Equivalent Properties of a Linear Operator
This is a summary of material from the course ``Advanced topics in machine learning’’ by Arthur Gretton with slightly more intermediate steps.
Theorem Let \(\left(\mathcal{F},\|\cdot\|_{\mathcal{F}}\right)\) and \(\left(\mathcal{G},\|\cdot\|_{\mathcal{G}}\right)\) be normed linear spaces. If $L:\mathcal{F}\mapsto\mathcal{G}$ is a linear operator, then the following three conditions are equivalent.
- $L$ is a bounded operator.
- $L$ is continuous on $\mathcal{F}$.
- $L$ is continuous at one point of $\mathcal{F}$.
Proof Equivalence of these conditions can be proved by proving $1\Rightarrow2,2\Rightarrow3$ and $3\Rightarrow1$.
Firstly we prove $1\Rightarrow2$. Assume $L$ is bounded. Then by definition of a bounded operator, for all $f\in\mathcal{F}$, \(\|Lf\|_{\mathcal{G}}\leq\|L\|\|f\|_{\mathcal{F}}\), where $|L|$ is the operator norm. Set $f:=f_{1}-f_{2}$. So, we have \(\|L\left(f_{1}-f_{2}\right)\|_{\mathcal{G}}\leq\|L\|\|f_{1}-f_{2}\|_{\mathcal{F}}\) which is the definition of Lipschitz continuity with Lipschitz constant $|L|$. Since Lipschitz continuity implies continuity, $1\Rightarrow2$ holds.
The implication from 2 to 3 is obvious since by definition an operator is continuous if it is continuous at every point.
Proving $3\Rightarrow1$ is a bit tricky. Let us recall the definition of continuity. An operator is said to be continuous at $f_{0}\in\mathcal{F}$ if for all $\epsilon>0$, there exists $\delta(\epsilon,f_{0})>0$ such that for all $f\in\mathcal{F}$, we have \(\|f-f_{0}\|_{\mathcal{F}}<\delta\Rightarrow\|Lf-Lf_{0}\|_{\mathcal{G}}<\epsilon.\)
Assume $L$ is continuous at $f_{0}$. Then, for $\epsilon=1$, there exists $\delta>0$, such that \(\|\left(f_{0}+\Delta\right)-f_{0}\|_{\mathcal{F}}=\|\Delta\|_{\mathcal{F}}\leq\delta\) for any $\Delta$ implies \(\|L\left(f_{0}+\Delta\right)-Lf_{0}\|_{\mathcal{G}}=\|L\Delta\|\leq\epsilon=1\). Here $f$ in the definition of continuity is set to $f_{0}+\Delta$, and $\epsilon$ is chosen to be 1. Now we try to show that $L$ is bounded.
\[\begin{eqnarray*} \|Lf\|_{\mathcal{G}} & = & \frac{\delta}{\delta}\frac{\|f\|_{\mathcal{F}}}{\|f\|_{\mathcal{F}}}\|Lf\|_{\mathcal{G}}=\frac{1}{\delta}\|f\|_{\mathcal{F}}\left\Vert \frac{\delta}{\|f\|_{\mathcal{F}}}L\left(f\right)\right\Vert _{\mathcal{G}}\\ & = & \frac{1}{\delta}\|f\|_{\mathcal{F}}\left\Vert L\left(\frac{\delta}{\|f\|_{\mathcal{F}}}f\right)\right\Vert _{\mathcal{G}} \end{eqnarray*}\]Here we used the fact that $L$ is linear. Since \(\left\Vert \frac{\delta}{\|f\|_{\mathcal{F}}}f\right\Vert _{\mathcal{F}}=\delta\), if we set \(\Delta=\frac{\delta}{\|f\|_{\mathcal{F}}}f\), then we have $|\Delta|_{\mathcal{F}}\leq\delta$. So,
\[\begin{align*} \left\Vert Lf\right\Vert _{\mathcal{G}} & =\frac{1}{\delta}\|f\|_{\mathcal{F}}\left\Vert L\Delta\right\Vert _{\mathcal{G}}\\ & \leq\frac{1}{\delta}\|f\|_{\mathcal{F}}. \end{align*}\]where we used the fact that $\left\Vert L\Delta\right\Vert \leq1$. Since $f$ is arbitrary, we have the definition of a bounded operator with operator norm $|L|=\frac{1}{\delta}$.