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Abstract

Feature selection is a technique to screen out less important features. Many existing
supervised feature selection algorithms use redundancy and relevancy as the main
criteria to select features. However, feature interaction, potentially a key charac-
teristic in real-world problems, has not received much attention. As an attempt
to take feature interaction into account, we propose ℓ1-LSMI, an ℓ1-regularization
based algorithm that maximizes a squared-loss variant of mutual information be-
tween selected features and outputs. Numerical results show that ℓ1-LSMI performs
well in handling redundancy, detecting non-linear dependency, and considering fea-
ture interaction.
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1 Introduction

Recently, solving real-world complex problems with supervised-learning techniques has
become more and more common. In supervised learning, using all variables as input to
a learning algorithm works well when the number of variables is limited. However, when
the number of variables is large (e.g., gene expression-based patient classification), using
all variables in the learning process could lead to overfitting and a model-interpretability
problem [38].

To overcome these problems, feature-selection techniques are useful. Feature selection
aims at removing unnecessary variables and retaining only relevant variables for the target
supervised-learning task. Many previous studies [25, 33] showed that feature selection is
useful in finding relevant variables to gain more insight into the data. Moreover, the
generalization ability of the learned model can be improved through the removal of noisy
variables [23, 17].

Two conflicting criteria which are commonly used to select features are relevancy and
redundancy. Features are relevant if they can explain outputs. Features are redundant if
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they are similar. It is trivial that more features are more likely to explain outputs well.
However, more features are also more prone to be redundant [23, 38].

Feature interaction is another important criterion to consider. Feature interaction is
a situation in which two or more weak features can explain the output well in the context
of each other, even though each of them alone may not be explanatory. It is one of
the key characteristics in real-world problems. To detect a group of interacting features,
it is necessary to simultaneously consider all features. This is because, by definition,
considering features individually will not reveal any relevancy to the output. Due to this
difficulty, feature interaction has not received much attention from the community.

In this research, instead of focusing on only the relevancy and the redundancy as many
previous studies did, we also take into consideration the interaction among features. We
propose ℓ1-LSMI, an ℓ1-regularization based algorithm that maximizes a squared-loss vari-
ant of mutual information between selected features and outputs. We also experimentally
compare the proposed method with several state-of-the-art feature selection algorithms
on both artificial and real data. Numerical results show that ℓ1-LSMI performs well in
handling redundancy, detecting non-linear dependency, and considering feature interac-
tion.

The structure of this paper is as follows. We formulate our feature-selection problem
in Sect. 2. Then we describe optimization strategies commonly used in practice in Sect. 3,
as well as several feature quality measures in Sect. 4. We argue that, among the listed
strategies, ℓ1-regularization based feature weighting is the best choice if we take into ac-
count the balance between computational load and the quality of features. As a feature
quality measure, we show that squared-loss mutual information (SMI) [33] possesses var-
ious desirable properties. Based on this argument, in Sect. 5, we propose to combine
ℓ1-regularization and SMI, which we refer to as ℓ1-LSMI. Experiments on artificial and
real data are described in Sect. 6. Finally, we conclude the paper in Sect. 7.

2 Problem Formulation

A formal description of a supervised feature-selection problem is as follows. Assume we
have an input data matrix X ∈ Rm×n and output data vector Y ∈ Rn, where m is the
number of features and n is the sample size. X and Y are realizations of the random
variable X = (X1, . . . , Xm) and Y , respectively. Given the desired number of features
k, supervised feature selection attempts to find a subset of features identified by the set
of feature indices I ⊂ {1, . . . ,m}, such that the underlying feature quality measure f is
maximized. Formally, this can be formulated as an optimization problem as

maximize
I⊂{1,...,m}

f(XI ,Y)

subject to |I| = k,
(1)

where | · | denotes the set cardinality, and XI denotes the data matrix X retaining only
rows indexed by I.
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In general, f can be any function which can quantify the desired characteristics of
the selected features. A popular choice for f is the classification accuracy of a chosen
classifier [14]. While the selected features Î obtained from this approach can yield a good
classification accuracy, they are only specifically fit to the predictor in use. As a result, an
objective interpretation of Î may be difficult [9]. In this work, we opt to focus on feature
selection algorithms which are independent of a predictor for wide applicability.

In practice, searching for a good feature subset to maximize f in a reasonable amount
of time can be challenging. In fact, finding the global optimal feature subset is known
to be NP-hard [36, 22]. One way to guarantee that we can obtain the global optimal
subset is to perform an exhaustive search over all possible subsets. However, since there
are 2m possible subsets in total, this approach is impractical for large m. Clearly, a good
optimization strategy is needed to efficiently explore the subset space.

As shown above, optimization strategies and feature quality measures are two impor-
tant research issues in feature selection. We describe standard optimization strategies in
Sect. 3, and popular feature quality measures in Sect. 4.

3 Optimization Strategies

The optimization strategy defines how to search for a good feature subset. The complex-
ity of these optimization strategies range, with respect to the number of features m, from
linear (feature ranking) to exponential (exhaustive search). Optimization strategies in
general attempt to find features which have high relevancy to the output. Higher com-
plexity in some strategies follows from the fact that feature redundancy is also taken into
consideration. We start the discussion with fast feature ranking technique which does not
consider feature redundancy.

3.1 Feature Ranking

Feature ranking is one of the simplest feature optimization strategies. Given m features
{X1, . . . , Xm}, the feature ranking approach solves the optimization problem of the form

maximize
I⊂{1,...,m}

∑
i∈I

f(Xi, Y ) subject to |I| = k.

To solve this problem, we calculate f(Xi, Y ) for i ∈ {1, . . . ,m}, rank Xi in the descending
order, and then select the top k features. The notable feature selection algorithms based
on this ranking scheme are Pearson correlation ranking, SPEC [37], the Laplacian score
[12], and the mutual information score [33].

Although simple and fast, feature ranking considers only the relevancy of features.
Evaluating each feature individually does not take into account the redundancy among
features. Specifically, if there are many relevant features which are similar in nature, all
of them will be ranked top. This is not desirable since having many similar features is
usually as good as having just one. In other words, k best features are not the best k
features [23].
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3.2 Sequential Search

To take feature redundancy into account, the popular sequential search [14, 28] can be
used. It comes with two variants: forward and backward search. Forward search works
iteratively by maintaining the currently selected features Xt. At each step t, Xt is updated
with

Xt ← Xt−1 ∪ {X∗
t },

where X∗
t = argmaxX f(Xt−1 ∪ {X}) and X0 = ∅. The backward search works similarly

except that X0 contains the full feature set. At each step, a feature which reduces f the
least is removed.

A potential drawback of the sequential search is its greedy search nature which is
independent of k. That is, the search paths are nested for different values of k. Specifi-
cally, it is decremental for the backward search, and incremental for the forward search.
The result is that, for the backward search, once a feature is removed, it will never be
considered again. Likewise, for the forward search, once a feature is added, it will never
be removed even if it is found to be redundant at latter iterations.

3.3 Feature Weighting

Feature weighting [34, 39, 19, 21] is an approach which can search for features with
a continuous optimization. Formally, the feature weighting approach attempts to find a
feature weight vector ŵ ∈ Rm which is the solution of the following optimization problem:

maximize
w

f(diag(w)X,Y)

subject to ∥w∥1 ≤ r,
(2)

where ∥ · ∥1 denotes the ℓ1-norm, diag(w) is a diagonal matrix with w placed along its
diagonal, and r > 0 is the tuning parameter for the radius of the ℓ1-ball. It is known that
if r is sufficiently small, then the solution tends to be on a vertex of the ℓ1 simplex, which
makes ŵ sparse [34]. Features can then be selected according to the non-zero coefficients
of the solution ŵ. In fact, observations reveal that the number of non-zero coefficients
tends to increase as r increases. So, a simple bisection method may be used to search for
the value of r which gives k features.

Unlike the sequential search, the feature weighting approach incorporates k into the
problem through r from the beginning. So, the solutions for different values of k are
not necessarily nested. This characteristic is particularly useful when there are multiple
optimal feature subsets of different sizes which are disjoint.

4 Feature Quality Measures

In this section, we describe a number of feature quality measures commonly used in
practice. A feature quality measure is a criterion which indicates how good the selected
features are, and is the counterpart of the optimization strategy. Here, we focus on
predictor-independent criteria.
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4.1 Pearson Correlation

Pearson correlation (PC) is a well-known univariate statistical quantity which can be used
to measure a linear dependency between two random variables X and Y . It is defined as

ρ(X, Y ) =
cov(X, Y )

σ(X)σ(Y )
, (3)

where cov(X, Y ) denotes the covariance between X and Y , and σ(X) and σ(Y ) are
population standard deviation of X and Y , respectively.

Although the independence of X and Y implies ρ = 0, the converse is not necessarily
true since the correlation is capable of detecting only a linear dependency. An example
would be a quadratic dependence Y = X2, which gives ρ = 0 due to the cancellation of
the negatively and the positively correlated components.

For a feature selection purpose, |ρ| can be used to rank features. There are many
feature selection algorithms based on Pearson correlation [24, 11, 23].

4.2 Hilbert-Schmidt Independence Criterion

The Hilbert-Schmidt independence criterion (HSIC) [8] is a multivariate dependence mea-
sure which can detect a non-linear dependency, and does not require a density estimation.

The formal definition of HSIC is given as follows. Let DX and DY be the domains of X
and Y . Define a mapping ϕ(x) ∈ F from all x ∈ DX to the feature space F in such a way
that the inner product of points in F is given by a kernel function k(x,x′) = ⟨ϕ(x), ϕ(x′)⟩.
This can be achieved if F is a reproducing kernel Hilbert space on DX [2]. Similarly,
define another reproducing kernel Hilbert space. G for DY with feature map ψ and kernel
l(y,y′) = ⟨ψ(y), ψ(y′)⟩. Then, the cross-covariance operator [7] associated with the joint
probability pxy is a linear operator CXY defined as

CXY := Ex,y[(ϕ(x)− µx)⊗ (ψ(y)− µy)],

where ⊗ is the tensor product. HSIC is defined as the squared Hilbert-Schmidt norm of
the cross-covariance operator

HSIC(pxy,F ,G) := ∥CXY ∥2HS,

which could be expressed in terms of kernels [8] as

HSIC(pxy,F ,G) =Ex,x′,y,y′ [k(x,x′)l(y,y′)]

+ Ex,x′ [k(x,x′)]Ey,y′ [l(y,y′)]

− 2Ex,y[Ex′ [k(x,x′)]Ey′ [l(y,y′)]].

Ex,x′,y,y′ [k(x,x′)l(y,y′)] is the expectation over independent pairs (x,y) and (x′,y′)
drawn from pxy. Given an i.i.d. paired sample S = {(xi,yi)}ni=1, an empirical estima-
tor of HSIC is given by

HSIC(S,F ,G) = 1

(n− 1)2
tr(KHLH), (4)
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where K,L,H ∈ Rn×n, (K)i,j := k(xi,xj), (L)i,j := l(yi,yj), and H := In − 11T/n
(centering matrix). It was also shown that, if k and l are universal kernels (e.g., Gaussian
kernels) [29], then HSIC(pxy,F ,G) = 0 if and only if X and Y are independent. So, HSIC
can also be used as a dependence measure.

In spite of the strong theoretical properties of HSIC, there is no known objective
criterion for model selection of the kernel functions k and l. A popular heuristic choice is
to use a Gaussian kernel with its width set to the median of the pairwise distance of the
data points [27].

4.3 Mutual Information

In information theory, mutual information [4] is an important quantity which can be used
to detect a general non-linear dependency between two random variables. It has been
widely used as the criterion for feature selection [23, 31, 24] as well as feature extraction
[35]. Mutual information is defined as

I(X, Y ) :=

∫∫
log

(
pxy(x,y)

px(x)py(y)

)
pxy(x,y) dxdy, (5)

which is the Kullback-Leibler divergence [16] from pxy(x,y) to px(x)py(y). Mutual in-
formation is a measure of dependence in the sense that it is always non-negative, sym-
metric (I(X, Y ) = I(Y,X)), and vanishes if and only if X and Y are independent, i.e.,
pxy(x,y) = px(x)py(y).

Even though mutual information is a powerful multivariate measure, accurate estima-
tion of the densities pxy, px and py is difficult in high-dimensional case. A recent approach
which avoids taking the ratio of estimated densities by directly modeling the density ratio
pxy(x,y)

px(x)py(y)
is Maximum Likelihood Mutual Information (MLMI) [31]. Although MLMI was

demonstrated to be accurate, its estimation is computationally rather expensive due to
the existence of the logarithm function.

4.4 Squared-loss Mutual Information

Another mutual information variant which has received much attention recently is
Squared-loss Mutual Information (SMI) [33, 30, 10, 32] defined as

Is(X, Y ) :=
1

2

∫∫ (
pxy(x,y)

px(x)py(y)
− 1

)2

px(x)py(y) dxdy. (6)

SMI is based on the f -divergence [1, 5] with a squared loss (also known as the Pearson
divergence, [20]), as opposed to the ordinary mutual information which is based on the
f -divergence with a log loss (Kullback-Leibler divergence, [16]). Note that Is(X, Y ) =
Is(Y,X), Is(X,Y ) ≥ 0, and Is(X, Y ) = 0 if and only if pxy(x,y) = px(x)py(y), just
like the ordinary mutual information. Therefore, SMI can also be used as a measure of
dependence between X and Y .
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SMI can be estimated by directly modeling the ratio g∗(x,y) = pxy(x,y)

px(x)py(y)
itself without

going through the estimation of the densities. The goal is to find a density ratio estimate
ĝ(x,y) which is as close to the true density ratio g∗(x,y) as possible. Here, the estimation
can be formulated as a least-squares problem. That is, to find ĝ(x,y) such that its
expected squared difference from g∗(x,y) is minimized:

min
g

1

2

∫∫
(g(x,y)− g∗(x,y))2 px(x)py(y) dxdy. (7)

Since finding g over all measurable functions is not tractable [30], the model g is restricted
to be in a linear subspace G defined as

G := {αTφ(x,y) |α = (α1, . . . , αb)
T ∈ Rb},

where α is the model parameter to be learned, and φ(x,y) = (φ1(x,y), . . . , φb(x,y))
T is

a basis function vector such that ∀l, φl(x,y) ≥ 0. The basis also admits kernel functions
which depend on samples.

With G, finding ĝ amounts to finding the optimal α. By using an empirical approxi-
mation, Eq. (7) can be written as

min
α∈Rb

1

2
αTĤα− ĥ

T
α+

λ

2
αTα, (8)

where the term λ
2
αTα with a regularization parameter λ > 0 is included for a regulariza-

tion purpose, and

Ĥ :=
1

n2

n∑
i=1

n∑
j=1

φ(xi,yj)φ(xi,yj)
T ,

ĥ :=
1

n

n∑
i=1

φ(xi,yi).

By differentiating Eq. (8) with respect to α and equating it to zero, the solution α̂ can
be computed analytically as

α̂ =
(
Ĥ + λI

)−1

ĥ,

where I denotes the identity matrix. Finally, using α̂, SMI in Eq. (6) can be estimated
as

Îs =
1

2
ĥ

T
α̂− 1

2
. (9)

The estimator in Eq. (9) is called Least-Squares Mutual Information (LSMI).
LSMI possesses many good properties [30]. For example, it has an optimal convergence

rate in n under non-parametric setup. Also, LSMI is equipped with a model selection
criterion for determining φ and λ. Model selection by K-fold cross validation is described
as follows. First, randomly split samples {(xi,yi)}ni=1 into (roughly) equal K disjoint
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subsets {Sk}Kk=1. An estimator α̂S−k
is then obtained using S−k := {Sj}j ̸=k. Finally, the

approximation error for the held-out samples Sk is computed. The procedure is repeated
K times, and (φ, λ) which minimizes the mean Ĵ (K−CV ) is chosen:

Ĵ (K−CV ) :=
1

K

K∑
k=1

(
1

2
α̂T

S−k
ĤSk

α̂S−k
− ĥ

T

Sk
α̂S−k

)
.

5 Proposed Method

In this section, we describe our proposed method.

5.1 Motivations

As mentioned previously, there are a number of factors which cause the difficulty of
feature selection, i.e., non-linear dependency, feature interaction, and feature redundancy.
Although existing combinations of optimization strategies and measures can handle these
problems, the trade-off of the computational complexity and the obtained abilities to deal
with such issues is not well balanced.

A summary of properties of common optimization strategies is shown in Table 1. Rank-
ing is very fast since it completely disregards feature redundancy and feature interaction,
and focuses on only feature relevancy. Forward search improves this by maintaining a set
of selected features, and greedily adding each feature to the set. This allows the forward
search to deal with feature redundancy by not adding a redundant feature to the set.
Nevertheless, feature interaction cannot be detected since features are not considered in
the presence of each other. This is why backward search comes to play by starting from
the full feature set and iteratively removing a feature instead. Although this scheme has
a potential to detect interacting features, the complexity goes from O(m) to O(m2) which
could be problematic when the number of features, m, is large. Considering all strategies,
an ℓ1-based approach seems to be the optimal choice here. It offers a continuous opti-
mization which is usually easier than a discrete optimization. Also, since all features are
considered simultaneously by optimizing their weights, it can take into account feature
redundancy and feature interaction.

A summary of properties of feature quality measures is shown in Table 2. PC is
very efficient to compute. However, only linear dependency can be identified. HSIC can
reveal a non-linear dependency. Nonetheless, it is unclear how to objectively choose the
right kernel function. MI is another measure that is capable of detecting a nonlinear
dependency but the existence of log causes computational inefficiency. It can be seen that
SMI has balanced properties here. Not only is it able to capture a non-linear dependency,
using a squared loss instead of a log loss also permits its estimator to have an analytic
form, which can be efficiently computed.

Table 3 shows the combinations of optimization strategies and feature quality mea-
sures. Many of them have already been proposed in the past. Exhaustive search is marked
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Table 1: Summary of properties of optimization strategies. “disc.” and “cont.” denote
“discrete” and “continuous”, respectively.

Ranking Forward Backward Exhaustive ℓ1

Optimization disc. disc. disc. disc. cont.
Complexity m m m2 2m m
Redundancy × △ ⃝ ⊚ ⃝
Interaction × × ⃝ ⊚ ⃝

×: Not considered, △: Weak, ⃝: Good, ⊚: Excellent

Table 2: Summary of properties of feature quality measures.

PC HSIC MI SMI

Non-linear Dependency × ⃝ ⃝ ⃝
Model Selection not needed × ⃝ ⃝
Computational Efficiency ⊚ ⃝ × △
×: Not available/Poor, △: Weak, ⃝: Good, ⊚: Excellent

Table 3: Summary of combinations of optimization strategies and feature quality mea-
sures.

Ranking Forward Backward Exhaustive ℓ1

PC ⃝[11] × × × ×
HSIC − ⃝[28] ⃝[28] × △[22]
MI ⃝[31] ⃝ ⃝ × −
SMI ⃝[33] ⃝[33, 10] ⃝[33] × −

⃝: Method exists, △: Variation exists,
−: Method does not exist, × Method is unreasonable, impractical

impractical since it is computationally intractable. PC is a univariate measure which con-
siders one feature at a time. Combining it with a feature-set optimization strategy (i.e.,
forward, backward search, ℓ1 approach) would degenerate back to a ranking approach.
Hence, the combinations are marked unreasonable.

It can be seen that the feature weighting with ℓ1-regularization is the best among the
optimization strategies. Also, SMI has the best balance among the listed feature quality
measures. We therefore propose to combine ℓ1-regularized feature weighting with SMI,
which we call ℓ1-LSMI.
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5.2 Formulation of ℓ1-LSMI

ℓ1-LSMI attempts to find an m-dimensional sparse weight vector by solving the following
optimization problem:

maximize
w∈Rm

Îs(diag(w)X,Y)

subject to 1Tw ≤ r

w ≥ 0,

(10)

where Îs is the LSMI defined in Eq. (9), r > 0 is the radius of the ℓ1-ball, 1 is the
m-dimensional vector consisting of only 1’s, and “≥” in w ≥ 0 is applied element-wise.
Features are selected according to the non-zero coefficients of the learned ŵ. Here, since
the sign of ŵj does not affect the feature selection process, we only consider the positive
orthant in Rm. Thus, the constraint w ≥ 0 is imposed, and ∥w∥1 reduces to 1Tw.

5.3 Advantages of ℓ1-LSMI

Using SMI allows a detection of nonlinear dependency between X and Y . Furthermore,
by combining it with the ℓ1-regularization feature weighting scheme, feature interaction
is also taken into account since all features are considered simultaneously. In general,
the use of ℓ1-regularization does not necessarily give an ability to deal with redundant
features. That is, the weights of all redundant features may be all high. This drawback
of ℓ1-regularization is covered by the use of SMI. Since adding a redundant feature to
the selected subset does not increase the SMI value (i.e., no new information), ℓ1-LSMI
implicitly deals with the feature redundancy issue by avoiding the inclusion of redundant
features. This is achieved by simply maximizing SMI between the weighted features and
the output. The use of density-ratio estimation in approximating SMI also helps avoid
the density estimation problem, which is difficult when m is large.

5.4 Solving ℓ1-LSMI

Here, we explain how we solve the ℓ1-LSMI optimization problem.

5.4.1 Algorithm Overview

Algorithm 1 is executed to find a k-feature subset by a binary-search-liked scheme. Based
on the observation that the number of obtained features tends to increase as r increases,
the idea is to systematically vary r so that k features can be obtained. The ℓ1-LSMI
optimization problem is solved by iteratively performing gradient ascent and projection
(constraint satisfaction) where w is initially set to a random feasible vector due to the
non-convexity of the problem. Starting from a low r, if k features can be obtained from the
current r, then return them. Otherwise, r is doubled (starting from 2: in Algorithm 1)
until more than k features are obtained. The value of r firstly found to give more than
k features is denoted by rh, and is assumed to be the upper bound of the value of r
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Algorithm 1 Pseudo code of ℓ1-LSMI to search for a k-feature subset.

Require: k (desired number of features)
1: r ← 0.1 //r is initially low

2: repeat //try to find an upper bound rh
3: r ← 2r
4: w0 ← randomly initialize a feasible w
5: Xr ← Solve Eq. (10) with (w0, r) //Xr: set of features obtained using r
6: if |Xr| = k then
7: return Xr

8: end if
9: until |Xr| > k or time limit exceeded
10: rh ← r
11: rl ← rh/2
12: while time limit not exceeded do //find r ∈ (rl, rh) which gives k features

with a binary search

13: rm ← (rh + rl)/2
14: w0 ← randomly initialize a feasible w
15: Xrm ← Solve Eq. (10) with (w0, rm)
16: if |Xrm| = k then
17: return Xrm

18: else if |Xrm | < k then
19: rl ← rm
20: else if |Xrm | > k then
21: rh ← rm
22: end if
23: end while
24: S ← list of all X found so far, sorted in the ascending order by ||X | − k|, |X | −

k,−Îs(XX ,Y)
25: return the first X in S

which can give k features. The lower bound rl is then set to rh/2 which gives strictly less
than k features. The rest of the procedure (starting from 12: in Algorithm 1) is to find
r ∈ (rl, rh) using a binary search scheme, so that k features can be obtained. In each step
of the search, Eq. (10) is solved using the middle point rm between rh and rl. If k features
cannot be found, rh or rl is updated accordingly. This halving procedure is repeated until
k features are found, or the time limit is reached.

In case that a k-feature subset cannot be found, obtained feature subsets X are sorted
in ascending order of three keys given by ||X | − k|, |X | − k,−Îs(XX ,Y). This means
that the feature subsets whose size is closest to k are to be put towards the head of the
list. With two sets whose size is equally closest to k, then prefer the smaller one (due to

|X | − k). If there are still many such subsets, bring the ones with highest Îs(XX ,Y) to
the head of the list, where XX denotes the data matrix X with only rows indexed by X .
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In the end, the feature subset X at the head of the list is selected.

5.4.2 Basis Function Design

Estimation of SMI requires b basis functions. Here, we choose the basis functions to be
in the form of a product kernel defined as

φl(diag(w)x,y) = ϕx
l (diag(w)x)ϕy

l (y) for l = 1, . . . , b. (11)

ϕx
l (·) is defined to be the Gaussian kernel,

ϕx
l (diag(w)x) = exp

(
−
∥ diag(w)(x− xc(l))∥2

2σ2

)
.

c(l) ∈ {1, . . . , n} is a randomly chosen sample index without overlap. The definition of
ϕy
l (y) depends on the task. For a regression task, ϕy

l (y) is also defined to be a Gaussian
kernel,

ϕy
l (y) = exp

(
−
(y − yc(l))2

2σ2

)
.

For a C-class classification task in which Y ∈ {1, . . . , C}, the delta kernel is used on Y,
i.e., ϕy

l (y) takes 1 if y = yc(l), and 0 otherwise. Using these definitions, model selection
for (φ, λ) is reduced to selecting (σ, λ).

5.4.3 Optimization

Given an initial point w0 and the radius r, the ℓ1-LSMI optimization problem is simply
solved by gradient ascent. To guarantee the feasibility, the updated w is projected onto
the positive orthant of the constrained ℓ1-ball in each iteration. The projection can be
carried out by first projecting w onto the positive orthant with max(w,0), where the max
function is applied element-wise. This is then followed by a projection onto the ℓ1-ball
which can be carried out in O(m) time [6].

In practice, there are many more sophisticated methods for solving Eq. (10), e.g., pro-
jected Newton-type methods [18, 26]. These methods generally converge super-linearly,
and are faster (in terms of the convergence rate) than ordinary gradient ascent algorithms
which converge linearly. However, the notion of convergence does not take into account
the number of function evaluations. In general, methods with a good convergence rate
rely on a large number of function evaluations per iteration, i.e., performing line search to
find a good step size. In our case, function evaluation is expensive since model selection
for (σ, λ) has to be performed. It turns out that using a more sophisticated solver may
take more time to actually solve the problem even though the convergence rate is better.
So, we decided to simply use a gradient ascent algorithm to solve the problem. Addition-
ally, to further improve the computational efficiency, model selection is performed every
five iterations, instead of every iteration. This is based on the fact that, in each iteration,
w is not significantly altered. Hence, it makes sense to assume that the selected (σ, λ)
from the previous iteration are approximately correct.
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6 Experiments

In this section, we report experimental results.

6.1 Methods to be Compared

We compare the performance of the following feature selection algorithms:

• PC (Pearson correlation ranking).

• F-HSIC (forward search with HSIC).

• F-LSMI (forward search with LSMI) [10].

• B-HSIC (backward search with HSIC) [28].

• B-LSMI (backward search with LSMI).

• ℓ1-HSIC (similar to ℓ1-LSMI, but the objective function is replaced with
HSIC(diag(w)X,Y)) .

• ℓ1-LSMI1 (proposed method).

• mRMR (Minimum Redundancy Maximum Relevance) [23]. mRMR is one of the
state-of-the-art algorithms which selects features by solving

maximize
I⊂{1,...,m}

relevancy measure︷ ︸︸ ︷
1

k

∑
i∈I

I(Xi, Y )−

redundancy measure︷ ︸︸ ︷
1

k2

∑
i∈I

∑
j∈I

I(Xi, Xj)

subject to |I| = k.

That is, it uses mutual information to select relevant features which are not too
redundant. mRMR solves the optimization problem by greedily adding one feature
at a time until k features can be obtained. This scheme is similar to a forward
search algorithm.

• QPFS (Quadratic Programming Feature Selection) [24]. QPFS formulates the fea-
ture selection task as a quadratic programming problem of the form:

minimize
w∈Rm

1

2
(1− α)wTQw − αfTw

subject to 1Tw = 1

w ≥ 0,

where 0 ≤ α ≤ 1 controls the trade-off between high relevancy (high α) and low
redundancy of the selected features. Q = [qij] = |ρ(Xi, Xj)| is the absolute value of

1Implementation of ℓ1-LSMI is freely available at http://wittawat.com/software/l1lsmi/
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the Pearson correlation between Xi and Xj as in Eq. (3), and f = [fi] = |ρ(Xi, Y )|.
In the case that Y is categorical, the correlation for categorical variable as in [11]
is used. In this experiment, we use the recommended value of α = q̄/(q̄ + f̄) where
q̄ = 1

m2

∑m
i=1

∑m
j=1 qij and f̄ = 1

m

∑m
i=1 fi [24]. Notice that if α = 1, QPFS reduces

to PC.

• Lasso [34]. Lasso is a well-known method of least squares which imposes an ℓ1-norm
constraint on the weight vector. Specifically, it solves the problem of the form:

minimize
w∈Rm

∥Y −wTX∥2 + λ∥w∥1,

where λ ≥ 0 is the sparseness regularization parameter. In this experiment, λ is
varied so that k features can be obtained.

• Relief [13, 15]. Relief is another state-of-the-art heuristic algorithm which scores
each feature based on how it can discriminate different classes (distance-based).

6.2 Toy Data Experiment

An experiment is conducted on the following three toy datasets:

1. and-or

• Binary classification (4 true / 6 distracting features).

• Y = (X1 ∧X2) ∨ (X3 ∧X4).

• X1, . . . , X7 ∼ Bernoulli(0.5), where Bernoulli(p) denotes the Bernoulli distri-
bution taking value 1 with probability p.

• X8, . . . , X10 = Y with 0.2 chance of bit flip.

• Characteristics: Feature redundancy and weak interaction.

2. quad

• Regression (2 true / 8 distracting features).

• Y =
X2

1+X2

0.5+(X2+1.5)2
+ 0.1ϵ.

• X1, . . . , X8, ϵ ∼ N (0, 1), where N (µ, σ2) denotes the normal distribution with
mean µ and variance σ2.

• X9 ∼ 0.5X1 + U(−1, 1), where U(a, b) is the uniform distribution on [a, b].

• X10 ∼ 0.5X2 + U(−1, 1).
• Characteristic: Non-linear dependency.

3. xor

• Binary classification (2 true / 8 distracting features).
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Table 4: Averaged F-measures on the and-or, quad, and xor datasets.

Dataset PC F-HSIC F-LSMI B-HSIC B-LSMI
and-or 0.25 (.00) 0.25 (.00) 0.57 (.22) 0.25 (.00) 0.85 (.22)
quad 0.57 (.20) 0.95 (.15) 1.00 (.00) 0.95 (.15) 1.00 (.00)
xor 0.25 (.31) 0.52 (.50) 0.53 (.50) 1.00 (.00) 1.00 (.00)

Dataset ℓ1-HSIC ℓ1-LSMI mRMR QPFS Lasso Relief

and-or 0.25 (.00) 1.00 (.00) 0.25 (.00) 0.41 (.17) 0.21 (.09) 0.55 (.15)
quad 0.64 (.23) 1.00 (.00) 1.00 (.00) 0.64 (.23) 0.66 (.25) 1.00 (.00)
xor 1.00 (.00) 1.00 (.00) 0.28 (.31) 0.25 (.32) 0.26 (.32) 1.00 (.00)

• Y = xor(X1, X2), where xor(X1, X2) denotes the XOR function for X1 and X2.

• X1, . . . , X5 ∼ Bernoulli(0.5).

• X6, . . . , X10 ∼ Bernoulli(0.75).

• Characteristic: Feature interaction.

The number of features to select, k, is set to the number of true features in the
respective dataset. For LSMI-based methods, Gaussian kernels are used as the basis
functions and b is set to 100. Five-fold cross validation is carried out on a grid of (σ, λ)
candidates for model selection. For σ, the candidates are also adaptively scaled with
the median of pairwise sample distance σmed, which depends on the currently selected
features.

σmed = median({∥xi − xj∥2}i<j).

Gaussian kernels are also used in HSIC-based methods. However, since model selection
is not available for HSIC, in F-HSIC and B-HSIC, the Gaussian width is heuristically
set to σmed [27]. For ℓ1-HSIC, the Gaussian width is adaptively set to the median of
pairwise distance of diag(w)X every five iterations. Due to the non-convexity of the
objective functions, ℓ1-LSMI and ℓ1-HSIC are restarted 20 times with randomly chosen
initial points.

The experiment is repeated 50 times with n = 400 points sampled in each trial. For
each method and each dataset, an average of the F-measure over all trials is reported.
The F-measure is defined as f = 2pr/(p+ r), where

• p = (number of correctly selected features) / (number of selected features).

• r = (number of correctly selected features) / (number of correct features).

An F-measure is bounded between 0 and 1, and 1 is achieved if and only if all the true
features are selected and none of the distracting features is selected. The results are shown
in Table 4.

PC ranks the relevance of each feature individually without taking into account
the redundancy among features. This results in a failure on the and-or dataset since



Feature Selection via ℓ1-Penalized Squared-Loss Mutual Information 16

X8, . . . , X10, which are redundant, would simply be ranked top due to their similarity to
Y .

The forward search variants do not work on problems with feature interaction. To
detect interacting features, it is necessary that all features be considered simultaneously.
For this reason, F-HSIC and F-LSMI fail in the xor problem.

The performance of HSIC-based methods seems to be unstable in many cases. A
possible cause of the instability is from the use of an incorrect parameter: The heuristic
of using σmed for the Gaussian width does not always work. As an example, given a fixed
data matrix X, the more features selected, the larger σmed may become. This is because
the Euclidean distance is a non-decreasing function of the dimension. So, inclusion of
many irrelevant features obviously unnecessarily makes σmed larger. B-HSIC is subject to
this weakness since it starts the search with all features.

B-LSMI performs well in detecting non-linear dependency (quad) and feature inter-
action (xor). However, due to its greedy nature, the redundant features in the and-or

problem are sometimes chosen. That is, in the first few iterations, all redundant features
are kept, and one of the true features is eliminated instead.

mRMR and QPFS have similar optimization strategies. That is, both of them measure
the relevancy of each feature, and have a pairwise feature redundancy constraint. Regard-
less of the feature measure in use, considering features in a univariate way cannot reveal
interacting features (by definition of feature interaction). Therefore, it is not surprising
that both of them fail on the xor and and-or datasets. Nevertheless, mRMR works well
on the quad dataset since mutual information can reveal a non-linear dependency. On
the other hand, QPFS and Lasso do not perform well on the quad dataset since both of
them use a linear measure.

Relief is one of the few feature ranking algorithms which can consider feature interac-
tion (the xor dataset) because of its distance-based nature. However, it suffers the same
drawback as other ranking algorithms in that no redundancy is considered. Hence, it fails
on the and-or dataset with the same reason as PC.

The proposed ℓ1-LSMI performs well on all datasets. This clearly shows that ℓ1-LSMI
can consider redundancy, detect non-linear dependency, and consider feature interaction.
ℓ1-based feature optimization enables a simultaneous consideration of features, which is
the key in tackling the feature interaction problem. By using ℓ1-regularization in combi-
nation with SMI which can detect a non-linear dependency, ℓ1-LSMI can correctly choose
the two true features in the quad problem. For the and-or problem, the pitfall is to
choose X8, . . . , X10 because of their high correlation to Y . However, due to the usage
of ℓ1-regularization, ℓ1-LSMI attempts to find the four-feature subset which maximizes
LSMI in a non-greedy manner. Since X8, . . . , X10 contain bit-flip noise, inclusion of any
of them will not deliver the maximum LSMI. In this case, the only four features which
give the maximum LSMI are X1, . . . , X4, and thus preferred over any of X8, . . . , X10.

As an illustration of LSMI, Table 5 shows all possible 35 four-feature subsets of
{X1, . . . , X4} ∪ {X8, . . . , X10} in the and-or problem and their corresponding LSMI val-
ues. It is evident that the correct subset {X1, . . . , X4} has the highest LSMI. Inclusion of
any of X8, . . . , X10 (and thus remove some from {X1, . . . , X4}) would cause a significant
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Table 5: All possible 35 four-feature subsets of {X1, . . . , X4}∪{X8, . . . , X10} in the and-or
dataset, and their corresponding values of LSMI to the output Y = (X1∧X2)∨(X3∧X4).

Feature indices LSMI

1 2 3 4 0.496
1 2 3 8 0.365
1 2 3 9 0.381
1 2 3 10 0.357
1 2 4 8 0.376
1 2 4 9 0.384
1 2 4 10 0.372
1 2 8 9 0.346
1 2 8 10 0.330
1 2 9 10 0.336
1 3 4 8 0.382
1 3 4 9 0.376
1 3 4 10 0.392
1 3 8 9 0.325
1 3 8 10 0.330
1 3 9 10 0.333
1 4 8 9 0.342

Feature indices LSMI

1 4 9 10 0.341
2 3 4 8 0.367
2 3 4 9 0.382
2 3 4 10 0.390
2 3 8 9 0.341
2 3 8 10 0.312
2 3 9 10 0.322
2 4 8 9 0.340
2 4 8 10 0.328
2 4 9 10 0.328
3 4 8 9 0.356
3 4 8 10 0.349
3 4 9 10 0.353
1 8 9 10 0.330
2 8 9 10 0.334
3 8 9 10 0.303
4 8 9 10 0.335

drop of the LSMI value. In the extreme case, with all X8, . . . , X10 in the selected set
(shown at the bottom of the table), the LSMI score becomes considerably low. This is
because each of X8, . . . , X10 contains roughly the same information to explain Y . Thus,
there is no gain in adding more features which share very similar information.

6.3 Real-Data Experiment

To demonstrate the practical use of the proposed ℓ1-LSMI, we conduct experiments on
real datasets without any specific domains. All the real datasets used in the experiments
are summarized in Table 6. The “Task” column denotes the type of the problem (R for
regression, and Cx for x-class classification problem). The datasets cover a wide range of
domains including image, speech, and bioinformatics.

The experiment is repeated 20 times with n = 400 points sampled in each trial.
In each trial, k is varied in the low range with a step size proportional to the entire
dimensionality m. For classification, each selected k-feature subset is scored with the test
error of a support vector classifier (SVC) with Gaussian kernels. For regression, the root
mean squared error of support vector regression (SVR) with Gaussian kernels is used.
The hyper-parameters of SVC and SVR are chosen with cross validation. We use the
implementations of SVC and SVR given in the LIBSVM library [3]2. The results are

2LIBSVM: http://www.csie.ntu.edu.tw/~cjlin/libsvm/
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Table 6: Summary of the real datasets used in the experiments.

Dataset m n Task Class balance (%)

abalone 8 4177 R -
bcancer 9 277 C2 70.8/29.2
cpuact 21 3000 R -
ctslices 379 53500 R -
flaresolar 9 1066 C2 44.7/55.3
german 20 1000 C2 70.0/30.0
glass 9 214 C6 32.7/35.5/7.9/6.1/4.2/13.6
housing 13 506 R -
image 18 1155 C2 42.9/57.1
ionosphere 33 351 C2 64.1/35.9
isolet 617 6238 C26 about 3.85% per class
msd 90 10000 R -
musk1 166 476 C2 56.5/43.5
musk2 166 6598 C2 84.6/15.4
satimage 36 6435 C6 23.8/10.9/21.1/9.7/11.0/23.4
segment 18 2310 C7 14.3% per class
senseval2 50 534 C3 33.3% per class
sonar 60 208 C2 46.6/53.4
spectf 44 267 C2 20.6/79.4
speech 50 400 C2 50.0/50.0
vehicle 18 846 C4 25.1/25.7/25.8/23.5
vowel 13 990 C11 9.1% per class
wine 13 178 C3 33.1/39.9/27.0
All datasets were taken from UCI Machine Learning Repository:
http://archive.ics.uci.edu/ml/, except that cpuact is from

http://mldata.org/repository/data/viewslug/uci-20070111-cpu_act/,
SENSEVAL-2 is from the Second International Workshop on Evaluating Word Sense
Disambiguation Systems: http://www.sle.sharp.co.uk/senseval2, and speech is

our In-house developed voice dataset.

shown in Fig. 1.
Overall, results suggest that using LSMI can give better features than HSIC (judged

by the error of SVC/SVR). This shows the importance of the availability of a model
selection criterion. ℓ1-LSMI and mRMR are competitive, especially on multi-class classi-
fication problems with many classes (e.g., segment and satimage). This is in contrast to
PC and Relief which do not handle multi-class problems well. As in the case of the toy
data experiment, PC does not perform well in most cases since it does not take redun-
dancy among features into account. An exception would be the senseval2 problem in
which PC performs the best among others. This is because 50 features in the senseval2
dataset are derived from the first 50 principal components obtained by principal compo-
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nent analysis. Since principal components are orthogonal by definition, no redundancy
has to be considered for this problem. In some cases, considering feature redundancy
may hurt the performance. This can be seen on image, cpuact, senseval2, and musk2

datasets when PC outperforms QPFS, suggesting that features may not be correlated.
Thus, ignoring redundancy and considering just relevancy gives a better performance.
ℓ1-HSIC performs well in many cases, but the performance may become unstable when k
is high due to the mentioned fact that σmed also gets larger.

To objectively compare the performance, another experiment with the same setting
is carried out on 22 datasets. The number of trials is set to 50. For each method and
dataset, k is set to either 4, 10, or 20 depending on how large m is. The selected k-feature
subsets are evaluated by SVC or SVR, as in the previous experiment. The results are
given in Table 7, where for each dataset, the method with the best performance is shown
in bold face. Other methods which have insignificant performance difference (based on
the one-sided paired t-test with 5% significance level) to the best one are also marked in
the same way. Note that Lasso works on only binary and regression problems. Thus, the
results for multi-class problems are not available. For F-HSIC and F-LSMI, we omit the
results on the ctslices and isolet datasets due to the large computation time involved.

From the table, it can be seen quantitatively that overall ℓ1-LSMI performs the best
by judging from the number of times it ranks top. Interestingly, although worse on small
datasets, the performance of mRMR approaches that of ℓ1-LSMI on high-dimensional
datasets (i.e., the musk1, musk2, ctslices, and isolet datasets). One reasonable expla-
nation for this phenomenon is that, a large number of features provide more freedom in
choosing an alternative subset. Even though there are interacting features, there may be
many other alternative non-interacting subsets which give an almost equivalent explana-
tory power. For this reason, the fact that mRMR cannot detect interacting features may
be less significant.

7 Conclusion

Feature selection is an important dimensionality reduction technique which can help to
improve prediction performance and speed, and to facilitate the interpretation of a learned
predictive model. There are a number of factors which cause the difficulty of feature selec-
tion. These include non-linear dependency, feature redundancy, and feature interaction.

The proposed ℓ1-LSMI is an ℓ1-based algorithm that maximizes SMI between the
selected feature and the output. The main idea is to learn a sparse feature weight vector
whose coefficients can be used to determine the importance of features. Only features
corresponding to the non-zero coefficients in the weight vector need to be kept. The use
of ℓ1-regularization allows simultaneous consideration of features, which is essential in
detecting a group of interacting features.

By combining it with SMI which is able to detect a non-linear dependency and im-
plicitly handle feature redundancy, a powerful feature selection algorithm is obtained.

Extensive experiments were conducted to confirm the usefulness of ℓ1-LSMI. We there-
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Figure 1: Comparison of SVC/SVR errors of features selected by PC, ℓ1-HSIC, ℓ1-LSMI,
mRMR, QPFS, Lasso and Relief.
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Table 7: SVC/SVR errors of the features selected by PC, F-HSIC, F-LSMI, ℓ1-HSIC,
ℓ1-LSMI, mRMR, QPFS, Lasso, and Relief on real datasets.
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fore conclude that ℓ1-LSMI is a promising method for practical use.
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