
Wainwright and Jordan ’08:
Chapter 2

Thomas Desautels

Gatsby Unit

26 January 2015

Thomas Desautels (Gatsby Unit) Wainwright and Jordan ’08: Chapter 2 ML Reading Group 1 / 21

Probability Distributions on Graphs

The Main Idea

The key idea is that of factorization: a graphical model
consists of a collection of probability distributions that
factorize according to the structure of an underlying graph...
Our focus in [“Chapter” 2] is the interplay between
probabilistic notions such as conditional independence on
one hand, and on the other hand, graph-theoretic notions
such as cliques and separation.

Thomas Desautels (Gatsby Unit) Wainwright and Jordan ’08: Chapter 2 ML Reading Group 2 / 21

Probability Distributions on Graphs

Some Definitions

A graph G = (V ,E) is a collection of vertices V = {1,2, . . . ,m}
and edges E ⊂ V × V . Edges may be:

undirected, such that (s, t) = (t , s), or
directed, where the edge from s to t is denoted (s → t).

In a graphical model, ∀s ∈ V , ∃ random variable Xs ∈ space Xs.
Denote a particular element xs ∈ Xs, such that Xs = xs is “Xs takes
value xs.”

For A ⊂ V , XA , (Xs, s ∈ A), xA , (xs, s ∈ A), and
⊗s∈AXs , XA1 ⊗ · · · ⊗ XA|A| .

Thomas Desautels (Gatsby Unit) Wainwright and Jordan ’08: Chapter 2 ML Reading Group 3 / 21

Probability Distributions on Graphs

More Definitions: Directed Graphical Models

In a directed graph, G = (V ,E):
If the edge (s → t) ∈ E , s is the parent of t , which is its child.
The set of all parents of vertex t is denoted π(t).

If no such parents exist, π(t) = ∅.
A directed cycle is a sequence of vertices {s1, . . . , sk} such that
(si → si+1) ∈ E ∀i ∈ {1, . . . , k − 1} and (sk → s1) ∈ E .

If G is directed and does not have any such directed cycles, it is a
directed acyclic graph (DAG).
A DAG is associated with a partial ordering of the vertices.

8 Background

In order to define a graphical model, we associate with each vertex

s ∈ V a random variable Xs taking values in some space Xs. Depend-

ing on the application, this state space Xs may either be continuous,

(e.g., Xs = R) or discrete (e.g., Xs = {0,1, . . . , r − 1}). We use lower-

case letters (e.g., xs ∈ Xs) to denote particular elements of Xs, so that

the notation {Xs = xs} corresponds to the event that the random

variable Xs takes the value xs ∈ Xs. For any subset A of the vertex

set V , we define the subvector XA := (Xs, s ∈ A), with the notation

xA := (xs, s ∈ A) corresponding to the analogous quantity for values

of the random vector XA. Similarly, we define ⊗s∈AXs to be the Carte-

sian product of the state spaces for each of the elements of XA.

2.1.1 Directed Graphical Models

Given a directed graph with edges (s→ t), we say that t is a child of

s, or conversely, that s is a parent of t. For any vertex s ∈ V , let π(s)

denote the set of all parents of given node s ∈ V . (If a vertex s has

no parents, then the set π(s) should be understood to be empty.) A

directed cycle is a sequence (s1,s2, . . . ,sk) such that (si→ si+1) ∈ E for

all i = 1, . . . ,k − 1, and (sk → s1) ∈ E. See Figure 2.1 for an illustration

of these concepts.

Now suppose that G is a directed acyclic graph (DAG), meaning

that every edge is directed, and that the graph contains no directed

Fig. 2.1 (a) A simple directed graphical model with four variables (X1,X2,X3,X4). Vertices
{1,2,3} are all parents of vertex 4, written π(4) = {1,2,3}. (b) A more complicated directed
acyclic graph (DAG) that defines a partial order on its vertices. Note that vertex 6 is a child
of vertex 2, and vertex 1 is an ancestor of 6. (c) A forbidden directed graph (nonacyclic)
that includes the directed cycle (2 → 4 → 5 → 2).

Thomas Desautels (Gatsby Unit) Wainwright and Jordan ’08: Chapter 2 ML Reading Group 4 / 21

Probability Distributions on Graphs

Directed Graphical Models

For a DAG, for each vertex s and its parent set π(s), let there exist
ps(xs|xπ(s)) ≥ 0 (a conditional distribution over Xs), where∑

xs∈Xs
p(xs|xπ(s)) = 1.

A directed graphical model is a collection of such distributions ∀s ∈ V
such that the joint distribution over X1, . . . ,Xm (where |V | = m)
factorizes as

p(x1, . . . , xm) =
∏
s∈V

ps(xs|xπ(s)). (1)

Thomas Desautels (Gatsby Unit) Wainwright and Jordan ’08: Chapter 2 ML Reading Group 5 / 21

Probability Distributions on Graphs

Undirected Graphical Models

Here, instead of factorizing over sets of (single child, all parents), the
distribution will factorize over cliques.
A clique C within graph G is a fully connected subset of V (i.e.,
s, t ∈ C =⇒ (s, t) ∈ E)
For every clique C, let there exist a positive, scalar compatibility
function ψC : (⊗s∈CXs)→ R+

Then the joint over all Xs, s ∈ V is:

p(x1, . . . , xm) =
1
Z

∏
C∈C

ψ(xC). (2)

While C is often the set of maximal cliques, it can be any set of cliques
which covers the graph (redundancy is permitted).

Thomas Desautels (Gatsby Unit) Wainwright and Jordan ’08: Chapter 2 ML Reading Group 6 / 21

Probability Distributions on Graphs

Factor Graphs

Factor graphs are a way of visualizing the factorization relationships in
graphical models.

Factors either capture the set of parent/child neighborhoods
(directed graphs) or cliques (undirected).
From G = (V ,E), create bipartite graph G′ = (V ,F ,E ′),

Two node types; factors (F) and random variables (V),
New edge set E ′, where E ′ connects vertex s to a factor a if and
only if xs is part of factor indicated by a.

Given a graph G, because the clique choice C is not unique, the
resulting factor graph G′ is not unique.

2.2 Conditional Independence 11

(a) (b)

Fig. 2.2 Illustration of undirected graphical models and factor graphs. (a) An undirected
graph on m = 7 vertices, with maximal cliques {1,2,3,4}, {4,5,6}, and {6,7}. (b) Equiv-
alent representation of the undirected graph in (a) as a factor graph, assuming that we
define compatibility functions only on the maximal cliques in (a). The factor graph is a
bipartite graph with vertex set V = {1, . . . ,7} and factor set F = {a,b,c}, one for each of
the compatibility functions of the original undirected graph.

an explicit representation in the usual representation of an undirected

graph — however, the factor graph makes them explicit.

2.2 Conditional Independence

Families of probability distributions as defined as in Equations (2.1)

or (2.2) also have a characterization in terms of conditional indepen-

dencies among subsets of random variables — the Markov properties

of the graphical model. We only touch upon this characterization here,

as it is not needed in the remainder of the survey; for a full treatment,

we refer the interested reader to Lauritzen [153].

For undirected graphical models, conditional independence is iden-

tified with the graph-theoretic notion of reachability. In particular, let

A, B, and C be an arbitrary triple of mutually disjoint subsets of ver-

tices. Let us stipulate that XA be independent of XB given XC if there

is no path from a vertex in A to a vertex in B when we remove the

vertices C from the graph. Ranging over all possible choices of subsets

A, B, and C gives rise to a list of conditional independence assertions.

It can be shown that this list is always consistent (i.e., there exist prob-

ability distributions that satisfy all of these assertions); moreover, the

set of probability distributions that satisfy these assertions is exactly

the set of distributions defined by (2.2) ranging over all possible choices

of compatibility functions.

Thomas Desautels (Gatsby Unit) Wainwright and Jordan ’08: Chapter 2 ML Reading Group 7 / 21

Conditional Independence

Conditional Independence I

Graph structure implies conditional independencies.
Undirected graphical model:

Let the set of observed variables V ′ ⊆ V to be a cutset; if the graph
G′ resulting from the deletion of vertices V ′ from G (along with their
associated edges) is not connected, the variables in the
disconnected parts are conditionally independent, given V ′.

Directed graphical models
More complicated (conditional dependence of parents is induced by
observing the child), but conditional independence is also encoded
in directed graphical models.

Thomas Desautels (Gatsby Unit) Wainwright and Jordan ’08: Chapter 2 ML Reading Group 8 / 21

Conditional Independence

Conditional Independence II

W&J make the following points:
For any graph structure, the implicit conditional independence
assertions are consistent, and are satisfied by the set of
probability distributions precisely equal to those which can be
written as our directed and undirected forms of the joint
distribution.
The two characterizations are thus equivalent: factorization
(algebraic) is linked with separation/reachability (graph-theoretic).
Thus algorithmic problems where conditional independence may
be necessary can be solved by appealing to the graph structure
and algorithms which deal with it effectively.

Thomas Desautels (Gatsby Unit) Wainwright and Jordan ’08: Chapter 2 ML Reading Group 9 / 21

Statistical Inference and Exact Algorithms

Inference Problems

W&J give the following problems we might want to solve:
1 Computing the likelihood of observed data
2 Computing the marginal distribution over a particular subset

A ⊂ V of nodes.
3 Computing the conditional distribution p(xA|xB) for disjoint subsets

of variables A and B, and A ∪ B may be a proper subset of V
4 Computing a mode of the joint density: x̂ ∈ arg maxx∈⊗Xs p(x).

The first three boil down to needing to compute the marginal
distribution over xA. The fourth is fundamentally different; it requires
maximization, rather than integrating or summing out unobserved
variables.

Thomas Desautels (Gatsby Unit) Wainwright and Jordan ’08: Chapter 2 ML Reading Group 10 / 21

Statistical Inference and Exact Algorithms

Algorithmic benefits

Naïve marginalization:
Evaluate the joint for (exponentially many) instantiations of the
marginalized variables.
Sum over these.

Infeasible in all but the smallest problems.
By taking advantage of the graph structure, exact (in tree-structured
graphs, the rest of this chapter) or approximate inference algorithms
can solve these problems much more efficiently.

Thomas Desautels (Gatsby Unit) Wainwright and Jordan ’08: Chapter 2 ML Reading Group 11 / 21

Selected Applications

Hierarchical Bayesian Models

Naturally encoded in terms of conditional (i.e., hierarchical) probability
distributions. GPs are a great example:

Hyperprior p(θ) over the Gaussian process hyperparameters θ.
θ (and input locations x) specify a prior over the regression
function f , such that f |θ ∼ GP(θ) and for any x in the domain,
f (x) ∼ N (µ(x , θ), σ(x , θ)).
Observations are often taken to be noisy, such that y
corresponding to x is distributed as y |f (x) ∼ N(f (x), σn)

The joint over θ, f (x1), . . . , f (xn), and corresponding yi is

p(y1, . . . , yn, f (x1), . . . , f (xn), θ) = p(θ)p(f (x1), . . . , f (xn)|θ)
n∏

i=1

p(yi |f (xi))

(3)

Thomas Desautels (Gatsby Unit) Wainwright and Jordan ’08: Chapter 2 ML Reading Group 12 / 21

Selected Applications

Constraint Satisfaction and Combinatorial
Optimization

Problem: find a configuration of logical variables Xs such that all of a
collection of logical clauses about them are satisfied (i.e., true).

Clauses can be viewed {0,1} valued compatibility functions in the
undirected form.
If there exists a clause involving a set of variables, they form a
clique C in the related graph, and the set of cliques C is formed of
the set of clause-implicit cliques.
The overall objective function (which is either 0 or 1) can be
written as the product over C of the individual clauses, just as in
the typical undirected formalism.

You can sort of think of normal (non-zero-one) compatibility functions
as “soft CSP.”

Thomas Desautels (Gatsby Unit) Wainwright and Jordan ’08: Chapter 2 ML Reading Group 13 / 21

Exact Inference Algorithms on Trees

Exact Marginalization

Joint is a product of factors: exact marginalization ⇐⇒ choosing an
order of integrating or summing out the variables and ensuring that the
computation is correct.
How do we correctly and efficiently organize this computation?
For each s ∈ V , could marginalize out all m − 1 other variables and
compute these m marginals separately; however, intermediate
computations are in common, and should be shared.

Thomas Desautels (Gatsby Unit) Wainwright and Jordan ’08: Chapter 2 ML Reading Group 14 / 21

Exact Inference Algorithms on Trees

Message Passing Algorithms

Message passing algorithms are designed to share these intermediate
computations.
Directed graphical models: convert to undirected models first.

This requires moralization; for all parents t ,u ∈ π(s), add edge
(t ,u) to the graph and convert directed edges (t → s) and (u → s)
to undirected edges, such that {s, π(s)} is a clique.

This loses some information about the model.

Thomas Desautels (Gatsby Unit) Wainwright and Jordan ’08: Chapter 2 ML Reading Group 15 / 21

Exact Inference Algorithms on Trees

Sum-product algorithm

For now, assume the undirected graph is a tree T = (V ,E(T)), (no
cycles).

In a tree, the set of maximal cliques is the set of edges.
Choose C = E(T) ∪ V , and thus:

p(x1, . . . xm) =
1
Z

∏
s∈V

ψs(xs)
∏

(s,t)∈E(T)

ψst(xs, xt). (4)

Thomas Desautels (Gatsby Unit) Wainwright and Jordan ’08: Chapter 2 ML Reading Group 16 / 21

Exact Inference Algorithms on Trees

Sum-product algorithm II

The most useful feature of tree-structured graphs is that using a single
node as a cutset produces subgraphs which are disjoint, and also
trees: recursive methods of divide and conquer.

2.5 Exact Inference Algorithms 27

Sum-product algorithm: The sum-product algorithm is a form of

nonserial dynamic programming [19], which generalizes the usual

serial form of deterministic dynamic programming [20] to arbitrary

tree-structured graphs. The essential principle underlying dynamic

programming (DP) is that of divide and conquer: we solve a large

problem by breaking it down into a sequence of simpler problems. In

the context of graphical models, the tree itself provides a natural way

to break down the problem.

For an arbitrary s ∈ V , consider the set of its neighbors

N(s) := {u ∈ V | (s,u) ∈ E}. (2.6)

For each u ∈ N(s), let Tu = (Vu,Eu) be the subgraph formed by the set

of nodes (and edges joining them) that can be reached from u by paths

that do not pass through node s. The key property of a tree is that

each such subgraph Tu is again a tree, and Tu and Tv are vertex-disjoint

for u �= v. In this way, each vertex u ∈ N(s) can be viewed as the root

of a subtree Tu, as illustrated in Figure 2.10.

For each subtree Tt, we define the subvector xVt := (xu, u ∈ Vt) of

variables associated with its vertex set. Now consider the collection of

terms in Equation (2.4) associated with vertices or edges in Tt. We

collect all of these terms into the following product:

p(xVt ;Tt) ∝
∏

u ∈ Vt
ψu(xu)

∏

(u,v)∈Et

ψuv(xu,xv). (2.7)

With this notation, the conditional independence properties of a tree

allow the computation of the marginal at node s to be broken down

Fig. 2.10 Decomposition of a tree, rooted at node s, into subtrees. Each neighbor (e.g., u)
of node s is the root of a subtree (e.g., Tu). Subtrees Tu and Tv , for u �= v, are disconnected
when node s is removed from the graph.

Thomas Desautels (Gatsby Unit) Wainwright and Jordan ’08: Chapter 2 ML Reading Group 17 / 21

Exact Inference Algorithms on Trees

Sum-product algorithm III

For each sub-tree Tt = (Vt ,Et), write the product

p(xVt ;Tt) ∝
∏

u∈Vt

ψu(xu)
∏

u,v∈Et

ψuv (xu, xv) (5)

The joint and marginal can then be written as

p(x1, . . . , xm) =
1
Z
ψs(xs)

∏
t∈N(s)

ψst(xs, xt)
∏

u∈Vt

ψu(xu)
∏

u,v∈Et

ψuv (xu, xv)


(6)

µ(xs) = κψs(xs)
∏

t∈N(s)

M∗ts(xs) (7)

M∗ts(xs) ,
∑
x ′

Vt

ψst(xs, x ′t)p(x
′
Vt
;Tt) (8)

Computing M∗ts(xs) is a (smaller) sub-tree summation problem.
Thomas Desautels (Gatsby Unit) Wainwright and Jordan ’08: Chapter 2 ML Reading Group 18 / 21

Exact Inference Algorithms on Trees

Sum-product algorithm IV

How can we find the M∗ distributions? Iteratively, computing updated
versions of all messages at each iteration. We can write the recursion
in terms of the Ms (messages):

Mts(xs)← κ
∑
x ′

t

ψst(xs, x ′t)ψt(xt)
∏

u∈N(t)/s

Mut(x ′t)

 (9)

For trees, this turns out to
Have a unique fixed point at the M∗ values (up to normalization)
converge in finitely many iterations.

Thomas Desautels (Gatsby Unit) Wainwright and Jordan ’08: Chapter 2 ML Reading Group 19 / 21

Exact Inference Algorithms on Trees

Junction Tree Algorithm

How can we deal with graphs that aren’t trees (i.e., have cycles)?
Turn them into trees by lumping cliques into “super-nodes” and then
dealing with the clique tree, the tree-structured graph of such nodes.
Problems:

Building such a graph
Ensuring consistency in the resulting algorithm

In building the graph, we may need to duplicate variables, if they fall
inside multiple cliques; the local copies of these variables cannot be
allowed to have different values if we want to compute correct
marginals.

Thomas Desautels (Gatsby Unit) Wainwright and Jordan ’08: Chapter 2 ML Reading Group 20 / 21

Exact Inference Algorithms on Trees

Junction Tree Algorithm II

A clique tree which satisfies the running intersection property will have
the appropriate consistency results we need, and is called a junction
tree.

Thomas Desautels (Gatsby Unit) Wainwright and Jordan ’08: Chapter 2 ML Reading Group 21 / 21

	Probability Distributions on Graphs
	Conditional Independence
	Statistical Inference and Exact Algorithms
	Selected Applications
	Exact Inference Algorithms on Trees
	Approximate Inference in non-tree Graphs via Message Passing

