Kullback-Leibler Importance Estimation Procedure (KLIEP)

KLIEP (again)

θ̂ = argmax
θ

`KLIEP(θ) = argmax
θ

Êp[θ>f (x)]−log Êq

[
exp
(
θ>f (x)

)]
,

and
∇θ`KLIEP(θ) = Êp [f (x)]− Êq [ĝ(x ;θ)f (x)] .



Variations of Density Ratio Estimators

I Can we measure the difference between true density ratio and
model density?

I How about least square (`2) distance?

θ̂ = argmin
θ

∫
‖p(x)

q(x)
− g(x ;θ)‖2dx

Won’t do, no way to compute that integral.
I However, with a little change (called uLSIF

[Kanamori et al., 2009])...

θ̂ = argmin
θ

∫
q(x)‖p(x)

q(x)
− g(x ;θ)‖2dx

= argmin
θ

∫
q(x)g(x ;θ)2 − 2p(x)g(x ;θ)dx + C .

Then, sample average...



Variations of Density Ratio Estimators
I p(x)

q(x) can go to infinity!
I which is a bad news for the estimation.
I a few outliers may trick the estimator to think two

distributions are dramatically different.
I Bound the density ratio function! [Yamada et al., 2013]

p(x)

αp(x) + (1− α)q(x)
<

1
α
, α ∈ (0, 1).

Estimate the ratio between p and an α-mixture of p and q
(called RuLSIF).



Which One to Use?

I There is no definitive answer, and it’s all up to the application.
I Computational efficiency:

I KLIEP solves a non-linear optimization, and uLSIF and RuLSIF
has analytical solutions.

I Computing KLIEP gradient requires O(max(np, nq)m).
I Computing uLSIF solution requires O(max(nq,m)m2).
I m is the number of dimensions of the parameter vector.

I Outlier affect KLIEP more than least square based methods.
I “log” term is a bit troublesome.
I “log g → −∞” if g → 0.
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Change-point Detection [Liu et al., 2013]

Well-log Data

I Objective: Detecting abrupt changes lying among time-series
data

I Change-point score: Plausibility of changes that have
happened



Problem Formulation
[Kawahara et al., 2007, Liu et al., 2013]

I Construct samples by using sliding window.
I Set an imaginary bar in the middle divides samples into two

groups.
I Test divergence between two groups of samples.



From Ratio to Divergence

I How do we convert ratio to divergence?

D(p‖q) =

∫
q(x)f

(
p(x)

q(x)

)
dx

where f is a convex function, and f (1) = 0.
I f (t) = t log t, we get KL divergence.
I f (t) = (t − 1)2, we get Pearson divergence.

I Divergence is not symmetric, we symmetrize it by

D(p‖q) + D(q‖p)

.



From Ratio to Divergence
I KL [p‖q] ≈ 1

np

∑np
i=1 ĝ(x (i), θ̂)

I where ĝ is estimated from KLIEP.
I PE [p‖q] ≈ − 1

2nq

∑nq
i=1 ĝ

2(x (i), θ̂) + 1
nq

∑np
j=1 ĝ(x (j), θ̂)− 1

2
I where ĝ is estimated from uLSIF.

I

rPE [p‖q]

≈− α

2np

np∑
i=1

ĝ2(x (i), θ̂)− 1− α
2nq

nq∑
i=1

ĝ2(x (i), θ̂)

+
1
nq

np∑
j=1

ĝ(x (j), θ̂)− 1
2

I where ĝ is estimated from RuLSIF.

I You may mix them up, but they won’t be optimal.



Fun facts [Nguyen et al., 2010]

I Estimating density ratio using KLIEP is actually maximizing
the lower-bound of Kullback-leibler divergence.

I Estimating density ratio using uLSIF is actually maximizing the
lower-bound of Pearson divergence.

I Estimating density ratio using RuLSIF is actually maximizing
the lower-bound of Relative Pearson divergence.

I Fenchel Duality



Toy Dataset



Toy Dataset



Twitter Data Change Detection
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Changes in Interactions

I It is interesting to know interactions in many applications.
I However, the interactions change over time.



Changes in Graphical Models

I Given two sets of data

{x (i)
p }npi=1 ∼ P, {x (i)

q }nqi=1 ∼ Q

I where P and Q are Markov Networks (MNs) with respect to
undirected graphs GP and GQ .

I We would like to know the changes from GP to GQ



Graphical Lasso [Friedman et al., 2008]

I One naive way is to learn two graphical models separately.
I then take their differences.

I If you assume the density is Gaussian:

p(x ;Θp) =
det(Θ)1/2

(2π)d/2
exp
(
−1
2
x>Θx

)
I We can learn a sparse Gaussian MN:

Θ̂ = argmin
Θ
−

np∑
i=1

log p(x (i);Θ) + λ‖Θ‖1

I The sparsity of Θ̂ indicates the conditional independence
between random variables.



Fused Graphical Lasso [Zhang and Wang, 2010]

I Sparse changes does not necessarily come from sparse MNs
I A fancier way of learning changes is using the fused-lasso:

{Θ̂p, Θ̂q} =

argmin
Θp ,Θq

−
np∑
i=1

log p(x ;Θp)−
nq∑
i=1

log q(x ;Θq) + λ‖Θp −Θq‖

I However, (Fused-) Graphical Lasso cannot handle
non-Gaussian graphical model well due to the intractable
normalization term.

I e.g., in brain EEG analysis, the correlation is usually non-linear.



A pairwise MN parametrization

I Pairwise MN:

p(x ;θp) =
1

Z (θp)
exp

∑
u≤v

θ>pu,v f (xu, xv )


Z (θp) =

∫
exp

∑
u≤v

θ>pu,v f (xu, xv )

 dx

I Computing Z (θp) is hard!



Ratio Comes to Rescue
Taking the ratio:

p(x ;θp)

q(x ;θq)
∝
exp(

∑
u≤v θ

>
pu,v f (xu, xv ))

exp(
∑

u≤v θ
>
qu,v f (xu, xv ))

= exp(
∑
u≤v

(θpu,v − θqu,v )>f (xu, xv ))

Letting θ = θp − θq

g(x ;θ) :=
p(x ;θp)

q(x ;θq)
=

1
N(θ)

exp(
∑
u≤v

θ>u,v f (xu, xv )).

where

N(θ) =

∫
q(x) exp(

∑
u≤v

θ>u,v f (xu, xv ))dx

N̂(θ) =
1
nq

nq∑
j=1

exp(
∑
u≤v

θ>u,v f (x
(j)
u , x

(j)
v )).



Learning Sparse Change Directly

I Since the parameter of density ratio reprents the difference
between θp and θq, we may apply sparsity inducing penalty on
θ.

θ̂ = argmin
θ
−

np∑
i=1

log ĝ(x ;θ)︸ ︷︷ ︸
`(θ)

+λnp
∑
u≤v
‖θu,v‖2

I By checking the sparsity pattern of subvector θu,v we know
whether the interactions between random variable Xu and Xv

has changed or not.
I No problem if graphical model is not Gaussian.



Successful Change Detection Theorem [Liu et al., 2015]

Exists θ∗ such that p(x) = g(x ;θ∗)q(x).

Notations
I H = {(u, v)|u ≤ v},
I S ∈ {θ∗u,v 6= 0|(u, v) ∈ H}, Sc ∈ {θ∗u,v = 0|(u, v) ∈ H}
I Similarly, Ŝ and Ŝc .

Assumptions

I Λmin(∇θs∇θs `(θ)) ≥ λmin > 0

I maxt∈Sc

∣∣∣∇θt∇θS
`(θ) (∇θS

∇θS
`(θ))−1

∣∣∣ ≤ 1− α

I ∇2
θ`(θ + δ), maxt∈S∪Sc ∇θt∇2

θ`(θ + δ) bounded in spectral
norm.

I g(x ;θ)− 1 is sub-Gaussian.



Successful Change Detection Theorem

Theorem
Suppose that Assumptions hold, as well as
mint∈S ‖θ∗t ‖ ≥ 10

λmin

√
dλnp are satisfied, where d is the number of

changed edges defined as d = |S |, Suppose also

8(2− α)

α

√
M1 log m2+m

2
np

≤ λnp ≤
4(2− α)M1

α
min

(
‖θ∗‖√

b
, 1
)
,

where M1 = λmaxb + 2, nq ≥ M2n
2
pg(m) and M2 is a positive

constant. Then there exist some constants L1, K1, and K2 such
that if np ≥ L1d

2 log m2+m
2 , with the probability at least

1− exp
(
−K1λ

2
npnp

)
− 4 exp

(
−K2dnqλ

4
np

)
,

then the proposed method is consistent on learning changes
between MNs.



Twitter Dataset (BP Oil Spill)



Twitter Dataset (m = 10, n = 84)



Gene Dataset (m = 1835, np = nq = 28)

FOSB gene is a member of the Fos family of transcription factors,
regulating expressions of other genes.
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The Transfer Learning

I Build a target classifier from limited samples of the target
task

Dp := {(y , x (i)
p )}ni=1 ∼ P

I By making use of another set of samples from a similar source
task

Dq := {(y , x (i)
q )}n′i=1 ∼ Q

I n� n′

I We only consider learning a conditional probability p(y |x) in
this work.



The Transfer Learning

I In recent years, people seem to prefer complicated features
(e.g., DNNs) that are computationally expensive.

I The transfer may get unnecessarily complicated!



Existing works

I Model Reuse: Parameters of predicting functions in similar
tasks are close to each other.
[Evgeniou and Pontil, 2004, Raina et al., 2006]

I Solution: train two tasks simultaneously, and penalize the
differences between parameters so they are not “too far away”.

I Problems: How close is close? Close in what metric?

A hierarchical model assumes parameters of similar tasks are
generated from the same latent parameter.



Existing works

I Sample Reuse: Part of the source task samples can contribute
to the target tasks. [Dai et al., 2007, Sugiyama et al., 2008b]

I Solution: Weight samples!
I Problems: Does not make use of the model similarity.

Both approaches have a common issue: during the transferring
stage, the predicting function of the target task must be trained

using the all features, however complicated they are.



A Composite Approac [Liu and Fukumizu, ]

p(y |x) = q(y |x)
p(y |x)

q(y |x)
,

where p(y |x)
q(y |x) is called posterior ratio and q(y |x) is the source

classifier.
I Idea: we can model and learn posterior ratio and source

classifer separately!
I Hopefully, learning p(y |x)

q(y |x) is computationally cheap!
I Intuitively, the posterior ratio is an incremental pattern, that

“patches” the source task predictor.

I Denote g(y , x ;θ) and q(y , x ;θq) as the model of the ratio
and the source classifier respectively.



A Composite Approach

I Naturally, we would like to minimize the KL-divergence
between p(y |x) and g(y , x ;θ)q(y , x ;θq).

I However, directly minimizing such divergence still leads to a
joint optimization.

I
∑

y∈{−1,1} g(y , x ;θ)q(y , x ;θq) = 1.

Transfer Learning Upper-bound
if p(y ,x)

q(y ,x) ≤ Cmax <∞ and 0 < qθ < 1, then the following inequality
holds

KL
[
p‖gθ · qθq

]
≤ KL [p‖gθq] + CmaxKL

[
q‖qθq

]
+ C ′,

where C ′ is a constant that is irrelevant to θ or θ.
Separately learning two models become possible!



Is Learning the Posterior Ratio Easier?

Suppose

p(y |x ;θq) ∝ exp

(
y ·

m∑
i=1

θqihi (x))

)
,

The ratio becomes

p(y |x ; θp)

q(y |x ; θq)
∝ exp

(
y

m∑
i=1

(θp,i − θq,i )hi (x)

)
,

and (θp,i − θq,i ) = 0 if feature hi does not contribute to the
transfer!



Modelling Posterior Ratio

Thus, we write our posterior ratio model as

g(y , x ;θ) =
1

N(x ;θ)
exp

(
y
∑
i∈S

θihi (x)

)
,

where S = {i |θp,i − θq,i 6= 0} and N(x ;θ) is the normalization
term defined as

N(x ;θ) =
∑

y∈{−1,1}

q(y |x) exp

(
y
∑
i∈S

θihi (x)

)
.

We assume |S | � m, so we have lightened the burden of
transferring by not considering the full feature set.



Modelling Posterior Ratio

Define
f (y , x) := [yha1(x), yha2(x), . . . , yham′ (x)],

where a1, a2, . . . , am′ ∈ S .

N(θ, x (i)
p ) ≈ N̂

(
θ; x (i)

p

)
=

1
k

∑
j∈Nn′

(
x (i)
p ,k

) exp
(
θ>f

(
y
(j)
q , x (j)

q

))
,

where Nn′(x
(i)
p , k) =

{
j

∣∣∣∣x (j)
q is one of the k-NNs of x (i)

p

}
.

Finally, plug ĝ(x ;θ) := exp(θ>f (y , x))/N̂(θ) into KLIEP
procedure, and we are done!



Modelling Posterior Ratio

𝑥

𝒙𝑝
(𝑖)

∼ 𝑃𝑋

E𝑞 exp 𝜃⊤𝑓 𝑦, 𝒙 | 𝑥
ex
p
𝜃
⊤
𝑓
𝑦
,𝑥

𝑦𝑞
𝑗
, 𝒙𝑞

𝑗
~Q𝑌𝑋



Consistency

Assumptions
I The support of p(x) and q(x) overlaps.
I The posterior model is bounded and is identifiable.

The estimated parameter θ̂ converges to the true parameter θ∗ if
n→∞, n′ →∞, kn′/ log n′ →∞ and kn′/n

′ → 0.



Experiments
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